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During classical (or Pavlovian) conditioning, human and animal subjects change 

the magnitude and timing of their conditioned response (CR), as a result of 

the contingency between the conditioned stimulus (CS) and the unconditioned 

stimulus (US).

In this chapter we briefly describe results of a number of classical condition-

ing paradigms that are discussed in detail in different chapters of the book 

(see Schmajuk, 2008a, 2008b). Then we introduce different types of learning 

theories. Finally, we present a number of computational models of classical 

conditioning.

Classical conditioning data

A. Excitatory conditioning

1. Acquisition. After a number of CS–US pairings, the CS elicits a condi-

tioned response (CR) that increases in magnitude and frequency.

2. Partial reinforcement. The US follows the CS only on some trials, and 

might lead to a lower conditioning asymptote.

3. Generalization. A CS2 elicits a CR when it shares some characteristics 

with a CS1 that has been paired with the US.

4. US- and CS-specific CR. The nature of the CR is determined not only by 

the US, but also by the CS.

B. Inhibitory conditioning

1. Conditioned inhibition. Stimulus CS2 acquires inhibitory conditioning

with CS1 reinforced trials interspersed with, or followed by, CS1–CS2

nonreinforced trials.
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Introduction4

2. Extinction of conditioned inhibition. Inhibitory conditioning is extin-

guished by CS2–US presentations, but not by presentations of CS2

alone.

3. Differential conditioning. Stimulus CS2 acquires inhibitory conditioning 

with CS1 reinforced trials interspersed with CS2 nonreinforced trials.

4. Contingency. A CS becomes inhibitory when the probability that the US 

will occur in the presence of the CS, p(US/CS), is smaller than the prob-

ability that the US will occur in the absence of the CS (p[US/noCS]).

C. Preexposure effects

1. Latent inhibition (LI). Preexposure to a CS followed by CS–US pairings 

retard the generation of the CR.

2. Context preexposure. Preexposure to a context facilitates the acquisi-

tion of fear conditioning.

3. US–preexposure effect. Presentation of the US in a training context, 

prior to CS–US pairings, retards production of the CR.

4. Learned irrelevance. Random exposure to the CS and the US retards 

conditioning even more than combined latent inhibition and US 

preexposure.

D. Compound conditioning

1. Relative validity. Conditioning to X is weaker when training consists 

of reinforced XA trials alternated with XB nonreinforced trials, than 

when training consists of XA trials alternated with XB trials each type 

reinforced half of the time.

2. Blocking. Conditioning to CS1–CS2 following conditioning to CS1 results 

in a weaker conditioning to CS2 than that attained with CS1–CS2–US

pairings.

3. Unblocking by increasing the US. Increasing the US during CS1–CS2

conditioning increases responding to the blocked CS2.

4. Unblocking by decreasing the US. Responding to CS2 can be increased 

by decreasing the US during CS1–CS2 conditioning.

5. Overshadowing. Conditioning to CS1–CS2 results in a weaker condition-

ing to CS2 than that attained with CS2–US pairings.

6. Potentiation. Conditioning to CS1–CS2 results in a stronger condition-

ing to CS2 than that attained with CS2–US pairings.

7. Backward blocking. Conditioning to CS1 following conditioning to 

CS1–CS2 results in a weaker response to CS2 than that attained with 

CS1–CS2–US pairings.
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Classical conditioning: data and theories 5

8. Overexpectation. Reinforced CS1–CS2 presentations following inde-

pendent reinforced CS1 and CS2 presentations, result in a decrement in 

their initial associative strength.

9. Superconditioning. Reinforced CS1–CS2 presentations following inhibi-

tory conditioning of CS1 increase CS2 excitatory strength compared 

with the case when it is trained in the absence of CS1.

E. Recovery from compound conditioning

1. Recovery from latent inhibition. Presentation of the US in the context 

of preexposure and conditioning results in renewed responding to the 

preexposed CS.

2. Recovery from overshadowing. Extinction of the CS1 results in increased 

responding to the overshadowed CS2.

