
Introduction

When we hear the word “signal” we may first think of a phenomenon that occurs contin-
uously over time that carries some information. Most phenomena observed in nature are
continuous in time, such as for instance our speech or heart beating, the temperature of
the city where we live, the car speed during a given trip, the altitude of the airplane we are
traveling in – these are typical continuous-time signals. Engineers are always devising ways
to design systems, which are in principle continuous time, for measuring and interfering
with these and other phenomena.

One should note that, although continuous-time signals pervade our daily lives, there
are also several signals which are originally discrete time; for example, the stock-market
weekly financial indicators, the maximum and minimum daily temperatures in our cities,
and the average lap speed of a racing car.

If an electrical or computer engineer has the task of designing systems to interact with
natural phenomena, their first impulse is to convert some quantities from nature into elec-
tric signals through a transducer. Electric signals, which are represented by voltages or
currents, have a continuous-time representation. Since digital technology constitutes an
extremely powerful tool for information processing, it is natural to think of process-
ing the electric signals generated using it. However, continuous-time signals cannot be
processed using computer technology (digital machines), which are especially suited to
deal with sequential computation involving numbers. Fortunately, this fact does not pre-
vent the use of digital integrated circuits (which is the technology behind the computer
technology revolution we witness today) in signal processing systems designs. This is
because many signals taken from nature can be fully represented by their sampled ver-
sions, where the sampled signals coincide with the original continuous-time signals at
some instants in time. If we know how fast the important information changes, then we
can always sample and convert continuous-time information into discrete-time information
which, in turn, can be converted into a sequence of numbers and transferred to a digital
machine.

The main advantages of digital systems relative to analog systems are high reliabil-
ity, suitability for modifying the system’s characteristics, and low cost. These advantages
motivated the digital implementation of many signal processing systems which used to be
implemented with analog circuit technology. In addition, a number of new applications
became viable once the very large scale integration (VLSI) technology was available. Usu-
ally in the VLSI implementation of a digital signal processing system the concern is to
reduce power consumption and/or area, or to increase the circuit’s speed in order to meet
the demands of high-throughput applications.
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2 Introduction

Currently, a single digital integrated circuit may contain millions of logic gates operating
at very high speeds, allowing very fast digital processors to be built at a reasonable cost.
This technological development opened avenues to the introduction of powerful general-
purpose computers which can be used to design and implement digital signal processing
systems. In addition, it allowed the design of microprocessors with special features for
signal processing, namely the digital signal processors (DSPs). As a consequence, there
are several tools available to implement very complex digital signal processing systems. In
practice, a digital signal processing system is implemented either by software on a general-
purpose digital computer or DSP, or by using application-specific hardware, usually in the
form of an integrated circuit.

For the reasons explained above, the field of digital signal processing has developed so
fast in recent decades that it has been incorporated into the graduate and undergraduate
programs of virtually all universities. This is confirmed by the number of good textbooks
available in this area: Oppenheim & Schafer (1975, 1989); Rabiner & Gold (1975); Peled &
Liu (1985); Roberts & Mullis (1987); Ifeachor & Jervis (1993); Jackson (1996); Antoniou
(2006); Mitra (2006); Proakis & Manolakis (2007). The present book is aimed at equipping
readers with tools that will enable them to design and analyze most digital signal processing
systems. The building blocks for digital signal processing systems considered here are used
to process signals which are discrete in time and in amplitude. The main tools emphasized
in this text are:

• discrete-time signal representations
• discrete transforms and their fast algorithms
• spectral estimation
• design and implementation of digital filters and digital signal processing systems
• multirate systems and filter banks
• wavelets.

Transforms and filters are the main parts of linear signal processing systems. Although the
techniques we deal with are directly applicable to processing deterministic signals, many
statistical signal processing methods employ similar building blocks in some way, as will
be clear in the text.

Digital signal processing is extremely useful in many areas. In the following, we
enumerate a few of the disciplines where the topics covered by this book have found
application.

