ABL. See Atmospheric boundary layer
Acoustic sounding, 193
Adiabatic temperature profile, 176
Air
cloud, 182
dry, 182
moist, 182
Anelastic approximation, 178
Anisotropy, local
gauging, 325–326
maintenance, 322–325
Atmospheric boundary layer (ABL), 193–211
buoyancy effects, 196
cross-isobaric angle, 195
depth, 196
diurnal cycle, 196
Ekman spiral, 208
horizontal advection, nonstationarity, 248
important features, 193–196
interfacial layer, 193
inversion-capped neutral, 201
mean momentum balance, 193
mean momentum equations, 205–207
neutral, 198
required averaging times, 196
stable, 201–204
transition
decay of friction velocity, 269
inertial oscillation aloft, 275–277
near-surface response, 273–275
sloping terrain, 277–278
turbulence Reynolds number, 196
well mixed, 28
Autocorrelation function, 36, 331–332
integral scale, 332
microscale, 332
Schwartz’s inequality, 331
Autocovariance, 36
Average, types, 30–34
ensemble, 30–34, 297
local, 66, 116
record, 65
space, 30, 37–38, 297
time, 30, 35
volume, 30, 297
Averaging
concepts, 28–38
convergence, 35–37
ensemble rules, 31–32
generalization to filtering, 117–118
phase, 279
phase rules, 279
space, 116–117
time
definition, 35
required, 37
Axisymmetry, 340
Baroclinity, 208, 210, 246
Batchelor, G. K.
on Kolmogorov 1941, 146
microscale, 150
universal equilibrium theory, 154, 304
Boundary layer, body, 193
Boussinesq approximation, 178
Bradshaw, P.
on non universality of models, 108
on pressure fluctuations, 234
Brunt-Vaisala frequency, 203, 282
Buoyancy
atmospheric vs. engineering turbulence, 199
and eddy size, 200–201
effects on diffusion, 201
moist air, 183
sensitivity of turbulence, 199
term, 178–179
Businger, J. A.
on free convection, 229
Cascade
energy, 21, 55, 116
scalar variance, 127, 365
CBL. See Convective boundary layer
Index

Diffusion, turbulent, 45
 analogy with molecular, 48
 laboratory measurements, 49
 mass, 59
 over plant canopy, 254–255
 point source, 60–62
 puff, 151–152
 Taylor solution, 79–83
 top-down, bottom-up, 252–256
 Diffusivity, molecular
 scalar constituent, 13
 thermal, 14
 Dimensional analysis, 217–218
 Buckingham Pi theorem, 217
 in dissipative range, 217–218
 in pipe flow, 218
 in surface layer, 218–231
 Direct numerical simulation (DNS), 10, 55, 151, 305
 Dissipation, viscous
 definition, 14
 entropy equation, 180
 interpretation, 102
 locally averaged, 159
 scales, 103
 structure, 157
 'Tennekes' tube model, 157
 Dissipative range
 intermittency, 156
 Kolmogorov hypotheses, 153–154
 structure, 156–159
 DNS, See Direct numerical simulation
 Drag coefficient, 210
 Eddy
 definition, 4
 diffusivity, 19, 45–48, 76–77, 84, 250–251
 diffusivity models
 direct testing, 248–249
 generalizations for scalars, 257–258
 inference from stress budgets, 249–251
 size range, 16–17
 turnover time, 16, 42
 velocity scale, 42
 visualization, 16
 Ekman
 pumping, 210–211
 solution, 208
 spiral, 208
 Energy transfer rate, interscale
 ABL, 127–128
 derivation, 138–140
 expression, 125–126
 physical mechanisms, 129–130
 as spectral transfer, 126
 Entainment
 flux, 250–260
 velocity, 260–262
 Entropy equation, specific, 176

