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1 Development Costs and Complexity

“Premature optimization is the root of all evil.”
Donald Knuth

1.1 Introduction

The past several decades have witnessed impressive successes in the ability of
scientists and engineers to accurately simulate physical phenomena on computers. In
engineering, it would now be unimaginable to design complex devices such as aircraft
engines or skyscrapers without detailed numerical modeling playing an integral role.
In science, computation is now recognized as a third mode of inquiry, complement-
ing theory and experiment. As the steady march of progress in individual spheres of
interest continues, the focus naturally turns toward leveraging efforts in previously
separate domains to advance one’s own domain or in combining old disciplines into
new ones. Such work falls under the umbrella of multiphysics modeling.

Overcoming the physical, mathematical, and computational challenges of mul-
tiphysics modeling comprises one of the central challenges of 21st-century science
and engineering. In one of its three major findings, the National Science Foundation
Blue Ribbon Panel on Simulation-Based Engineering Science (SBES) cited “open
problems associated with multiscale and multi-physics modeling” among a group of
“formidable challenges [that] stand in the way of progress in SBES research.” As
the juxtaposition of “multiphysics” and “multiscale” in the panel’s report implies,
multi-physics problems often involve dynamics across a broad range of lengths and
times.

At the level of the physics and mathematics, integrating the disparate dynamics
of multiple fields poses significant challenges in simulation accuracy, consistency,
and stability. Modeling thermal radiation, combustion, and turbulence in compart-
ment fires, for example, requires capturing phenomena with length scales separated
by several orders of magnitude. The room-scale dynamics determine the issue of
paramount importance: safe paths for human egress. Determining such gross pa-
rameters while resolving neither the small length scales that control the chemical
kinetics nor the short time scales on which light propagates forms an active area of
research.
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4 Development Costs and Complexity
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Figure 1.1. Scientific software life cycle.

At the level of the computation, the sheer size of multiscale, multiphysics sim-
ulations poses significant challenges in resource utilization. Whereas the largest
length and time scales determine the spatial and temporal extent of the problem
domain, the shortest determine the required resolution. The ratio of the domain size
to the smallest resolvable features determines the memory requirements, whereas
the ratio of the time window to the shortest resolvable interval determines the com-
puting time. In modeling-controlled nuclear fusion, for example, the time scales
that must be considered span more orders of magnitude than can be tracked simul-
taneously on any platform for the foreseeable future. Hence, much of the effort in
writing related programs goes into squeezing every bit of performance out of existing
hardware.

In between the physical/mathematical model development and the computation
lies the software development process. One can imagine the software progressing
through a life cycle much like any other product of human effort: starting with
research and development and ending with the testing and fine-tuning of the final
product (see Figure 1.1). However, as soon as one searches for evidence of such
a life cycle in scientific computing, gaping holes appear. Research on the scien-
tific software development process is rare. Numerous journals are devoted to novel
numerical models and the scientific insights obtained from such models, but only
a few journals focus on the software itself. Notable examples include the refereed
journals Scientific Programming and ACM Transactions on Mathematical Software.

Further along in the life cycle, the terrain becomes even more barren. Discussions
of scientific software design rarely extend beyond two categories: (1) explanations of
a particular programming paradigm, which fall into the implementation stage of the
life cycle, and (2) strategies for improving run-time efficiency, which arguably impacts
all stages of the life cycle but comprises an isolated activity only once a prototype has
been constructed in the testing and tuning phase. Articles and texts on the first topic
include presentations of structured and object-oriented programming, whereas those
on the second include discussions of parallel programming and high-performance
computing.

Implementation-independent design issues such as the chosen modular decom-
position and its developmental complexity have received scant attention in the
scientific computing community. Not surprisingly then, quantitative analyses of
software designs have been limited to run-time metrics such as speed and paral-
lel efficiency. In presenting attempts to analyze static source code organization, the
author often encounters a perception that program structure is purely stylistic – of
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1.1 Introduction 5

the “You say ‘toe-may-toe’; I say ‘toe-mah-toe’ ” variety. Even to the extent it is rec-
ognized that program structure matters, no consensus is emerging on what structural
precepts prove best.

