This new, fully revised edition covers all the major topics of digital signal processing (DSP) design and analysis in a single, all-inclusive volume, interweaving theory with real-world examples and design trade-offs.

Building on the success of the original, this edition includes new material on random signal processing, a new chapter on spectral estimation, greatly expanded coverage of filter banks and wavelets, and new material on the solution of difference equations. Additional steps in mathematical derivations make them easier to follow, and an important new feature is the Do-it-Yourself section at the end of each chapter, where readers get hands-on experience of solving practical signal processing problems in a range of MATLAB® experiments.

With 120 worked examples, 20 case studies, and almost 400 homework exercises, the book is essential reading for anyone taking digital signal processing courses. Its unique blend of theory and real-world practical examples also makes it an ideal reference for practitioners.

Paulo S. R. Diniz is a Professor in the Department of Electronics and Computer Engineering at Poli/Federal University of Rio de Janeiro (UFRJ), and the Graduate Program of Electrical Engineering at COPPE/UFRJ. He is also a Fellow of the IEEE.

Eduardo A. B. da Silva is an Associate Professor in the Department of Electronics and Computer Engineering at Poli/UFRJ, and in the Graduate Program of Electrical Engineering at COPPE/UFRJ.

Sergio L. Netto is an Associate Professor in the Department of Electronics and Computer Engineering at Poli/UFRJ, and in the Graduate Program of Electrical Engineering at COPPE/UFRJ.
Digital Signal Processing
System Analysis and Design
Second Edition

Paulo S. R. Diniz
Eduardo A. B. da Silva
and
Sergio L. Netto
Federal University of Rio de Janeiro
To our families,
our parents,
and our students.
Contents

Preface xvi

Introduction 1

1 Discrete-time signals and systems 5
 1.1 Introduction 5
 1.2 Discrete-time signals 6
 1.3 Discrete-time systems 10
 1.3.1 Linearity 10
 1.3.2 Time invariance 11
 1.3.3 Causality 11
 1.3.4 Impulse response and convolution sums 14
 1.3.5 Stability 16
 1.4 Difference equations and time-domain response 17
 1.4.1 Recursive × nonrecursive systems 21
 1.5 Solving difference equations 22
 1.5.1 Computing impulse responses 31
 1.6 Sampling of continuous-time signals 33
 1.6.1 Basic principles 34
 1.6.2 Sampling theorem 34
 1.7 Random signals 53
 1.7.1 Random variable 54
 1.7.2 Random processes 58
 1.7.3 Filtering a random signal 60
 1.8 Do-it-yourself: discrete-time signals and systems 62
 1.9 Discrete-time signals and systems with MATLAB 67
 1.10 Summary 68
 1.11 Exercises 68

2 The z and Fourier transforms 75
 2.1 Introduction 75
 2.2 Definition of the z transform 76
 2.3 Inverse z transform 83
 2.3.1 Computation based on residue theorem 84
 2.3.2 Computation based on partial-fraction expansions 87
 2.3.3 Computation based on polynomial division 90
2.3.4 Computation based on series expansion 92

2.4 Properties of the z transform 94
2.4.1 Linearity 94
2.4.2 Time reversal 94
2.4.3 Time-shift theorem 95
2.4.4 Multiplication by an exponential 95
2.4.5 Complex differentiation 95
2.4.6 Complex conjugation 96
2.4.7 Real and imaginary sequences 97
2.4.8 Initial-value theorem 97
2.4.9 Convolution theorem 98
2.4.10 Product of two sequences 98
2.4.11 Parseval’s theorem 100
2.4.12 Table of basic z transforms 101

2.5 Transfer functions 104

2.6 Stability in the z domain 106

2.7 Frequency response 109

2.8 Fourier transform 115

2.9 Properties of the Fourier transform 120
2.9.1 Linearity 120
2.9.2 Time reversal 120
2.9.3 Time-shift theorem 120
2.9.4 Multiplication by a complex exponential (frequency shift, modulation) 120
2.9.5 Complex differentiation 120
2.9.6 Complex conjugation 121
2.9.7 Real and imaginary sequences 121
2.9.8 Symmetric and antisymmetric sequences 122
2.9.9 Convolution theorem 123
2.9.10 Product of two sequences 123
2.9.11 Parseval’s theorem 123

