STRUCTURE FORMATION IN ASTROPHYSICS

Understanding the formation of objects at all scales in the universe, from galaxies to stars and planets, is a major issue in modern astrophysics, and one of the most exciting challenges of twenty-first century astronomy. Even though they are characterized by different scales, the formation of planets, stars and galaxies share many common physical processes and are rooted in the same underlying domains of physics.

This unique reference for graduate students and researchers in astrophysics is the first to cover structure formation on various scales in one volume. This book gathers together extensive reviews written by world experts in physics and astrophysics working in planet, star and galaxy formation, and related subjects. It addresses current issues in these fields and describes the recent observational status and state-of-the-art theoretical and numerical methods aimed at understanding these problems.

GILLES CHABRIER is Head of the Theoretical Astrophysics group at the Ecole Normale Supérieure de Lyon. He has recently won the Johann Wempe prize and the silver medal of the Centre National de la Recherche Scientifique (CNRS). His research interests include dense matter physics, compact objects, stellar and planetary physics, as well as galactic implications.
STRUCTURE FORMATION IN ASTROPHYSICS

Edited by

GILLES CHABRIER
Ecole Normale Supérieure, Lyon
Contents

List of contributors  page vii
Preface  ix

Part I  Physical Processes and Numerical Methods Common to Structure Formations in Astrophysics  1
1 The physics of turbulence  3
  E. Lévéque
2 The numerical simulation of turbulence  20
  W. Schmidt
3 Numerical methods for radiation magnetohydrodynamics in astrophysics  37
  R. Klein and J. Stone
4 The role of jets in the formation of planets, stars and galaxies  84
  R. E. Pudritz, R. Banerjee and R. Ouyed
5 Advanced numerical methods in astrophysical fluid dynamics  110
  A. Hujeirat and F. Heitsch

Part II  Structure and Star Formation in the Primordial Universe  131
6 New frontiers in cosmology and galaxy formation: challenges for the future  133
  R. Ellis and J. Silk
7 Galaxy formation physics  159
  T. Abel, G. Bryan and R. Teyssier
8 First stars: formation, evolution and feedback effects  180
  V. Bromm, A. Ferrara and A. Heger
Contents

Part III Contemporary Star and Brown Dwarf Formation

9 Diffuse interstellar medium and the formation of molecular clouds 205
P. Hennebelle, M.-M. Mac Low and E. Vazquez-Semadeni

10 The formation of distributed and clustered stars in molecular clouds 228
S. T. Megeath, Z.-Y. Li and Å. Nordlund

11 The formation and evolution of prestellar cores 254
P. André, S. Basu and S. Inutsuka

12 Models for the formation of massive stars 288
M. R. Krumholz and I. A. Bonnell

Part IV Protoplanetary Disks and Planet Formation

13 Observational properties of disks and young stellar objects 323
G. Duchene, F. Menard, J. Muzerolle and S. Mohanty

14 Structure and dynamics of protoplanetary disks 350
C. P. Dullemond, R. H. Durisen and J. C. B. Papaloizou

15 Planet formation and evolution: theory and observations 378
Y. Alibert, I. Baraffe, W. Benz, G. Laughlin and S. Udry

16 Planet formation: assembling the puzzle 410
G. Wurm and T. Guillot

Part V Summary

17 Open issues in small- and large-scale structure formation 427
R. S. Klessen and M.-M. Mac Low

18 A final word 441
E. E. Salpeter
Contributors

Tom Abel, KIPAC, Stanford University, USA
Yann Alibert, Physikalisches Institut University of Benn, Switzerland
Philippe André, Service d’Astrophysique, CEA Saclay, France
Robi Banerjee, ITA, University of Heidelberg, Germany
Isabelle Baraffe, Ecole Normale Supérieure de Lyon, CRAL, France
Shantanu Basu, Department of Physics and Astronomy, University of Western Ontario, Canada
Willy Benz, Physikalisches Institut University of Bern, Switzerland
Ian Bonnell, SUPA, School of Physics and Astronomy, University of St Andrews, United Kingdom
Volker Bromm, Department of Astronomy, University of Texas at Austin, USA
Greg Bryan, Department of Astronomy, Columbia University, USA
Gaspard Duchène, Laboratoire d’Astrophysique de Grenoble, France
Cornelis Dullemond, Max Planck Institut für Astronomie, Heidelberg, Germany
Richard Durisen, Astronomy Department, Indiana University, USA
Richard Ellis, Department of Astrophysics, Oxford, UK
Andrea Ferrara, SISSA/International School for Advanced Studies, Trieste, Italy
Tristan Guillot, OCA, France
Alexander Heger, Los Alamos National Laboratory, USA; Department of Astronomy and Astrophysics, UCSC, USA; School of Physics, University of Minnesota
Fabian Heitsch, Department of Astronomy, University of Michigan, Ann Arbor, USA
Patrick Hennebelle, Ecole Normale Supérieure, Paris, France
Ahmad Hujeirat, ZAH – Center for Astronomy, University of Heidelberg, Germany
Shu-Ichiro Inutsuka, Department of Physics, Graduate School of Science, Kyoto University, Japan
Contributors