(a) Image processing: An image is essentially a space-domain signal; that is, it represents
a variation of light intensity and color in space. Therefore, in order to process an image
using an analog system, it has to be converted into a time-domain signal, using some
form of scanning process. However, to process an image digitally, there is no need
to perform this conversion, for it can be processed directly in the spatial domain, as
a matrix of numbers. This lends the digital image processing techniques enormous
power. In fact, in image processing, two-dimensional signal representation, filtering,
and transforms play a central role (Jain, 1989).
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3 Introduction

(b) Multimedia systems: Such systems deal with different kinds of information sources,
such as image, video, audio, and data. In such systems, the information is essen-
tially represented in digital form. Therefore, it is crucial to remove redundancy from
the information, allowing compression, and thus efficient transmission and storage
(Jayant & Noll, 1984; Gersho & Gray, 1992; Bhaskaran & Konstantinides, 1997). The
Internet is a good application example where information files are transferred in a
compressed manner. Most of the compression standards for images use transforms and
quantizers.

The transforms, filter banks, and wavelets are very popular in compression appli-
cations because they are able to exploit the high correlation of signal sources such as
audio, still images, and video (Malvar, 1992; Fliege, 1994; Vetterli and Kovačević,
1995; Strang and Nguyen, 1996; Mallat, 1999).

(c) Communication systems: In communication systems, the compression and coding of
the information sources are also crucial, since services can be provided at higher speed
or to more users by reducing the amount of data to be transmitted. In addition, channel
coding, which consists of inserting redundancy in the signal to compensate for possible
channel distortions, may also use special types of digital filtering (Stüber, 1996).

Communication systems usually include fixed filters, as well as some self-designing
filters for equalization and channel modeling which fall in the class of adaptive filtering
systems (Diniz, 2008). Although these filters employ a statistical signal processing
framework (Hayes, 1996; Kay, 1988; Manolakis et al., 2000) to determine how their
parameters should change, they also use some of the filter structures and in some cases
the transforms introduced in this book.

Many filtering concepts take part on modern multiuser communication systems
employing code-division multiple access (Verdu, 1998).

Wavelets, transforms, and filter banks also play a crucial role in the conception of
orthogonal frequency-division multiplexing (OFDM) (Akansu & Medley, 1999), which
is used in digital audio and TV broadcasting.

(d) Audio signal processing: In statistical signal processing the filters are designed based
on observed signals, which might imply that we are estimating the parameters of the
model governing these signals (Kailath et al., 2000). Such estimation techniques can
be employed in digital audio restoration (Godsill & Rayner, 1998), where the resulting
models can be used to restore lost information. However, these estimation models can be
simplified and made more effective if we use some kind of sub-band processing with
filter banks and transforms (Kahrs & Brandenburg, 1998). In the same field, digital
filters were found to be suitable for reverberation algorithms and as models for musical
instruments (Kahrs & Brandenburg, 1998).

In addition to the above applications, digital signal processing is at the heart of modern
developments in speech analysis and synthesis, mobile radio, sonar, radar, biomedical
engineering, seismology, home appliances, and instrumentation, among others. These
developments occurred in parallel with the advances in the technology of transmission,
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4 Introduction

processing, recording, reproduction, and general treatment of signals through analog and
digital electronics, as well as other means such as acoustics, mechanics, and optics.

We expect that, with the digital signal processing tools described in this book, the reader
will be able to proceed further, not only exploring andunderstanding someof the applications
described above, but developing new ones as well.
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1 Discrete-time signals and systems

1.1 Introduction

Digital signal processing is the discipline that studies the rules governing the behavior of
discrete signals, as well as the systems used to process them. It also deals with the issues
involved in processing continuous signals using digital techniques. Digital signal processing
pervades modern life. It has applications in compact disc players, computer tomography,
geological processing, mobile phones, electronic toys, and many others.

In analog signal processing, we take a continuous signal, representing a continuously
varying physical quantity, and pass it through a system that modifies this signal for a certain
purpose. This modification is, in general, continuously variable by nature; that is, it can be
described by differential equations.

Alternatively, in digital signal processing, we process sequences of numbers using some
sort of digital hardware. We usually call these sequences of numbers digital or discrete-time
signals. The power of digital signal processing comes from the fact that, once a sequence of
numbers is available to appropriate digital hardware, we can carry out any form of numerical
processing on it. For example, suppose we need to perform the following operation on a
continuous-time signal:

y(t) =
cosh

[
ln(|x(t)|)+ x3(t)+ cos3

(√|x(t)|)]
5x5(t)+ ex(t) + tan(x(t))

. (1.1)

This would be clearly very difficult to implement using analog hardware. However, if we
sample the analog signal x(t) and convert it into a sequence of numbers x(n), it can be input
to a digital computer, which can perform the above operation easily and reliably, generating
a sequence of numbers y(n). If the continuous-time signal y(t) can be recovered from y(n),
then the desired processing has been successfully performed.