2.10 Fourier transform for periodic sequences 123

2.11 Random signals in the transform domain 125
2.11.1 Power spectral density 125
2.11.2 White noise 128

2.12 Do-it-yourself: the z and Fourier transforms 129

2.13 The z and Fourier transforms with MATLAB 135

2.14 Summary 137

2.15 Exercises 137

3 Discrete transforms 143

3.1 Introduction 143
3.2 Discrete Fourier transform 144
3.3 Properties of the DFT 153
<table>
<thead>
<tr>
<th>3.3.1</th>
<th>Linearity</th>
<th>153</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.2</td>
<td>Time reversal</td>
<td>153</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Time-shift theorem</td>
<td>153</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Circular frequency-shift theorem (modulation theorem)</td>
<td>156</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Circular convolution in time</td>
<td>157</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Correlation</td>
<td>158</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Complex conjugation</td>
<td>159</td>
</tr>
<tr>
<td>3.3.8</td>
<td>Real and imaginary sequences</td>
<td>159</td>
</tr>
<tr>
<td>3.3.9</td>
<td>Symmetric and antisymmetric sequences</td>
<td>160</td>
</tr>
<tr>
<td>3.3.10</td>
<td>Parseval’s theorem</td>
<td>162</td>
</tr>
<tr>
<td>3.3.11</td>
<td>Relationship between the DFT and the z-transform</td>
<td>163</td>
</tr>
<tr>
<td>3.4</td>
<td>Digital filtering using the DFT</td>
<td>164</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Linear and circular convolutions</td>
<td>164</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Overlap-and-add method</td>
<td>168</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Overlap-and-save method</td>
<td>171</td>
</tr>
<tr>
<td>3.5</td>
<td>Fast Fourier transform</td>
<td>175</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Radix-2 algorithm with decimation in time</td>
<td>176</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Decimation in frequency</td>
<td>184</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Radix-4 algorithm</td>
<td>187</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Algorithms for arbitrary values of N</td>
<td>192</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Alternative techniques for determining the DFT</td>
<td>193</td>
</tr>
<tr>
<td>3.6</td>
<td>Other discrete transforms</td>
<td>194</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Discrete transforms and Parseval’s theorem</td>
<td>195</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Discrete transforms and orthogonality</td>
<td>196</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Discrete cosine transform</td>
<td>199</td>
</tr>
<tr>
<td>3.6.4</td>
<td>A family of sine and cosine transforms</td>
<td>203</td>
</tr>
<tr>
<td>3.6.5</td>
<td>Discrete Hartley transform</td>
<td>205</td>
</tr>
<tr>
<td>3.6.6</td>
<td>Hadamard transform</td>
<td>206</td>
</tr>
<tr>
<td>3.6.7</td>
<td>Other important transforms</td>
<td>207</td>
</tr>
<tr>
<td>3.7</td>
<td>Signal representations</td>
<td>208</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Laplace transform</td>
<td>208</td>
</tr>
<tr>
<td>3.7.2</td>
<td>The z-transform</td>
<td>208</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Fourier transform (continuous time)</td>
<td>209</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Fourier transform (discrete time)</td>
<td>209</td>
</tr>
<tr>
<td>3.7.5</td>
<td>Fourier series</td>
<td>210</td>
</tr>
<tr>
<td>3.7.6</td>
<td>Discrete Fourier transform</td>
<td>210</td>
</tr>
<tr>
<td>3.8</td>
<td>Do-it-yourself: discrete transforms</td>
<td>211</td>
</tr>
<tr>
<td>3.9</td>
<td>Discrete transforms with MATLAB</td>
<td>215</td>
</tr>
<tr>
<td>3.10</td>
<td>Summary</td>
<td>216</td>
</tr>
<tr>
<td>3.11</td>
<td>Exercises</td>
<td>217</td>
</tr>
</tbody>
</table>

4 Digital filters 222
4.1 Introduction 222
4.2 Basic structures of nonrecursive digital filters 222
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1</td>
<td>Direct form</td>
<td>223</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Cascade form</td>
<td>224</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Linear-phase forms</td>
<td>225</td>
</tr>
<tr>
<td>4.3</td>
<td>Basic structures of recursive digital filters</td>
<td>232</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Direct forms</td>
<td>232</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Cascade form</td>
<td>236</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Parallel form</td>
<td>237</td>
</tr>
<tr>
<td>4.4</td>
<td>Digital network analysis</td>
<td>241</td>
</tr>
<tr>
<td>4.5</td>
<td>State-space description</td>
<td>244</td>
</tr>
<tr>
<td>4.6</td>
<td>Basic properties of digital networks</td>
<td>246</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Tellegen’s theorem</td>
<td>246</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Reciprocity</td>
<td>248</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Interreciprocity</td>
<td>249</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Transposition</td>
<td>249</td>
</tr>
<tr>
<td>4.6.5</td>
<td>Sensitivity</td>
<td>250</td>
</tr>
<tr>
<td>4.7</td>
<td>Useful building blocks</td>
<td>257</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Second-order building blocks</td>
<td>257</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Digital oscillators</td>
<td>260</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Comb filter</td>
<td>261</td>
</tr>
<tr>
<td>4.8</td>
<td>Do-it-yourself: digital filters</td>
<td>263</td>
</tr>
<tr>
<td>4.9</td>
<td>Digital filter forms with MATLAB</td>
<td>266</td>
</tr>
<tr>
<td>4.10</td>
<td>Summary</td>
<td>270</td>
</tr>
<tr>
<td>4.11</td>
<td>Exercises</td>
<td>270</td>
</tr>
</tbody>
</table>