Richard Klein, Department of Astronomy, University of California, Berkeley and Lawrence Livermore National Laboratory, USA
Ralf Klessen, ZAH/ITA, Universität Heidelberg, Universität, Germany
Mark Krumholz, Department of Astrophysical Sciences, Princeton University, USA
Gregory Laughlin, University of California, Santa-Cruz, USA
Emmanuel Lévêque, Laboratoire de physique, Ecole normale supérieure de Lyon, France
Zhi-Yun Li, University of Virginia, USA
Mordecai-Mark Mac Low, American Museum of Natural History, New York, USA
Thomas Megeath, Department of Physics, University of Toledo, USA
Francois Menard, Laboratoire d’Astrophysique de Grenoble, France
Subhanjoy Mohanty, Harvard University, USA
James Muzerolle, Steward Observatory, University of Arizona, USA
Aake Nordlund, Niels Bohr Institute, Denmark
Rachid Ouyed, Department of Physics and Astronomy, University of Calgary, Canada
John Papaloizou, DAMT, Centre for Mathematical Sciences, University of Cambridge, United Kingdom
Ralph Pudritz, Physics and Astronomy Department, McMaster University, Hamilton, Canada
Edwin Salpeter, Space Sciences, Cornell University, USA
Wolfram Schmidt, Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Germany
Joseph Silk, Department of Physics, University of Oxford, United Kingdom
James Stone, Department of Astrophysical Sciences, Princeton University, USA
Romain Teyssier, Service d’Astrophysique CEA Saclay, France
Stephane Udry, Observatoire de Genéve, Switzerland
Enrique Vazquez-Semadeni, Universidad Nacional Autónoma de México, Mexico
Gerhard Wurm, Institut für Planetologie, Münster, Germany
Preface

Understanding the formation of gravitationally bound structures at all scales in the universe is one of the most fascinating challenges of modern astronomy. It is now realized that the initial building blocks of galaxies were small collapsing dark matter halos, produced by the primordial fluctuations. These blocks then merged and were assembled into progressively larger galaxies, a scheme generally described as the hierarchical model of galaxy formation. The modern understanding of star formation involves large-scale turbulent motions producing local overdensities which eventually collapse and form prestellar cores under the action of gravity. The most likely scenario for planet formation is the collapse of a vast gaseous envelope onto a central dense core formed from the aggregation of millimetre-size grains in the original protoplanetary nebula, although disk fragmentation could remain an alternative scenario in some situations. The detailed processes responsible for the formation of these structures, however, remain poorly understood. Many important issues remain unsettled, so the robustness of these general paradigms is still ill determined. All these scenarios for the formation of galaxies, stars and planets, although involving vastly different scales, share many underlying physical mechanisms. They all involved hydrodynamical processes, generally leading to turbulent motions, but the very nature of these motions and their real role in structure formation remains unclear. The role of magnetic fields, in the collapse itself and in the generation of winds and jets, remains one of the major unknowns in the formation of structures. As a structure starts to collapse, its ability to cool determines the final bound objects and thus radiation, or more precisely radiation hydrodynamics is a key process in galaxy, star and planet formation. How the ubiquitous presence of gravity modifies the impact of all these processes remains a major issue. Only a comprehensive description of these complex physical mechanisms, and of their interplay, will enable us to fully assess the validity of the aforementioned scenarios for the formation of gravitationally bound structures in the universe.
Preface

It was indeed the aim of this conference, organized at the foot of Mont Blanc, in Chamonix, to bring together world experts in galaxy, star and planet formation, in order to address these issues and to share their expertise and problems over the course of a week. Since ‘the star is always right’, all the sessions started with an observational review, presenting our current understanding of the problem and the main questions to be answered. The theoretical talks addressed in detail the various physical problems encountered in the astrophysical situations of interest, as well as the numerical methods and challenges in the description of these complex processes. The talks were followed by lively discussions between the participants during the daily poster sessions, the lunches taken together on the site and the long morning and afternoon breaks, promoting interactions between the various communities.

I am deeply indebted to the different speakers for their outstanding reviews and for the remarkable review chapters they have written, which are included in the present volume. Bringing together various authors to write a common, genuine review was a challenge and I am really thankful to all the contributors for having accepted this task. I believe this has generated a volume which will be useful to young and less young researchers interested in or working in the exciting field of structure formation in astrophysics. My profound gratitude to all the members of the Scientific Organizing Committee (SOC),¹ whose input was essential in choosing the various topics and speakers, and in shaping up the scientific backbone of the conference. I am also deeply indebted to Cathy Meot and to the whole team at the Hotel Majestic for their kindness, their efficiency and their remarkable professionalism. Their role was essential in making this conference a success. Special thanks also to Jimmy Paillet, our talented artistic graduate student, who designed the logo of the conference, and to the city and the mayor of Chamonix, for hosting the conference in this unique site. Finally, it is important to mention that this conference could not have been organized without the essential financial support of various sponsors, namely the Ecole Normale Supérieure de Lyon, the Centre National de la Recherche Scientifique, the Ministère de la Recherche et de la Technologie, the Institut National des Sciences et de l’Univers, the Centre de Recherche Astrophysique de Lyon, the Région Rhône-Alpes and the Conseil Général de Haute-Savoie. My last thoughts will be for the IAU and the ‘experts’ of the various Divisions/Commissions, that the proposal had been submitted to, for deciding not to support the conference, for the general reason that it was unlikely that people coming from different scientific communities would be persuaded to listen to each other. This certainly strengthened my wish to take up the challenge!

¹ The SOC of the conference was composed of: Ph. André (Paris), I. Baraffe (Lyon), P. Bodenheimer (UCSB), V. Bromm (Austin), C. Cesarsky (ESO), G. Kauffmann (Garching), R. Klessen (Heidelberg), R. Larson (Yale), M. Mayor (Geneva), C. McKee (Berkeley), Ph. Myers (Harvard), J. Papaloizou (Cambridge), E. Salpeter (Cornell), F. Shu (UCSD) and J. Silk (Oxford).