This simple example highlights two important points. One is how powerful digital signal
processing is. The other is that, if we want to process an analog signal using this sort of
resource, we must have a way of converting a continuous-time signal into a discrete-time
one, such that the continuous-time signal can be recovered from the discrete-time signal.
However, it is important to note that very often discrete-time signals do not come from
continuous-time signals, that is, they are originally discrete-time, and the results of their
processing are only needed in digital form.

In this chapter, we study the basic concepts of the theory of discrete-time signals and
systems. We emphasize the treatment of discrete-time systems as separate entities from
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6 Discrete-time signals and systems

continuous-time systems. We first define discrete-time signals and, based on this, we define
discrete-time systems, highlighting the properties of an important subset of these systems,
namely linearity and time invariance, as well as their description by discrete-time convolu-
tions. We then study the time-domain response of discrete-time systems by characterizing
them using difference equations. We close the chapter with Nyquist’s sampling theorem,
which tells us how to generate, from a continuous-time signal, a discrete-time signal from
which the continuous-time signal can be completely recovered. Nyquist’s sampling theorem
forms the basis of the digital processing of continuous-time signals.

1.2 Discrete-time signals

Adiscrete-time signal is one that can be represented by a sequence of numbers. For example,
the sequence

{x(n), n ∈ Z}, (1.2)

where Z is the set of integer numbers, can represent a discrete-time signal where each
number x(n) corresponds to the amplitude of the signal at an instant nT . If xa(t) is an analog
signal, we have that

x(n) = xa(nT ), n ∈ Z. (1.3)

Since n is an integer, T represents the interval between two consecutive points at which the
signal is defined. It is important to note that T is not necessarily a time unit. For example,
if xa(t) is the temperature along a metal rod, then if T is a length unit, x(n) = xa(nT ) may
represent the temperature at sensors placed uniformly along this rod.

In this text, we usually represent a discrete-time signal using the notation in Equation (1.2),
where x(n) is referred to as the nth sample of the signal (or the nth element of the sequence).
An alternative notation, used in many texts, is to represent the signal as

{xa(nT ), n ∈ Z}, (1.4)

where the discrete-time signal is represented explicitly as samples of an analog signal xa(t).
In this case, the time interval between samples is explicitly shown; that is, xa(nT ) is the
sample at time nT . Note that, using the notation in Equation (1.2), a discrete-time signal
whose adjacent samples are 0.03 s apart would be represented as

. . . x(0), x(1), x(2), x(3), x(4), . . . , (1.5)

whereas, using Equation (1.4) it would be represented as

. . . xa(0), xa(0.03), xa(0.06), xa(0.09), xa(0.12), . . . (1.6)
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7 1.2 Discrete-time signals

n
or  nT

x(n)  or  xa(nT )

…
…

Fig. 1.1. General representation of a discrete-time signal.

The graphical representation of a general discrete-time signal is shown in Figure 1.1.
In what follows, we describe some of the most important discrete-time signals.
Unit impulse (see Figure 1.2a):

δ(n) =
{

1, n = 0
0, n �= 0.

(1.7)

Delayed unit impulse (see Figure 1.2b):

δ(n− m) =
{

1, n = m
0, n �= m.

(1.8)

Unit step (see Figure 1.2c):

u(n) =
{

1, n ≥ 0
0, n < 0.

(1.9)

Cosine function (see Figure 1.2d):

x(n) = cos(ωn). (1.10)

The angular frequency of this sinusoid is ω rad/sample and its frequency is ω/2π

cycles/sample. For example, in Figure 1.2d, the cosine function has angular frequency
ω = 2π/16 rad/sample. This means that it completes one cycle, that equals 2π radians, in
16 samples. If the sample separation represents time, then ω can be given in rad/(time unit).
It is important to note that

cos[(ω + 2kπ)n] = cos(ωn+ 2knπ) = cos(ωn) (1.11)

for k ∈ Z. This implies that, in the case of discrete signals, there is an ambiguity in defining
the frequency of a sinusoid. In other words, when referring to discrete sinusoids, ω and
ω + 2kπ , k ∈ Z, are the same frequency.
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8 Discrete-time signals and systems

x(n)

n

1

2
(a)

1–2 3–3

x(n)

n

1

m
(b)

n

1

1–1–2–3–4–5–6

(c)

0 43 5 62

x(n)

…
n

1 2 3 4–1–2–3–4

(d)

0 …
…

x(n)

n
1 2 3 4 50

(e)

x(n)

……
n

1–1–2–3–4–5

(f)

2 3 4 5

x(n)

…

Fig. 1.2. Basic discrete-time functions: (a) unit impulse; (b) delayed unit impulse; (c) unit step; (d) cosine
function with ω = 2π/16 rad/sample; (e) real exponential function with a = 0.2; (f) unit ramp.