dCentral limit theorem, 302
Chaos, 10
Characteristic function, definition, 299
Cloud droplets
 preferential concentration, 162–163
 turbulent coalescence, 162
Coherence, definition, 336
Conserved scalar
 definition, 13–14
 equation, 181–182
 flux budgets, top-down and bottom-up, 255–256
 mixing, 65
 variance equation, 91–99
 variances, top-down and bottom-up, 256
Constant-flux layer, 215–217
Constant-stress layer, 28
Convective boundary layer (CBL), 241–262
Coriolis
 forces, 193, 195
 parameter, 207
 second-moment budgets term, 196
correlation
 space-time, 338
correlation tensor
 definition, 342
 isotropic turbulence, 345–348
Corrsin number
 eddy, 148
 turbulence, 148, 361
Corrsin, S.
on computation, 20
Covariance budgets
 scalar flux, 99–100
 scalar variances, 231–232
 scaling guidelines, 94
 shear-stress, 232–233
 temperature flux, 233–234
 velocity–velocity, 100–101
 Cross covariance, definition, 334
 Cross spectrum, definition, 335
Csany, G.
 Taylor problem, 80
da Vinci, Leonardo
 on turbulence, 10
Decomposition
 mean, fluctuating, 29
 resolvable, sub-filter scale, 67
 Destruction, molecular
 scalar flux and Reynolds stress, 109–110
 scalar variance, 93, 96–98
Diffusion, molecular, 45
 enhancement by turbulence, 64
 point source, 78–79
 scalar constituent, 45–48, 59–62
 scalar flux and Reynolds stress, 109
 scalar variance, 92
Equations
ensemble-averaged motion, continuity, 56
moist atmosphere, 186
averaged, 186
ensemble averaged, 187
second moment, 188–189
Ergodicity, 34–35
Error function, 302
Eulerian description, 11
Filter
amplitude transfer function, 117
cutoff wavenumber, 118
function, 66, 117
Gaussian, 119
high-pass, 119
wave-cutoff, 118, 120
Filtering, spatial, 66
applied to equations, 67–69
in LES, 130
Flatness factor
constraint on skewness, 326
definition, 299
velocity derivative, 158
Flow distortion, probe-induced, 378–383
for conserved scalars, 381–383
two limits, 378
for velocity, 379–381
Flows, turbulent
channel, 57–58, 194, 270–271
homogeneous shear, 27
secondary, 50
steady, homogeneous, 120–127
wake, 27
Fluctuation
equations, 90–91
flow variable, 30
Fluid
incompressible, 11
Newtonian, 12
Flux
resolved, 69–70
subfilter-scale, 69–70
conservation equations, 132–134
definition, 130
measuring, 135–137
modeling, 134–135, 153
sensitivity to, 137
Fourier
coefficients, 38
component, 122
component interactions, 122
series, 38, 122
Fourier representation
stochastic scalar function of space, time, 337–338
stochastic scalar function of time, 332–336
stochastic vector functions, 341–342
Fourier-Stieltjes integral, stochastic, 333
Friction
factor, 6–7
velocity, 8, 83
Gas constant
dry air, 182
fluctuations, 183
mixture, 182
universal, 183
water vapor, 182
Gaussian
plume, 28
probability density, 302
Geostrophic
balance, 207
departure, 207
flow, 207
wind components, 207
wind shear, 210
Heat
flux, 75
transfer
conduction, 8, 197
turbulence equation, 180–181
radiation, 197
Heating, dissipative, 22
Homogeneity
horizontal, 205
local, 95–96, 204–205
Humidity, specific, 183, 186
Hydrostatic approximation, mean-motion
equations, 209
Ideal gas law, dry air, 175
Inertial subrange
applications, 151–153
definition, 42
2-dimensional turbulence, 165
energetics, extent, 145–147
history, 146–147
isotropic spectral forms, 348–349
scalar, 148
Instability, 4
Interfacial layer
as buffer, 241
entrainment, 259–262
flux Richardson number, 261
jump equations, 260
Inversion, capping, 76
Isobars, 193–195
Isotropy
definition, 313
implications
molecular destruction of covariances, 316–318
scenarios, 340–341
shear production of TKE, 316
local
concept, 319
evidence, 154–155, 320–322
hypothesis, 153, 313
in turbulence models, 326–327
Jet, nocturnal or low-level, 276
Index