5 FIR filter approximations 277

5.1 Introduction 277
5.2 Ideal characteristics of standard filters 277
5.2.1 Lowpass, highpass, bandpass, and bandstop filters 278
5.2.2 Differentiators 280
5.2.3 Hilbert transformers 281
5.2.4 Summary 283
5.3 FIR filter approximation by frequency sampling 283
5.4 FIR filter approximation with window functions 291
5.4.1 Rectangular window 294
5.4.2 Triangular windows 295
5.4.3 Hamming and Hann windows 296
5.4.4 Blackman window 297
5.4.5 Kaiser window 299
5.4.6 Dolph–Chebyshev window 306
5.5 Maximally flat FIR filter approximation 309
5.6 FIR filter approximation by optimization 313
5.6.1 Weighted least-squares method 317
5.6.2 Chebyshev method 321
5.6.3 WLS–Chebyshev method 327
5.7 Do-it-yourself: FIR filter approximations 333
5.8 FIR filter approximation with MATLAB 336
5.9 Summary 342
5.10 Exercises 343

6 IIR filter approximations 349
6.1 Introduction 349
6.2 Analog filter approximations 350
 6.2.1 Analog filter specification 350
 6.2.2 Butterworth approximation 351
 6.2.3 Chebyshev approximation 353
 6.2.4 Elliptic approximation 356
 6.2.5 Frequency transformations 359
6.3 Continuous-time to discrete-time transformations 368
 6.3.1 Impulse-invariance method 368
 6.3.2 Bilinear transformation method 372
6.4 Frequency transformation in the discrete-time domain 378
 6.4.1 Lowpass-to-lowpass transformation 379
 6.4.2 Lowpass-to-highpass transformation 380
 6.4.3 Lowpass-to-bandpass transformation 380
 6.4.4 Lowpass-to-bandstop transformation 381
 6.4.5 Variable-cutoff filter design 381
6.5 Magnitude and phase approximation 382
 6.5.1 Basic principles 382
 6.5.2 Multivariable function minimization method 387
 6.5.3 Alternative methods 389
6.6 Time-domain approximation 391
 6.6.1 Approximate approach 393
6.7 Do-it-yourself: IIR filter approximations 394
6.8 IIR filter approximation with MATLAB 399
6.9 Summary 403
6.10 Exercises 404

7 Spectral estimation 409
7.1 Introduction 409
7.2 Estimation theory 410
7.3 Nonparametric spectral estimation 411
 7.3.1 Periodogram 411
 7.3.2 Periodogram variations 413
 7.3.3 Minimum-variance spectral estimator 416
7.4 Modeling theory 419
 7.4.1 Rational transfer-function models 419
 7.4.2 Yule–Walker equations 423
Contents

7.5 Parametric spectral estimation 426
 7.5.1 Linear prediction 426
 7.5.2 Covariance method 430
 7.5.3 Autocorrelation method 431
 7.5.4 Levinson–Durbin algorithm 432
 7.5.5 Burg’s method 434
 7.5.6 Relationship of the Levinson–Durbin algorithm to a lattice structure 438

7.6 Wiener filter 438

7.7 Other methods for spectral estimation 441

7.8 Do-it-yourself: spectral estimation 442

7.9 Spectral estimation with MATLAB 449

7.10 Summary 450

7.11 Exercises 451

8 Multirate systems 455
 8.1 Introduction 455
 8.2 Basic principles 455
 8.3 Decimation 456
 8.4 Interpolation 462
 8.4.1 Examples of interpolators 464
 8.5 Rational sampling-rate changes 465
 8.6 Inverse operations 466
 8.7 Noble identities 467
 8.8 Polyphase decompositions 469
 8.9 Commutator models 471
 8.10 Decimation and interpolation for efficient filter implementation 474
 8.10.1 Narrowband FIR filters 474
 8.10.2 Wideband FIR filters with narrow transition bands 477
 8.11 Overlapped block filtering 479
 8.11.1 Nonoverlapped case 480
 8.11.2 Overlapped input and output 483
 8.11.3 Fast convolution structure I 487
 8.11.4 Fast convolution structure II 487
 8.12 Random signals in multirate systems 490
 8.12.1 Interpolated random signals 491
 8.12.2 Decimated random signals 492
 8.13 Do-it-yourself: multirate systems 493
 8.14 Multirate systems with MATLAB 495
 8.15 Summary 497
 8.16 Exercises 498