Real exponential function (see Figure 1.2e):

x(n) = ean. (1.12)

Unit ramp (see Figure 1.2f):

r(n) =
{

n, n ≥ 0
0, n < 0

(1.13)

By examining Figure 1.2b–f, we notice that any discrete-time signal is equivalent to a
sum of shifted impulses multiplied by a constant; that is, the impulse shifted by k samples
is multiplied by x(k). This can also be deduced from the definition of a shifted impulse in
Equation (1.8). For example, the unit step u(n) in Equation (1.9) can also be expressed as

u(n) =
∞∑

k=0

δ(n− k). (1.14)

Likewise, any discrete-time signal x(n) can be expressed as

x(n) =
∞∑

k=−∞
x(k)δ(n− k). (1.15)
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9 1.2 Discrete-time signals

An important class of discrete-time signals or sequences is that of periodic sequences. A
sequence x(n) is periodic if and only if there is an integer N �= 0 such that x(n) = x(n+N )

for all n. In such a case, N is called a period of the sequence. Note that, using this definition
and referring to Equation (1.10), a period of the cosine function is an integer N such that

cos(ωn) = cos[ω(n+ N )], for all n ∈ Z. (1.16)

This happens only if there is k ∈ N such that ωN = 2πk . The smallest period is then

N = min
k∈N

(2π/ω)k∈N

{
2π

ω
k

}
. (1.17)

Therefore, we notice that not all discrete cosine sequences are periodic, as illustrated in
Example 1.1. An example of a periodic cosine sequence with period N = 16 samples is
given in Figure 1.2d.

Example 1.1. Determine whether the discrete signals above are periodic; if they are,
determine their periods.

(a) x(n) = cos [(12π/5)n]

(b) x(n) = 10 sin2
[
(7π/12)n+√2

]
(c) x(n) = 2 cos (0.02n+ 3) .

Solution

(a) In this case, we must have

12π

5
(n+ N ) = 12π

5
n+ 2kπ ⇒ N = 5k

6
. (1.18)

This implies that the smallest N results for k = 6. Then the sequence is periodic with
period N = 5. Note that in this case

cos

(
12π

5
n

)
= cos

(
2π

5
n+ 2πn

)
= cos

(
2π

5
n

)
(1.19)

and thus we have also that the frequency of this sinusoid, besides being ω = 12π/5, is
also ω = 2π/5, as indicated by Equation (1.11).

(b) In this case, periodicity implies that

sin2
[

7π

12
(n+ N )+√2

]
= sin2

(
7π

12
n+√2

)
(1.20)

and then

sin

[
7π

12
(n+ N )+√2

]
= ±sin

(
7π

12
n+√2

)
(1.21)
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10 Discrete-time signals and systems

such that

7π

12
(n+ N ) = 7π

12
n+ kπ ⇒ N = 12k

7
. (1.22)

The smallest N results for k = 7. Then this discrete-time signal is periodic with period
N = 12.

(c) The periodicity condition requires that

cos[0.02(n+ N )+ 3] = cos (0.02n+ 3) (1.23)

such that

0.02(n+ N ) = 0.02n+ 2kπ ⇒ N = 100kπ . (1.24)

Since no integer N satisfies the above equation, the sequence is not periodic.

	

1.3 Discrete-time systems

A discrete-time system maps an input sequence x(n) to an output sequence y(n), such that

y(n) = H{x(n)}, (1.25)

where the operator H{·} represents a discrete-time system, as shown in Figure 1.3. Depend-
ing on the properties of H{·}, the discrete-time system can be classified in several ways,
the most basic ones being either linear or nonlinear, either time invariant or time variant,
and causal or noncausal. These classifications will be discussed in what follows.

1.3.1 Linearity

Let us suppose that there is a system that accepts as input a voice signal and outputs the
voice signal modified such that its acute components (high frequencies) are enhanced. In
such a system, it would be undesirable if, in the case that one increased the voice tone at
the input, the output became distorted instead of enhanced. Actually, one tends to expect

Discrete-time
system

x(n) y(n)

Fig. 1.3. Representation of a discrete-time system.
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