3. Recovery from forward blocking. Extinction of the blocker CS1 results 

in increased responding to the blocked CS2.

4. Recovery from backward blocking. Extinction of the blocker CS1 results

in increased responding to the blocked CS2.

F. Extinction

1. Extinction. When CS–US pairings are followed by presentations of the 

CS alone, or by unpaired CS and US presentations, the CR decreases.

2. External disinhibition. Presenting a novel stimulus immediately before 

a previously extinguished CS might produce renewed responding.

3. Spontaneous recovery. Presentation of the CS after some time after the 

subject stopped responding might yield renewed responding.

4. Renewal. Presentation of the CS in a novel context might yield renewed 

responding.

5. Reinstatement. Presentation of the US in the context of extinction and 

testing might yield renewed responding.

6. Reacquisition. CS–US presentations following extinction might result 

in faster or slower reacquisition.

7. Partial reinforcement extinction effect (PREE). Extinction is slower fol-

lowing partial than following continuous reinforcement.

G. Nonlinear combinations of multiple stimuli

1. Positive patterning. Reinforced CS1–CS2 presentations intermixed with 

nonreinforced CS1 and CS2 presentations result in stronger responding 

to CS1–CS2 than to the sum of the individual responses to CS1 and CS2.
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Introduction6

2. Negative patterning. Nonreinforced CS1–CS2 presentations intermixed 

with reinforced CS1 and CS2 presentations result in weaker responding 

to CS1–CS2 than to the sum of the individual responses to CS1 and CS2.

H. Occasion setting

1. Simultaneous feature-positive discrimination. Reinforced simultaneous 

CS1–CS2 presentations, alternated with nonreinforced presentations of 

CS2, result in stronger responding to CS1–CS2 than to CS2 alone. In this 

case, CS1 gains a strong excitatory association with the US.

2. Serial feature-positive discrimination. Reinforced successive CS1–CS2

presentations, alternated with nonreinforced presentations of CS2,

result in stronger responding to CS1–CS2 than to CS2 alone. In this case, 

CS1 acts as an occasion setter.

3. Simultaneous feature-negative discrimination. Nonreinforced simulta-

neous CS1–CS2 presentations, alternated with reinforced presentations 

of CS2, result in weaker responding to CS1–CS2 than to CS2 alone. In this 

case, CS1 gains a strong inhibitory association with the US.

4. Serial feature-negative discrimination. Nonreinforced successive CS1–CS2

presentations, alternated with reinforced presentations of CS2, result in 

weaker responding to CS1–CS2 than to CS2 alone. In this case, CS1 acts as 

an occasion setter.

I. Temporal properties

1. Interstimulus interval (ISI) effects. Conditioning is negligible with short 

ISIs, increases dramatically at an optimal ISI, and gradually decreases 

with increasing ISIs.

2. Intertrial interval (ITI) effects. Conditioning to the CS increases with 

longer ITIs.

3. Timing of the CR. The CR peak tends to be located around the end of 

the ISI.

4. Temporal specificity of blocking. Blocking is observed when the 

blocked CS is paired in the same temporal relationship with the US 

as the blocking CS.

5. Temporal specificity of occasion setting. A serial feature-positive dis-

crimination is best when the feature–target interval during testing 

matches the training interval.

J. Combination of multiple conditioning events

1. Sensory preconditioning. When CS1–CS2 pairings are followed by 

CS1–US pairings, presentation of CS2 generates a CR.
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Classical conditioning: data and theories 7

2. Second-order conditioning. When CS1–US pairings are followed by  

CS1–CS2 pairings, presentation of CS2 generates a CR.

Learning theories

Some classical conditioning theories stress the importance of mecha-

nisms that act at the time of the presentation of the CS and the US. These 

theories assume that the association between events CSi and CSk, VCSi, CSk, rep-

resents the prediction that the CSi will be followed by CSk (Dickinson, 1980).