9 Filter banks 503
 9.1 Introduction 503
 9.2 Filter banks 503
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2.1</td>
<td>Decimation of a bandpass signal</td>
<td>504</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Inverse decimation of a bandpass signal</td>
<td>505</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Critically decimated M-band filter banks</td>
<td>506</td>
</tr>
<tr>
<td>9.3</td>
<td>Perfect reconstruction</td>
<td>507</td>
</tr>
<tr>
<td>9.3.1</td>
<td>M-band filter banks in terms of polyphase components</td>
<td>507</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Perfect reconstruction M-band filter banks</td>
<td>509</td>
</tr>
<tr>
<td>9.4</td>
<td>Analysis of M-band filter banks</td>
<td>517</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Modulation matrix representation</td>
<td>518</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Time-domain analysis</td>
<td>520</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Orthogonality and biorthogonality in filter banks</td>
<td>529</td>
</tr>
<tr>
<td>9.4.4</td>
<td>Transmultiplexers</td>
<td>534</td>
</tr>
<tr>
<td>9.5</td>
<td>General two-band perfect reconstruction filter banks</td>
<td>535</td>
</tr>
<tr>
<td>9.6</td>
<td>QMF filter banks</td>
<td>540</td>
</tr>
<tr>
<td>9.7</td>
<td>CQF filter banks</td>
<td>543</td>
</tr>
<tr>
<td>9.8</td>
<td>Block transforms</td>
<td>548</td>
</tr>
<tr>
<td>9.9</td>
<td>Cosine-modulated filter banks</td>
<td>554</td>
</tr>
<tr>
<td>9.9.1</td>
<td>The optimization problem in the design of cosine-modulated filter banks</td>
<td>559</td>
</tr>
<tr>
<td>9.10</td>
<td>Lapped transforms</td>
<td>563</td>
</tr>
<tr>
<td>9.10.1</td>
<td>Fast algorithms and biorthogonal LOT</td>
<td>573</td>
</tr>
<tr>
<td>9.10.2</td>
<td>Generalized LOT</td>
<td>576</td>
</tr>
<tr>
<td>9.11</td>
<td>Do-it-yourself: filter banks</td>
<td>581</td>
</tr>
<tr>
<td>9.12</td>
<td>Filter banks with MATLAB</td>
<td>594</td>
</tr>
<tr>
<td>9.13</td>
<td>Summary</td>
<td>594</td>
</tr>
<tr>
<td>9.14</td>
<td>Exercises</td>
<td>595</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Wavelet transforms</td>
<td>599</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>599</td>
</tr>
<tr>
<td>10.2</td>
<td>Wavelet transforms</td>
<td>599</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Hierarchical filter banks</td>
<td>599</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Wavelets</td>
<td>601</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Scaling functions</td>
<td>605</td>
</tr>
<tr>
<td>10.3</td>
<td>Relation between $x(t)$ and $x(n)$</td>
<td>606</td>
</tr>
<tr>
<td>10.4</td>
<td>Wavelet transforms and time–frequency analysis</td>
<td>607</td>
</tr>
<tr>
<td>10.4.1</td>
<td>The short-time Fourier transform</td>
<td>607</td>
</tr>
<tr>
<td>10.4.2</td>
<td>The continuous-time wavelet transform</td>
<td>612</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Sampling the continuous-time wavelet transform: the discrete wavelet transform</td>
<td>614</td>
</tr>
<tr>
<td>10.5</td>
<td>Multiresolution representation</td>
<td>617</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Biorthogonal multiresolution representation</td>
<td>620</td>
</tr>
<tr>
<td>10.6</td>
<td>Wavelet transforms and filter banks</td>
<td>623</td>
</tr>
<tr>
<td>10.6.1</td>
<td>Relations between the filter coefficients</td>
<td>629</td>
</tr>
<tr>
<td>10.7</td>
<td>Regularity</td>
<td>633</td>
</tr>
<tr>
<td>10.7.1</td>
<td>Additional constraints imposed on the filter banks due to the regularity condition</td>
<td>634</td>
</tr>
</tbody>
</table>
Contents