That scientific program design warrants greater attention has been noted at
high levels. The 1999 Presidential Information Technology Advisory Committee
(PITAC) summarized the situation for developers of multidisciplinary scientific
software:

Today it is altogether too difficult to develop computational science software and applica-
tions. Environments and toolkits are inadequate to meet the needs of software developers
in addressing increasingly complex interdisciplinary problems... In addition, since there
is no consistency in software engineering best practices, many of the new applications are
not robust and cannot easily be ported to new hardware.

Fortunately, the situation with regards to environments and toolkits has improved
since the PITAC assessments. Using tools such as Common Component Architecture
(CCA), for example, one can now link applications written by different developers in
different languages using different programming paradigms into a seamless, scalable
package without incurring the language interoperability and communication latency
issues associated with non-scientific toolkits that facilitate similar linkages. Several
groups have constructed development frameworks on top of CCA to facilitate dis-
tributed computing (Zhang et al. 2004), metacomputing (Malawski et al. 2005), and
other computing models.

However, the situation with regard to software engineering best practices has
seen far less progress. Most authors addressing scientific programming offer brief
opinions to aid robustness before retreating to the comfortable territory of run-time
efficiency or numerical accuracy. Without a healthy debate in the literature, it is
unsurprising that no consensus has emerged. By contrast, in the broader software
engineering community, consensus has been building for over a decade on the best
practices at least within one development paradigm: object-oriented design (OOD).
In this context, the best practices have been codified as design patterns, which are
cataloged solutions to problems that recur across many projects.

Experience indicates many scientific programmers find the term “design pattern”
vague or awkward on first hearing. However, its application to software develop-
ment conforms with the first four definitions of “pattern” in the Merriam Webster
dictionary:

1. a form or model proposed for imitation,
2. something designed or used as a model for making things,
3. an artistic, musical, literary, or mechanical design or form,
4. a natural or chance configuration.

Having proved useful in the past, design patterns are offered as models to be followed
in future work. The models have artistic value in the sense of being elegant and in
the sense that software engineering, like other engineering fields, is part science and
part art. And much like mechanical design patterns, some software design patterns
mimic patterns that have evolved by chance in nature.

Gamma et al. (1995) first collected and articulated object-oriented software
design patterns in 1995 in their seminal text Design Patterns: Elements of Reusable
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6 Development Costs and Complexity

Object-Oriented Software. They drew inspiration from the 1977 text, A Pattern Lan-
guage, by architects Alexander et al., who in turn found inspiration in the beauty
medieval architects achieved by conforming to local regulations that required spe-
cific building features without mandating specific implementations of those features.
This freedom to compose variations on a theme facilitated individual expression
within the confines of proven forms.

Gamma et al. did not present any domain-specific patterns, although their book’s
introduction suggests it would be worthwhile for someone to catalog such patterns.
Into this gap we thrust the current text. Whereas Part I of this text lays the object-
oriented foundation for discussing design patterns and Part III discusses several
related advanced topics, Part II aims to:

1. Catalog general and domain-specific patterns for multiphysics modeling,
2. Quantify how these patterns reduce complexity,
3. Present Fortran 2003 and C++ implementations of each pattern discussed.

Each of these objectives makes a unique contribution to the scientific com-
puting field. The authors know of only a handful of publications on
object-oriented software design patterns for scientific software (Blilie 2002;
Decyk and Gardner 2006; Decyk and Gardner 2007; Gardner and Manduchi 2007;
Markus 2006; Rouson et al. 2010) and even fewer quantitative analyses of how pat-
terns reduce scientific programming complexity (Allan et al. 2008; Rouson 2008).
Finally, published design pattern examples that take full advantage of the new object-
oriented constructs of Fortran 2003 have only just begun to appear (Markus 2008;
Rouson et al. 2010).