Kinematic quantities, 13
Kinetic energy, mean flow budget, 103
link to turbulence, 104
Kolmogorov, A. N.
inertial subrange, 146
on local isotropy, 153, 319–320
scales, 16–17
scaling, dissipative range, 146
scaling, revised, 159–162
Kovasznay, L.
on eddy diffusivity, 248
Kurtic, 299
Kurtosis, definition, 299
Lagrangian description, 11
Laminar sublayer. See Sublayer, laminar
Large-eddy simulation (LES), 10, 20, 130–137
of ABL by Deardorff, 245
first application, 115
origin of name, 116
of SBL, 272, 285
Length, mixture, 84–85
Length scales
buoyancy, 203
integral, 332
near surface, 234–236
LES. See Large-eddy simulation
Laepmann, H.
on turbulence modeling, 107
Liquid water content, specific, 184
Logarithmic profile, 28
Log-normal model of dissipation rate, 161
variable, 161
Lumley, J. L.
on turbulence modeling, 108
Mass conservation equation
advected constituent, 13
fluid, 11
Mean-wind profile
baroclinic CBL, 247
convective ABL, 245
neutral ABL, 216, 245
SBL, 268
schematic, barotropic CBL, 246
Mixed layer
baroclinic, 246–247
barotropic, 244–246
generalized similarity, 258–259
mean momentum balance, 243
mean scalar profiles, 259
mean shear balance, 244–248
mid CBL, 241
similarity, 241–242
TKE budget, 243–244
Mixing ratio, 182
Mixing, turbulent, 62–65
Modeling, numerical averaging, 55–56
large-eddy simulation, 56
pdf, 19, 310
Reynolds averaged, 56
scale, 68–70
second-order-closure, 19
subfilter, 68–70
subgrid, 68–70
type of averaging, 19
Models, turbulence
background, 106–107
history, universality, reliability, 107–109
subfilter-scale, 132
WET, 107
Moffatt, H. K.
on 1961 Marseille meeting, 159
Moments
central, 299
cross, 301
definition, 299
joint, 301
Momentum conservation equation, fluid, 11
Monin-Obukhov similarity, 217–232
asymptotic behavior, 225–228
deviations, 228–231
dimensional analysis, 218–220
interpretation of L, 223
quasi-steadiness, local homogeneity, 224
Richardson number as alternative, 224–225
uses, 222–223
Moody chart, 5
Navier-Stokes equation, 13
Newtonian fluid, 12
Nusselt number, 9
Obukhov-Corrsin scale, 148
Pao spectrum, 151
Parameterization, definition, 308
Peclet number, eddy, 148
Physics, virtual, 59
Plume
Gaussian, 28
instantaneous vs. ensemble-averaged, 31, 61
Power spectral density
definition, 40
stochastic scalar function, 334
Prandtl number, 148
Pressure covariances
flux budgets, 104
TKE budget, 104–105
Pressure, turbulent amplitude, 106
measurement, 106
modified, 12
physics, 44–45
role, 105–106
Probability density function
definition, 298–299
evolution equation, 308–310
Index

Gaussian, 302
 joint, 300
 calculated, 306–307
Gaussian, 302–303
 observations, 306–307
 properties, 306
 observations
 velocity derivatives, 303–305
 vertical velocity, 305–306
Probability distribution function
 definition, 298
 Gaussian, 303
 joint, 300
Process, random, 298
Quadrature spectrum, definition, 335
Ramp-cliff structure, 155
Resolvable-scale variable
 definition, 120
 measurement, 377–378
Reynolds
 analogy, 10
 averaging rules, 31, 65
 convention, 297
 equations, 18
 stress, 18, 57
 stress subfilter-scale, 68
 terms, thermodynamic, 187
Reynolds number
 dissipative eddies, 17
 eddy, 147
 flow, 4, 16
 similarity, 49
 turbulence, 16, 18, 55, 57
Richardson number
 eddy, 227, 282
 flux, 203–204
 global for SBL, 285
 gradient, 203–204, 270
 turbulence, 199
Rossby number, 244
Roughness
 elements, 8
 length, 220
SBL. See Stable boundary layer
Scalar variance transfer rate, interscale
 expression, 126–127
 as spectral transfer, 127
 scale height, density, 177
Scaling
 conditional, 160
 local, 272
 local free convection, 226
 z-less, 228, 272, 281
 Scatter, model evaluations, 204
 Schmidt number, 148
 Schwartz’s inequality, 331, 336, 357
Skeewness
 definition, 299
 temperature derivative, 154
 velocity derivative, 158
 vertical velocity, 201, 305
Spatial averaging, instrumental
 scalars, 370–372
 velocity, 376–377
Spatial derivatives, measured as differences, 376
Spectra in plane, 351–356
 concept, 351
 conserved scalar, 356
 horizontal velocity, 355
 inertial range, 352
 isotropic forms, 353
 two-dimensional spectrum, 352
 vertical velocity, 353–355
Spectral density, tensor
 definition, 342
 isotropic form, 344
 joint, 350–351
Spectrum
 1-dimensional scalar function, 38–40
 3-dimensional scalar function, 40–41
 3-dimensional vector function, 41–42
 scalar
 beyond inertial subrange, 149–150
 cascade rate, schematic of, 365
 evolution equation, SBL, 366–369
 inertial-diffusive subrange, 149
 inertial subrange, 147–148
 isotropic turbulence, evolution equation, 361–365
 Obukhov-Corrsin form, 148
 one-dimensional, 339
 three-dimensional, 41, 339–341
 variance budget, schematic of, 364
 viscous-convective subrange, 149–150
 space-time, 338
 velocity
 beyond inertial subrange, 151
 inertial subrange, 146–147
 three dimensional, 42, 343
Sreenivasan, K. R.
 on local isotropy, 155
Stable boundary layer (SBL)
 contrast with CBL, 267
 eddy diffusivity profiles, 286
 equilibrium height, 282–284
 evolving, 286–287
 examples, 202, 267
 jet, nocturnal, 276
 LES, 272–273, 285
 maintenance of turbulence, 284–285
 modeling, algebraic, 271–272
 modeling equilibrium height, 288–289
 modeling, second-order, 271
 parameterization, 288
 quasi-steady, 281–286
 time histories, 269
 treating gravity waves, 278–281