10.7.2 A practical estimate of regularity 635
10.7.3 Number of vanishing moments 636
10.8 Examples of wavelets 638
10.9 Wavelet transforms of images 641
10.10 Wavelet transforms of finite-length signals 646
10.10.1 Periodic signal extension 646
10.10.2 Symmetric signal extensions 648
10.11 Do-it-yourself: wavelet transforms 653
10.12 Wavelets with MATLAB 659
10.13 Summary 664
10.14 Exercises 665

11 Finite-precision digital signal processing 668
11.1 Introduction 668
11.2 Binary number representation 670
11.2.1 Fixed-point representations 670
11.2.2 Signed power-of-two representation 672
11.2.3 Floating-point representation 673
11.3 Basic elements 674
11.3.1 Properties of the two’s-complement representation 674
11.3.2 Serial adder 674
11.3.3 Serial multiplier 676
11.3.4 Parallel adder 684
11.3.5 Parallel multiplier 684
11.4 Distributed arithmetic implementation 685
11.5 Product quantization 691
11.6 Signal scaling 697
11.7 Coefficient quantization 706
11.7.1 Deterministic sensitivity criterion 708
11.7.2 Statistical forecast of the wordlength 711
11.8 Limit cycles 715
11.8.1 Granular limit cycles 715
11.8.2 Overflow limit cycles 717
11.8.3 Elimination of zero-input limit cycles 719
11.8.4 Elimination of constant-input limit cycles 725
11.8.5 Forced-response stability of digital filters with nonlinearities due to overflow 729
11.9 Do-it-yourself: finite-precision digital signal processing 732
11.10 Finite-precision digital signal processing with MATLAB 735
11.11 Summary 735
11.12 Exercises 736

12 Efficient FIR structures 740
12.1 Introduction 740
12.2 Lattice form 740
12.2.1 Filter banks using the lattice form 742
12.3 Polyphase form 749
12.4 Frequency-domain form 750
12.5 Recursive running sum form 750
12.6 Modified-sinc filter 752
12.7 Realizations with reduced number of arithmetic operations 753
 12.7.1 Prefilter approach 753
 12.7.2 Interpolation approach 756
 12.7.3 Frequency-response masking approach 760
 12.7.4 Quadrature approach 771
12.8 Do-it-yourself: efficient FIR structures 776
12.9 Efficient FIR structures with MATLAB 781
12.10 Summary 782
12.11 Exercises 782

13 Efficient IIR structures 787
13.1 Introduction 787
13.2 IIR parallel and cascade filters 787
 13.2.1 Parallel form 788
 13.2.2 Cascade form 790
 13.2.3 Error spectrum shaping 795
 13.2.4 Closed-form scaling 797
13.3 State-space sections 800
 13.3.1 Optimal state-space sections 801
 13.3.2 State-space sections without limit cycles 806
13.4 Lattice filters 815
13.5 Doubly complementary filters 822
 13.5.1 QMF filter bank implementation 826
13.6 Wave filters 828
 13.6.1 Motivation 829
 13.6.2 Wave elements 832
 13.6.3 Lattice wave digital filters 848
13.7 Do-it-yourself: efficient IIR structures 855
13.8 Efficient IIR structures with MATLAB 857
13.9 Summary 857
13.10 Exercises 858

References 863
Index 877
This book originated from a training course for engineers at the research and development center of TELEBRAS, the former Brazilian telecommunications holding. That course was taught by the first author back in 1987, and its main goal was to present efficient digital filter design methods suitable for solving some of their engineering problems. Later on, this original text was used by the first author as the basic reference for the digital filters and digital signal processing courses of the Electrical Engineering Program at COPPE/Federal University of Rio de Janeiro.

For many years, former students asked why the original text was not transformed into a book, as it presented a very distinct view that they considered worth publishing. Among the numerous reasons not to attempt such task, we could mention that there were already a good number of well-written texts on the subject; also, after many years of teaching and researching on this topic, it seemed more interesting to follow other paths than the painful one of writing a book; finally, the original text was written in Portuguese and a mere translation of it into English would be a very tedious task.

In later years, the second and third authors, who had attended the signal processing courses using the original material, were continuously giving new ideas on how to proceed. That was when we decided to go through the task of completing and updating the original text, turning it into a modern textbook. The book then took on its first-edition form, updating the original text, and including a large amount of new material written for other courses taught by the three authors up to 2002.

This second edition barely resembles the original lecture notes for several reasons. The original material was heavily concentrated on filter design and realization, whereas the present version includes a large amount of material on discrete-time systems, discrete transforms, spectral estimation, multirate systems, filter banks, and wavelets.