Neural network, or connectionist theories frequently assume that the associa-

tion between CSi and CSk is represented by the efficacy of the synapses, VCSi, CSk,

that connect a presynaptic neural population excited by CSi with a postsynaptic 

neural population that is excited by CSk (event k might be another CS, or the 

US). When CSk is the US, this second population controls the generation of the 

conditioned response (CR).

Following Hebb’s (1949) ideas, changes in synaptic strength, VCSi, CSk, might be 

described by ∆VCSi, CSk = f(CSi) f(CSk), where f(CSi) represents the presynaptic activ-

ity, and f(CSk) the postsynaptic activity. Different f(CSi) and f(CSk) functions have 

been proposed. Learning rules for VCSi, CSk either assume variations in the effec-

tiveness of CSi, f(CSi), the US, f(CSk) (Dickinson & Mackintosh, 1978), or both.

Variations in the effectiveness of the CS during learning

Attentional theories assume that the effectiveness of CSi to form CSi–US

associations (associability) depends on the magnitude of the “internal repre-

sentation” of CSi. In neural network terms, attention may be interpreted as 

the modulation of the CS representation that activates the presynaptic neuro-

nal population involved in associative learning. Attentional theories include 

Makintosh’s (1975), Grossberg’s (1975) and Pearce and Hall’s (1980) theories.

Variations in the effectiveness of the US during learning

A popular rule, proposed independently in psychological (Rescorla & 

Wagner, 1972) and neural network (Widrow & Hoff, 1960) domains, has been 

termed the “delta” rule. The delta rule describes changes in the synaptic con-

nections between the two neural populations by way of minimizing the squared 

value of the difference between the output of the population controlling the 

CR generation, and the US. According to the “simple” delta rule, CSi–US associa-

tions are changed until the difference between the US intensity and the “aggre-

gate prediction” of the US computed upon all CSs present at a given moment, 

(US – ΣjVCSj,USCSj), is zero. The term (US – ΣjVCSj,USCSj) can be interpreted as the 

effectiveness of the US to become associated with the CS.
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Schmajuk and DiCarlo (1992) introduced a model (the SD model) that, by employ-

ing a “generalized” delta rule (also known as backpropagation, see Rumelhart, 

Hinton & Williams, 1986) to train a layer of hidden units that configure simple CSs, 

is able to solve exclusive-or problems, and hence, negative patterning.

Variations in the effectiveness of both the CS and the US during learning

In order to account for a wider range of classical conditioning para-

digms, some theories have combined variations in the effectiveness of both the 

CS and the US. For example, Frey and Sears (1978) proposed a model of classical 

conditioning that assumed variations in the effectiveness of both the CS and 

the US: f(CSi) is modulated by Vi,US. Wagner (1978) suggested that CSi–US associa-

tions are determined by (a) f(US) = (US − ΣjVj,USCSj) as in the Rescorla–Wagner 

model; and (b) f(CSi) = (CSi – Vi,CXCX), where CX represents the context, and Vi,CX

the strength of the CX–CSi association. Other theories that incorporate changes 

in the effectiveness of both the CS and the US include Wagner’s (1981) some-

times opponent process (SOP) theory, Schmajuk, Lam and Gray’s (1996) atten-

tional–associative theory, Le Pelley’s (2004) hybrid model, and Harris’s (2006)

elementary model.

Performance theories

Some classical conditioning theories stress the importance of mecha-

nisms  that act during performance to control the generation of the CR. Examples 

of this approach are Miller’s comparator hypothesis (e.g. Miller & Schachtman, 

1985), Wagner’s (1981) SOP model, Schmajuk, Lam and Gray’s (1996) attentional–

associative model, and Harris’s (2006) elementary model.

CS–US and CS–CS associations and decision processes during performance

The comparator hypothesis (Miller & Schachtman, 1985; Miller & 

Matzel, 1988; Denniston et al., 2001; Stout & Miller, 2007) suggests that the 

magnitude of the CR is determined by a comparator that uses the CS–CS and 

CS–US associations of the CSs present at a given time as inputs.