© in this web service Cambridge University Press

www.cambridge.org
Stationarity, definition, 301
Steadiness, quasi, 95–96, 204–205
Strain
 normal, 64
 rate, 12
 schematic, 64
 shear, 64
Stratification
 neutral, 198
 stable and unstable, 199–200
Stress
 profile
 neutral ABL, 216
 schematic, CBL, 246
 turbulent, 18
 virtual mean, 28, 57
 viscous, 12
 wall, 6
Structure function
 definition, 152
 measuring, scalar, 372–376
 parameters, 152
Structures, coherent, 49–50
Subfilter-scale variable
 definition, 120
 measurement, 377–378
Sublayer, laminar, 8
Surface energy balance, 197–198
Surface flux
 heat, 197–198
 layer, 217
 pipe flow, 5–10
 temperature, 77
Surface layer
 as a constant-flux layer, 215–217
 definition, 241
 inactive motions, 216, 236
 turbulence length scale, 216
 velocity spectra, schematic, 216
Taylor, G. I.
 on eddy diffusivity, 83
 hypothesis, 21, 303–304
 microscale, 21
 on mixture length, 84–85
 Theorem, 81
Temperature
 equivalent potential, 185
 potential
 conservation equation, 181
 definition and convention, 179
 virtual, 183, 197
 cloud air, 184
 potential, 183
Tensors
 Cartesian concepts, 313–314
 deviatoric, 132
 isotropic determining form, 314–316, 318–319
Terrain, effects of sloping, 277–278
Thermal conductivity, 8
Thermal diffusivity, 9

Thermal energy equation, 14
Time scale
 Eulerian integral, 36, 82
 Lagrangian integral, 82
 Rotta, 250
TKE. See Turbulence kinetic energy
Transition to turbulence, 5
Transport, turbulent, 92
Triads, 129
Turbulence
 average vs. instantaneous structure, 204
 closure problem, 71, 106
 dependence on initial conditions, 10, 15
 dissipative eddies, 16–17
 effective diffusivity, 15
 free-stream boundary, 27, 29, 193
 grid, 27
 homogeneous, 27
 impact of Kolmogorov, 20–21
 isotropic, 28
 kinetic energy, r–s decomposition, 137–138
 mathematical intractability, 17–18
 mechanical, 201
 as a nonlinear system, 22
 numerical modeling, 18–20
 numerical simulation, 10–11
 observations, 10
 physical modeling, 20
 random, definition, 15
 range of scales, 16–17
 realization definition, 15
 resolvable, 116
 stably stratified
 critical state, 203
 energetics, 268–271
 stationary, 27
 steady, 27
 stochastic, definition, 15
 subfilter-scale, 120
 and surface fluxes, 5–10
 two and three dimensional, 4
 two-dimensional, 163–167
 cascade, 166
 inertial subrange, 165–166
 interscale transfer of enstrophy, 164–165
 observations, 167
 virtual properties, 15
Turbulence kinetic energy (TKE)
 budget
 mixed layer, 243
 neutral turbulence, 101–103
 resolvable scale, 123–124
 subfilter-scale, 133
 surface layer, 231
 SBL, 270
 transfer, intercomponent, 105
Turbulent flux
 budget, 89
 conserved scalar, 59
 definition, 19, 28
 heat, 75
mass, 78–83
modeling, 19
momentum, 57
need for specification, 89
temperature, 76–77

Velocity
divergence, base state, 177–178
variance, equivalence of Lagrangian and Eulerian, 81

Viscosity
dynamic, 4, 6
kinematic, 4

Vortex stretching and tilting, 14
Vorticity
equation, 13
turbulent, 43–44

Wall, law of, 28
Warhaft, Z.
on local isotropy, 155

Wavenumber
in Fourier series, 39
triads, 129

Wiener-Khintchine theorem, 334