That Fortran implementations of object-oriented design patterns have lagged
those in other languages so greatly is both ironic and understandable. It is ironic
because object-oriented programming started its life nearly four decades ago with
Simula 67, a language designed for physical system simulation, which is the primary
use of Fortran. It is understandable because the Fortran standards committee, under
heavy influence by compiler vendors, moved at glacial speeds to provide explicit sup-
port for object-orientation. (See Metcalf et al. 2004 for some history on this decision.)
In the absence of object-oriented language constructs, a small cadre of researchers
began developing techniques for emulating object-orientation in Fortran 90/95 in the
1990s (Decyk et al. 1997a, 1997b, 1998; Machiels and Deville 1997), culminating in
the publication of the first text on OOP in Fortran 90/95 by Akin (2003).

The contemporaneous publication of the Fortran 2003 standard, which provides
object-oriented language constructs, makes the time ripe for moving beyond the
basic mechanics to higher-level discussions of objected-oriented design patterns for
scientific computing. Because the availability of Fortran 2003 motivates this book,
Fortran serves as the primary language for Part I of this text. Because most C++
programmers already know OOP, there is less need to provide C++ in this part
of the text. Some of the complexity arguments in Part I, however, are language-
independent, so we provide C++ translations to make this section accessible to C++
programmers. In Part II, greater effort is made to write C++ examples that stand on
their own as opposed to being translations of Fortran.
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1.2 Conventional Scientific Programming Costs 7

A Pressing Need for 21st-Century Science

The 20th-century successes in simulating individual physical phenomena can be
leveraged to simulate multiscale, multiphysics phenomena much more simply
if we begin distilling, analyzing, and codifying the best practices in scientific
programming.

1.2 Conventional Scientific Programming Costs

The word “costs” plays two roles in this section’s title. As a noun, it indicates that the
section discusses the costs associated with writing and running conventional scien-
tific programs. As a verb, it indicates that the conventional approach to writing
these programs costs projects in ways that can be alleviated by other program-
ming paradigms. Whereas this section estimates those costs, section (1.4) presents
alternative paradigms.

The software of interest is primarily written for research and development in the
sciences and engineering sciences. Although many such codes later form the core
of commercial packages used in routine design and analysis, all are grouped under
the heading “scientific” in this text. During the early phases of the development,
many scientific programming projects tackle problems that are sufficiently unique or
demanding to preclude the use of commercial off-the-shelf software for the entire
project. Although some commercial library routines might be called, these serve sup-
porting roles such as solving linear and nonlinear systems or performing data analysis.
Viewed from a client/server perspective, the libraries provide general mathematical
services for more application-specific client code that molds the science of interest
into a form amenable to analysis with the chosen library.

Some mathematical libraries are portable and general-purpose, such as those by
the Numerical Algorithms Group (NAG) or the Numerical Recipes series. Others
are tuned to exploit the features of specific hardware. The Intel Math Kernel Library
(MKL) targets Intel processors and scales up to large numbers of processors on
distributed-memory clusters, whereas the Silicon Graphics, Inc. (SGI) math library
scales on distributed shared-memory supercomputers with SGI’s proprietary high-
bandwidth memory architecture.

Mathematical libraries attempt to embody the best available numerical algo-
rithms without imposing any particular program organization. Responsibility for
program organization, or architecture, thus rests with the developers. Although the
definition of software architecture remains a subject of active debate, there is long-
standing agreement on the attractiveness of modular design, so for present purposes,
“architecture” denotes a specific modular decomposition. This decomposition would
include both the roles of individual modules and the relationships between them. To
avoid language- and paradigm-specificity, “module” here denotes any isolated piece
of code whether said isolation is achieved by separation into its own file or by some
other construct.

Most scientific programmers are trained in engineering or science. Typical cur-
ricula in these fields include only an introductory programming course that teaches
the use of a particular programming language and paradigm. Teaching only the
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8 Development Costs and Complexity
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Figure 1.2. Sequence of models in the conventional scientific code development process.

implementation phase differs considerably from the rest of the curriculum, wherein
students are encouraged to think abstractly about systems and to quantitatively evalu-
ate competing models for describing those systems. In the automatic controls courses
taken by many engineering students, for example, model elements are delineated
precisely and their roles and relationships are specified mathematically, so the system
behavior can be analyzed rigorously.