This book is mainly written for use as a textbook on a digital signal processing course for undergraduate students who have had previous exposure to basic linear systems, or to serve as a textbook on a graduate-level course where the most advanced topics of some chapters are covered. This reflects the structure we have at the Federal University of Rio de Janeiro, as well as at a number of other universities we have contact with. The second edition has a special feature designed for readers to test their learning by hands-on experience through so-called Do-it-yourself sections, with the aid of MATLAB®. A Do-it-yourself section is included in all chapters of the book. The book also includes, at the end of most chapters, a brief section aimed at giving a start to the reader on how to use MATLAB as a tool for the analysis and design of digital signal processing systems. As in the first edition, we decided that having explanations about MATLAB inserted in the main text would in some cases distract the readers, making them lose focus on the subject.
A distinctive feature of this book is to present a wide range of topics in digital signal processing design and analysis in a concise and complete form, while allowing the reader to fully develop practical systems. Although this book is primarily intended as an undergraduate and graduate textbook, its origins on training courses for industry warrant its potential usefulness to engineers working in the development of signal processing systems. In fact, our objective is to equip the readers with the tools that enable them to understand why and how to use digital signal processing systems; to show them how to approximate a desired transfer function characteristic using polynomials and ratios of polynomials; to teach them why an appropriate mapping of a transfer function into a suitable structure is important for practical applications; and to show how to analyze, represent, and explore the trade-off between the time and frequency representations of deterministic and stochastic signals. For all that, each chapter includes a number of examples and end-of-chapter problems to be solved. These are aimed at assimilating the concepts, as well as complementing the text. In particular, the second edition includes many new examples and exercises to be solved.

Chapters 1 and 2 review the basic concepts of discrete-time signal processing and z transforms. Although many readers may be familiar with these subjects, they could benefit from reading these chapters, getting used to the notation and the authors’ way of presenting the subject. In Chapter 1 we review the concepts of discrete-time systems, including the representation of discrete-time signals and systems, as well as their time-domain responses. Most important, we present the sampling theorem, which sets the conditions for the discrete-time systems to solve practical problems related to our real continuous-time world. The basic concepts of random signals are also introduced in this chapter, followed by the Do-it-yourself section aiding the reader to test their progress in discrete-time signals and systems. Chapter 2 is concerned with the z and Fourier transforms, which are useful mathematical tools for representation of discrete-time signals and systems. The basic properties of the z and Fourier transforms are discussed, including a stability test in the z transform domain. The chapter also shows how the analysis of random signals can benefit from the z-domain formulation.

Chapter 3 discusses discrete transforms, with special emphasis given to the discrete Fourier transform (DFT), which is an invaluable tool in the frequency analysis of discrete-time signals. The DFT allows a discrete representation of discrete-time signals in the frequency domain. Since the sequence representation is natural for digital computers, the DFT is a very powerful tool, because it enables us to manipulate frequency-domain information in the same way as we can manipulate the original sequences. The importance of the DFT is further increased by the fact that computationally efficient algorithms, the so-called fast Fourier transforms (FFTs), are available to compute the DFT. This chapter also presents real coefficient transforms, such as cosine and sine transforms, which are widely used in modern audio and video coding, as well as in a number of other applications. A discussion about orthogonality in transforms is also included. This section also includes a discussion on the several forms of representing the signals, in order to aid the reader with the available choices.

Chapter 4 addresses the basic structures for mapping a transfer function into a digital filter. It is also devoted to some basic analysis methods and properties of digital filter structures.
The chapter also introduces some simple and useful building blocks widely utilized in some designs and applications.

Chapter 5 introduces several approximation methods for filters with finite-duration impulse response (FIR), starting with the simpler frequency sampling method and the widely used windows method. This method also provides insight to the windowing strategy used in several signal processing applications. Other approximation methods included are the maximally flat filters and those based on the weighted least-squares (WLS) method. This chapter also presents the Chebyshev approximation based on a multivariable optimization algorithm called the Remez exchange method. This approach leads to linear-phase transfer functions with minimum order given a prescribed set of frequency response specifications. This chapter also discusses the WLS–Chebyshev method which leads to transfer functions where the maximum and the total energy of the approximation error are prescribed. This approximation method is not widely discussed in the open literature but appears to be very useful for a number of applications.

Chapter 6 discusses the approximation procedures for filters with infinite-duration impulse response (IIR). We start with the classical continuous-time transfer-function approximations, namely the Butterworth, Chebyshev, and elliptic approximations, that can generate discrete-time transfer functions by using appropriate transformations. Two transformation methods are then presented: the impulse-invariance and the bilinear transformation methods. The chapter also includes a section on frequency transformations in the discrete-time domain. The simultaneous magnitude and phase approximation of IIR digital filters using optimization techniques is also included, providing a tool to design transfer functions satisfying more general specifications. The chapter closes by addressing the issue of time-domain approximations.