CS–CS associations and inference generation during performance

During classical conditioning, animals learn to expect (predict) that a 

CS is followed by another CS, or by the US. Tolman (1932) proposed that mul-

tiple expectancies (predictions) can be integrated into larger units, through 

a reasoning process called inference. One simple example of inference for-

mation is sensory preconditioning (see Bower & Hilgard, 1981, page 330). As 

summarized above, sensory preconditioning consists of a first phase in which 
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Classical conditioning: data and theories 9

two conditioned stimuli, CS1 and CS2, are paired together in the absence of 

the US. In a second phase, CS1 is paired with the US. Finally, when CS2 is pre-

sented alone, it generates a CR: the animal has inferred that CS2 predicts the 

US. Tolman hypothesized that a large number of expectancies can be combined 

into a cognitive map (see Chapters 2, 7 and 16).

Dickinson (1980) suggested that knowledge can be represented in declarative 

or procedural form. Whereas in the declarative form knowledge is represented 

as a description of the relationships between events (knowing that), in the pro-

cedural form, knowledge is represented as the prescription of what should be 

done in a given situation (knowing how). Examples of declarative knowledge 

are classical CS–CS associations (CS1 precedes CS2) or CS–US (CS2 precedes the 

US) associations. An example of procedural knowledge is the operant S–R asso-

ciation (if S is present, then do R). Dickinson indicated that declarative, but not 

procedural, knowledge can be integrated through inference rules.

By including CS–CS associations, some models of classical conditioning are 

able to generate inferences and, therefore, to describe sensory precondition-

ing. For instance, Gelperin, Hopfield and Tank (1985; Gelperin, 1986) proposed 

an autoassociative recurrent network capable of describing stimulus–stimulus 

associations during classical conditioning. The network can simulate first- and 

second-order conditioning, extinction, sensory preconditioning and blocking 

in the terrestrial slug, Limax maximus. Schmajuk (1987) proposed a dual mem-

ory architecture that incorporates an autoassociative nonrecurrent network 

capable of cognitive mapping in classical conditioning. The network separately 

computes CS–CS and CS–US predictions, and combines them to generate new 

expectancies. For instance, if CS(A) predicts (is associated to) CS(B), and CS(B)

predicts the US, the network infers that CS(A) also predicts the US. Schmajuk 

defined first-order predictions as the prediction of the US by CS(B), and higher-

order predictions as the predictions involving a chain of two or more predic-

tions. The network describes complex classical conditioning paradigms such 

as sensory preconditioning, second-order conditioning, compound condition-

ing and serial-compound conditioning. Similarly, the models presented by 

Schmajuk and Moore (1988, 1989) and Schmajuk, Lam and Gray (1996) are able 

to describe sensory preconditioning and second-order conditioning.

Computational models of classical conditioning

As suggested by Hinzman (1991), the inherent unreliability of verbal 

intuitive reasoning for relating hypotheses and experimental results favors the-

ories that provide precise quantitative descriptions. Furthermore, only formal 

models can be simultaneously examined at different levels. At the behavioral 
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Introduction10

level, simulated behavioral results are compared with experimental data describ-

ing behavior. At the neuroanatomical level, interconnections among neural ele-

ments in the model are compared with neuroanatomical data, and the model 

performance is compared with animal performance after lesioning. At the 

computational level, simulated activity of the neural elements of the model is 

compared with the activity of single neuron or neural population activity. At 

the neurophysiological level, model performance is compared with animal per-

formance after inducing long-term changes (e.g. lesions) or short-term changes 

(e.g. drug infusions) in different brain areas.

Below, we review in detail some computational models of classical condi-

tioning that have been applied to a number of the conditioning paradigms 

described before. Some other models (e.g. Brandon, Vogel & Wagner, 2000;

Kruschke, 2001; Pearce, 1994) are described later in the book, when they are 

relevant to the experimental results being discussed.

The Rescorla–Wagner (1972) model

In their classic article, Rescorla and Wagner (1972) indicated that the 

impetus for their new theoretical model was not new data which clearly dis-

confirmed existing theories, but rather the accumulation of a pattern of data 

which appeared to invite a more integrated account. The salient pattern of data 

the authors referred to was a set of observations involving Pavlovian condition-

ing with compound CSs. The central notion of the theory was that organisms 

only learn when the actual value of the US differs from its expected value. 