Figure 1.2 situates programming within the conventional modeling process. One
starts off wishing to model physical reality. Based on observations of that reality,
one constructs a physical model, which for present purposes comprises a concep-
tual abstraction of reality. Both “model” and “abstraction” here connote useful
simplifications that retain only those elements necessary for a given context. For
example, one might abstract a cooling fin on a microprocessor chip as a thin solid
with constant properties transporting thermal energy in the direction orthogonal to
the chip. One might further assume the energy transfer occurs across a distance that
is large relative to the material’s intermolecular spacing, so it can be considered a
continuum.

Although physical models are typically stated informally, Collins (2004) recently
proposed the development of a physics markup language (PML) based on the ex-
tensible markup language (XML). Formal specifications in such a markup language
would complement the programming techniques presented in this book. Specifically,
automatic code generation from a markup document might produce software coun-
terparts of algebraic and differential operators specified in PML. Chapter 3 discusses
the implementation of such operators.
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1.2 Conventional Scientific Programming Costs 9

The first formal step in conventional scientific work involves expressing the phys-
ical model in a mathematical model with continuous variation of the dependent
variables in space and time. For the fin problem, this leads to the one-dimensional
(1D), unsteady heat equation:

∂T
∂t

= α
∂2T
∂x2 , �× T = (0,Lfin)× (0, tfinal)

T(0, t) = Tchip (1.1)

T(Lfin, t) = Tair

T(x,0) = Tair

where T(x, t) is the temperature at time t a distance x from the chip, α is the fin’s
thermal diffusivity, �× T is the space-time domain, Lfin is the fin length, tfinal is the
final time of the simulation, and where Tchip and Tair are boundary conditions.

Solving the mathematical model on a computer requires rendering
equations (1.1) discrete. Most numerical schemes employ the semidiscrete method,
which involves discretizing space first and time second. Most spatial discretizations
require laying a grid over the spatial domain. Given a uniformly spaced grid overlaid
on �, applying the central difference formula to the right-hand side of (1.1) leads to
a set of coupled ordinary differential equations for the nodal temperatures:

d �T
dt

≡ α

�x2

⎡
⎢⎢⎢⎣

−2 1
1 −2 1

. . .
. . .

1 −2

⎤
⎥⎥⎥⎦ �T + α

�x2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Tchip

0
...

Tair

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.2)

where�x ≡Lfin/N is the uniform spacing in between the N +1 grid points covering�.
One can derive the same discrete system of equations via a finite volume scheme or a
Galerkin finite element method with linear-basis functions. We refer to the intervals
between nodes generically as elements and assume the reader is familiar with one or
another path that starts from equations (1.1) and leads to equations (1.2).

The semidiscrete model is rendered fully discrete by applying a time integration
algorithm to equations (1.2). The simplest case is explicit Euler, which corresponds
to a two-term Taylor series expansion:

�Tn+1 = �Tn +�t
d �T
dt

∣∣∣
tn

= �Tn +�t
(
A �Tn + �b

)
(1.3)

where �Tn and �Tn+1 are vectors of N − 1 internal grid point temperatures at time
stepstn ≡ n�t and tn+1 ≡ tn +�t, respectively.

Most scientific computing publications focus on the previously described mod-
eling steps, treating their implementation in code as an afterthought, if at all. This
has numerous adverse consequences. First, several very different concepts are hard-
wired into equation (1.3) in ways that can be hard to separate should one stage in
the modeling process require reconsideration. Equation (1.3) represents a specific
numerical integration of a specific discrete algorithm for solving a specific partial
differential equation (PDE). Without considerable forethought, the straightforward
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10 Development Costs and Complexity

expression of this algorithm in software could force major code revisions if one later
decides to change the discretization scheme, for example, the basis functions or the
PDE itself. The next section explains why the conventional approach to separating
these issues scales poorly as the code size grows.

A side effect of conflating logically separate modeling steps is that it becomes
difficult to assign responsibility for erroneous results. For example, instabilities that
exist in the fully discrete numerical model could conceivably have existed in contin-
uous mathematical model. Rouson et al. (2008b) provided a more subtle example in
which information that appeared to have been lost during the discretization process
was actually missing from the original PDE.