Chapter 7 introduces the basic concepts of classical estimation theory. It starts by describing the nonparametric spectral estimation methods based on a periodogram, followed by the minimum-variance spectral estimator. The chapter continues with a discussion on modeling theory, addressing the rational transfer function models and presenting the Yule–Walker equations. Several parametric spectral estimation methods are also presented, namely: the linear prediction method; the covariance method; the autocorrelation method; the Levinson–Durbin algorithm; and Burg’s method. The chapter also discusses the Wiener filter as an extension of the linear prediction method.

Chapter 8 deals with basic principles of discrete-time systems with multiple sampling rates. In this chapter we emphasize the basic properties of multirate systems, thoroughly addressing the decimation and interpolation operations, giving examples of their use for efficient digital filter design. The chapter discusses many key properties of multirate systems, such as inverse operations and noble identities, and introduces some analytical tools, such as polyphase decomposition and the commutator models. In addition, we discuss the concepts of overlapped block filtering, which can be very useful in some fast implementations of digital signal processing building blocks. The chapter also includes some discussion on how decimators and interpolators affect the properties of random signals.

Chapter 9 discusses some properties pertaining to the internal structure of filter banks, followed by the concept and construction of perfect reconstruction filter banks. The chapter also
includes some analysis tools and classifications for the filter banks and transmultiplexers. This chapter presents several design techniques for multirate filter banks, including several forms of two-band filter banks, cosine-modulated filter banks, and lapped transforms.

Chapter 10 introduces the concepts of time–frequency analysis and the discrete wavelet transform. It also presents the multiresolution representation of signals through wavelet transforms and discusses the design of wavelet transforms using filter banks. In addition, some design techniques to generate orthogonal (as well as biorthogonal) bases for signal representation are presented. Several properties of wavelets required for their classification, design, and implementation are discussed in this chapter.

Chapter 11 provides a brief introduction to the binary number representations most widely used in the implementation of digital signal processing systems. The chapter also explains how the basic elements utilized in these systems work and discusses a particular, and yet instructive, type of implementation based on distributed arithmetic. Chapter 11 also includes the models that account for quantization effects in digital filters. We discuss several approaches to analyze and deal with the effects of representing signals and filter coefficients with finite wordlength. In particular, we study the effects of quantization noise in products, signal scaling that limits the internal signal dynamic range, coefficient quantization in the designed transfer function, and the nonlinear oscillations which may occur in recursive realizations. These analyses are used to indicate the filter realizations that lead to practical finite-precision implementations of digital filters.

In Chapter 12 we present some techniques to reduce the computational complexity of FIR filters with demanding specifications or specialized requirements. The first structure discussed is the lattice form, which finds application in a number of areas, including the design of filter banks. Several useful implementation forms of FIR filters, such as polyphase, frequency-domain, recursive running sum, and modified-sinc forms, are presented to be employed as building blocks in several design methods. In particular, we introduce the prefilter and interpolation methods which are mainly useful in designing narrowband lowpass and highpass filters. In addition, we present the frequency-response masking approach, for designing filters with narrow transition bands satisfying more general specifications, and the quadrature method, for narrow bandpass and bandstop filters.

Chapter 13 presents a number of efficient realizations for IIR filters. For these filters, a number of realizations considered efficient from the finite-precision effects point of view are presented and their salient features are discussed in detail. These realizations will equip the reader with a number of choices for the design of good IIR filters. Several families of structures are considered in this chapter, namely: parallel and cascade designs using direct-form second-order sections; parallel and cascade designs using section-optimal and limit-cycle-free state-space sections; lattice filters; and several forms of wave digital filters. In addition, this chapter includes a discussion on doubly complementary filters and their use in the implementation of quadrature mirror filter banks.

This book contains enough material for an undergraduate course on digital signal processing and a first-year graduate course. There are many alternative ways to compose these courses; in the following we describe some recommendations that have been employed successfully in signal processing courses.
• An undergraduate course in discrete-time systems or digital signal processing at junior level. This should include most parts of Chapters 1, 2, 3, 4, and the nonparametric methods of Chapter 7. It could also include the noniterative approximation methods of Chapters 5 and 6, namely the frequency sampling and window methods described in Chapter 5, the analog-based approximation methods, and also the continuous-time to discrete-time transformation methods for IIR filtering of Chapter 6.