By proposing the novel principle that this expected value of the US is com-

puted as a linear combination of the associative strength of all active CSs, the 

effect of reinforcement or nonreinforcement on the associative strength of a CS 

depends upon the existing associative strength, not only of that CS, but also of 

other CSs concurrently present.

Rescorla and Wagner (1972) proposed to formalize the basic idea of their theory 

by modifying Hull’s (1943) account of the growth of habit-strength (stimulus–re-

sponse associations), as described by Bush and Mosteller’s (1955) linear operator. 

In the Rescorla–Wagner (RW) model, variations in the strength of the CS–US asso-

ciation, Vi,US , are given by ∆Vi,US = αiβUS(λUS − BUS), where αi represents the salience 

of CSi, βUS represents the learning rate parameter corresponding to the US, and BUS

is the linear combination of the prediction of the US by all active CSs. BUS is given 

by BUS = ΣjVj,US. By this equation, CSs compete to gain association with the US. The 

conditioned response (CR) was assumed to be proportional to BUS.

As observed by Sutton and Barto (1981), a rule similar to the RW equation 

had been described in the neural network field by Widrow and Hoff (1960). This 

rule, termed the “delta” rule (Rumelhart, Hinton & Williams, 1986), describes 
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Classical conditioning: data and theories 11

changes in the CS–US associations by way of minimizing the squared value of 

the difference between the predicted and observed values of the US. Most inter-

estingly, as indicated by Duda and Hart (1973), the rule is able to solve simulta-

neous systems of equations; a power that provides a different perspective of the 

processes that take place during classical conditioning.

The RW model correctly described many Pavlovian conditioning phenomena 

such as acquisition and extinction of conditioned excitation, partial reinforce-

ment, conditioned inhibition, overshadowing, blocking, unblocking by increas-

ing the US strength, overprediction, generalization, US–preexposure effect and 

contingency effects. The success of the model in making specific correct predic-

tions, inaugurated the modern era of experimental psychology.

In spite of its significant achievements, the RW model was unable to describe 

several aspects of classical conditioning including (a) the effects of temporal 

parameters, such as stimulus duration, interstimulus intervals (ISI) or inter-

trial intervals (ITI); (b) Pavlovian paradigms whose solution require a nonlinear 

combination of the prediction of the US by all active CSs, such as negative pat-

terning; (c) conditioned inhibition not being extinguished by presentations of 

the inhibitory CS alone; (d) latent inhibition; (e) backward blocking; and (f ) the 

recovery from blocking and overshadowing.

  The Van Hamme and Wasserman (1994) version of the   
Rescorla and Wagner (1972) model

Van Hamme and Wasserman (1994) offered a modified version of the 

Rescorla and Wagner (1972) model that is able to explain some of the results men-

tioned above. Van Hamme and Wasserman (1994) proposed that the association 

of a CS with the US decreases when the CS is absent (∆Vi,US < 0), instead of staying 

constant, as in the original model (∆Vi,US = 0 because αi = 0). The model can explain 

the effects of extinction of the companion CS overshadowing and blocking.

Dickinson and Burke (1996) observed that the Van Hamme and Wasserman 

(1994) rule did not specify when an absent CS was allowed to decrease its 

association with the US. Following previous suggestions (Chapman, 1991;

Markman, 1989; Tassoni, 1995), they indicated that the expectation of an 

absent CS, via its (within-compound) association with a present CS, could serve 

that purpose.

The Van Hamme and Wasserman (1994) version of the Rescorla–Wagner 

(1972) rule is able to describe that (a) extinction of the blocking CS results in 

the recovery of the response to the blocked CS (Blaisdell et al., 1999); (b) extinc-

tion of the overshadowing CS results in the recovery of the response to the 

overshadowed CS (Matzel et al., 1985); but cannot explain (c) extinction of the 

context following latent inhibition (LI) results in the recovery of the response 
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