As previously mentioned, the code writing is the first step with no notion of
abstraction. Except for flow charts – which, experience indicates, very few pro-
grammers construct in practice – most discussions of scientific programs offer no
formal description of program architecture other than the code itself. Not surpris-
ingly then, scientific program architecture is largely ad hoc and individualistic. Were
the problems being solved equally individualistic, no difficulty would arise. How-
ever, significant commonalities exist in the physical, continuous mathematical, and
discrete numerical models employed across a broad range of applications. Without
a language for expressing common architectural design patterns, there can be little
dialogue on their merits. Chapter 2 employs just such a language: the Unified Mod-
eling Language (UML). Part II presents design patterns that exploit commonalities
among a broad range of problems to generate flexible, reusable program modules.
Lacking such capabilities, conventional development involves the reinvention of
architectural forms from scratch.

How does redevelopment influence costs? Let’s think first in the time domain:

Total solution time = development time + computing time (1.4)

Until computers develop the clairvoyance to run code before it is written, program-
ming will always precede execution, irrespective of the fact that earlier versions of
the program might be running while newer versions are under development. Since
the development time often exceeds the computing time, the fraction of the total
solution time that can be reduced by tuning the code is limited. This is a special case
of Amdahl’s law, which we revisit in Section 1.5 and Chapter 12.

Time is money, so equation (1.4) can be readily transformed into monetary
form by assuming the development and computing costs are proportional to the
development and computing times as follows:

$solution = $development + $computing

= Ndevpavgtdev + $computer

Nusers

trun

tuseful
(1.5)

where the $ values are costs; Ndev , pavg, and tdev are the number of developers, their
average pay rate, and the development time, respectively; and Nusers, trun, and tuseful

are the number of computer users, the computing time, and the computer’s useful
life, respectively. In the last term of equation (1.5), the first factor estimates the
fraction of the computer’s resources available for a given user’s project. The second
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1.3 Conventional Programming Complexity 11

factor estimates the fraction of the computer’s useful life dedicated to that user’s
runs.

There are of course many ways equation (1.5) could be refined, but it suffices
for current purposes. For a conservative estimate, consider the case of a graduate
student researcher receiving a total compensation including tuition, fees, stipend,
and benefits of $50,000/yr for a one-year project. Even if this student is the sole
developer of her code and has access to a $150,000 computer cluster with a useful
life of three years, she typically shares the computer with, say, four other users.
Therefore, even if her simulations run for half a year on the wall clock, the solution
cost breakdown is

$solution = (1 · developer)($50,000/year)(1 · year) (1.6)

+$150,000
5 · users

0.5 · user · years
3 · years

(1.7)

= $50,000 + $5,000 (1.8)

so the development costs greatly exceed the computing costs. The fraction of costs
attributable to computing decreases even further if the developer receives higher
pay or works for a longer period – likewise if the computer costs less or has a longer
useful life. By contrast, if the number of users decreases, the run-time on the wall
clock decreases proportionately, so the cost breakdown is relatively insensitive to
the resource allocation. Similar, the breakdown is insensitive to adding developers
if the development time is inversely proportional to the team size (up to some point
of diminishing returns).

For commercial codes, the situation is a bit different but the bottom line is
arguably the same. The use and development of commercial codes occur in paral-
lel, so the process speedup argument breaks down. Nonetheless, development time
savings lead to the faster release of new features, providing customer benefit and a
competitive advantage for the company.

This forms the central thesis on which this book rests:

Your Time Is Worth More Than Your Computer’s Time

Total solution time and cost can be reduced in greater proportion by reducing
development time and costs than by reducing computing time and costs.

1.3 Conventional Programming Complexity

Part of the reason scientific computing has traditionally focused on the earlier stages
of Figure 1.2 is that the accuracy losses at these stages are well known and rigorously
quantifiable. As indicated by the figure’s vertical axis, each transition in the dis-
cretization process has an associated error. For example, the truncation error, e , of
the spatial discretization inherent in equation (1.2) is bounded by a term proportional
to the grid spacing:

e ≤ C�x3 (1.9)

where C typically depends on properties of the exact solution and its derivatives.
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