• An undergraduate course in digital signal processing at senior level. This should briefly review parts of Chapters 1 and 2 and cover Chapters 3, 4, and 7. It could also include the noniterative approximation methods of Chapters 5 and 6, namely the frequency sampling and window methods described in Chapter 5, the analog-based approximation methods, and also the continuous-time to discrete-time transformation methods for IIR filtering of Chapter 6. Chapters 8 and 11 could complement the course.

• An undergraduate course in digital filtering at senior level or first-year graduate. This should cover Chapter 4 and the iterative approximation methods of Chapters 5 and 6. The course could also cover selected topics from Chapters 11, 12, and 13. At the instructor’s discretion, the course could also include selected parts of Chapter 8.

• As a graduate course textbook on multirate systems, filter banks and wavelets. The course could cover Chapters 8, 9, and 10, as well as the lattice form in Chapter 12 and doubly complementary filters in Chapter 13.

Obviously, there are several other choices for courses based on the material of this book which will depend on the course length and the judicious choice of the instructor.

This book would never be written if people with a wide vision of how an academic environment should be were not around. In fact, we were fortunate to have Professors L. P. Calôba and E. H. Watanabe as colleagues and advisors. The staff of COPPE, in particular Ms Michelle A. Nogueira and Ms F. J. Ribeiro, supported us in all possible ways to make this book a reality. Also, the first author’s early students J. C. Cabezas, R. G. Lins, and J. A. B. Pereira (in memoriam) wrote, with him, a computer package that generated several of the examples of the first edition of this book. The engineers of CPqD helped us to correct the early version of this text. In particular, we would like to thank the engineer J. Sampaio for his complete trust in this work. We benefited from working in an environment with a large signal-processing group where our colleagues always helped us in various ways. Among them, we should mention Professors L. W. P. Biscainho, M. L. R. de Campos, G. V. Mendonça, A. C. M. de Queiroz, F. G. V. de Resende Jr, J. M. de Seixas, and the entire staff of the Signal Processing Lab (www.lps.ufrj.br). Professor Biscainho superbly translated the first edition of this book to our mother tongue; he is indeed our inspirational fourth author. We would like to thank our colleagues at the Federal University of Rio de Janeiro, in particular at the Department of Electronics and Computer Engineering of the Polytechnic School of Engineering, the undergraduate studies department, and at the Electrical Engineering Program of COPPE, the graduate studies department, for their constant support during the preparation of this book.

We would like to thank many friends from other institutions whose influence helped in shaping this book. In particular, we may mention Professor A. S. de la Vega of Fluminense Federal University; Professor M. Sarcinelli Filho of the Federal University of Espírito
Preface

Santo; Professors P. Agathoklis, A. Antoniou, and W.-S. Lu of the University of Victoria; Professors I. Hartimo and T. I. Laakso and Dr. V. Välimäki of the Helsinki University of Technology; Professors T. Saramäki and Markku Renfors of the Tampere University of Technology; Professor Y. Lian of the National University of Singapore; Professor Y. C. Lim of Nanyang Technological University; Dr. R. L. de Queiroz of the University of Brasilia; Dr. H. S. Malvar of Microsoft Corporation; Professor Y.-F. Huang of the University of Notre Dame; Professor J. E. Cousseau of Universidad Nacional del Sur; Professor B. Nowrouzian of University of Alberta; Dr. M. G. de Siqueira of Cisco Systems; Professors R. Miscow Filho and E. Viegas of the Military Institute of Engineering in Rio de Janeiro; Professor T. Q. Nguyen of the University of California, San Diego; and Professor Massimiliano Laddomada of Texas A&M University, Texarkana.

This acknowledgment list would be incomplete without mentioning the staff of Cambridge University Press, in particular our editor, Dr. Philip Meyler. Phil is an amazing person who knows how to stimulate people to write and read books.

We would like to thank our families for their endless patience and support. In particular, Paulo would like to express his deepest gratitude to Mariza, Paula, and Luiza, and to his mother Hirlene. Eduardo would like to mention that the continuing love and friendship from his wife Cláudia and his children Luis Eduardo and Isabella, as well as the strong and loving background provided by his parents, Zélia and Bismarck, were in all respects essential to the completion of this task. Sergio would like to express his deepest gratitude to his parents, “Big” Sergio and Maria Christina, his sincere love and admiration to his wife, Isabela, and the greatest affection to his offspring, Bruno and the twins, Renata and Manuela (see Figure 10.21). We all would also like to thank our families for bearing with us working together.

We sincerely hope that the book reflects the harmony, pleasure, friendship, and tenderness that we experience working together. Our partnership was written in the stars and heaven sent.