ASTROPHYSICS OF PLANET FORMATION

The study of planet formation has been revolutionized by recent observational breakthroughs, which have allowed the detection and characterization of extrasolar planets, the imaging of protoplanetary disks, and the discovery of the Solar System's Kuiper Belt.

Written for beginning graduate students, this textbook provides a basic understanding of the astrophysical processes that shape the formation of planetary systems. It begins by describing the structure and evolution of protoplanetary disks, moves on to the formation of planetesimals, terrestrial and gas giant planets, and concludes by surveying new theoretical ideas for the early evolution of planetary systems.

Covering all phases of planet formation – from protoplanetary disks to the dynamical evolution of planetary systems – this introduction can be understood by readers with backgrounds in planetary science, and observational and theoretical astronomy. It highlights the physical principles underlying planet formation and the areas where more research and new observations are needed.

PHILIP J. ARMITAGE is a Professor in the Department of Astrophysical and Planetary Sciences at the University of Colorado, Boulder, and a Fellow of JILA. His research focuses on theoretical and computational studies of protoplanetary disks, planet formation, and black hole astrophysics. He has extensive teaching experience at the advanced undergraduate and graduate level. Cambridge University Press 978-0-521-88745-8 - Astrophysics of Planet Formation Philip J. Armitage Frontmatter <u>More information</u> Cambridge University Press 978-0-521-88745-8 - Astrophysics of Planet Formation Philip J. Armitage Frontmatter <u>More information</u>

ASTROPHYSICS OF PLANET FORMATION

PHILIP J. ARMITAGE University of Colorado, Boulder

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521887458

© P. Armitage 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Armitage, Philip J., 1971– Astrophysics of planet formation / Philip Armitage. p. cm. ISBN 978-0-521-88745-8 (hardback) 1. Planets – Origin. 2. Astrophysics. I. Title. QB603.074A76 2010 523.4 – dc22 2009036992

ISBN 978-0-521-88745-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface					
1	Obs	ervations of planetary systems	1		
	1.1	Solar System planets	2		
		1.1.1 The minimum mass Solar Nebula	4		
	1.2	Minor bodies in the Solar System	6		
	1.3	Radioactive dating of the Solar System	8		
	1.4	The snowline in the Solar Nebula	12		
	1.5	Chondritic meteorites	13		
	1.6	Extrasolar planetary systems	14		
		1.6.1 Direct imaging	15		
		1.6.2 Radial velocity searches	17		
		1.6.3 Astrometry	23		
		1.6.4 Transits	24		
		1.6.5 Gravitational microlensing	27		
	1.7	Properties of extrasolar planets	29		
	1.8	Further reading	33		
2	Prot	oplanetary disk structure	34		
	2.1	Disks in the context of star formation	34		
		2.1.1 Classification of Young Stellar Objects	36		
	2.2	Vertical structure	38		
	2.3	Radial force balance	41		
	2.4	Radial temperature profile of passive disks	42		
		2.4.1 Razor-thin disks	43		
		2.4.2 Flared disks	45		
		2.4.3 Radiative equilibrium disks	47		
		2.4.4 The Chiang–Goldreich model	50		
		2.4.5 Spectral energy distributions	50		

vi			Contents	
	2.5	Opaci	52	
		-	Opacity in the optically thin outer disk	54
		2.5.2		55
	2.6	The co	ondensation sequence	56
	2.7	Ioniza	58	
		2.7.1	Thermal ionization	59
		2.7.2	Nonthermal ionization	60
	2.8	Furthe	er reading	64
3	Prot	toplane	65	
	3.1	Obser	65	
	3.2	Surfac	68	
		3.2.1	The viscous time scale	69
		3.2.2	Solutions to the disk evolution equation	70
		3.2.3	Temperature profile of accreting disks	74
	3.3	3 Vertical structure of protoplanetary disks		76
		3.3.1	The central temperature of accreting disks	77
		3.3.2	Shakura–Sunyaev α prescription	78
		3.3.3 Vertically averaged solutions		80
	3.4	Angular momentum transport mechanisms		82
		3.4.1	The Rayleigh criterion	82
		3.4.2	The magnetorotational instability	82
		3.4.3	Disk winds and magnetic braking	87
		3.4.4	5 5	90
	3.5	Effect	95	
		3.5.1	97	
	3.6	Disk d	101	
		3.6.1	Photoevaporation	101
		3.6.2	1 1	103
	3.7	Magne	105	
	3.8		er reading	108
4	Plar		al formation	109
	4.1		lynamic drag on solid particles	110
		4.1.1	Epstein drag	110
		4.1.2	Stokes drag	111
	4.2		settling	112
		4.2.1	Single particle settling with coagulation	113
		4.2.2	Settling in the presence of turbulence	116
	4.3		l drift of solid particles	118
		4.3.1	e	121
		4.3.2	Particle concentration at pressure maxima	122

CAMBRIDGE

	Contents			
		4.3.3 Turbulent radial diffusion	123	
	4.4	Diffusion of large particles	125	
	4.5		128	
		4.5.1 Coagulation equation	131	
		4.5.2 Sticking efficiencies	132	
	4.6	Goldreich–Ward mechanism	134	
		4.6.1 Gravitational stability of a particle layer	134	
		4.6.2 Application to planetesimal formation	140	
		4.6.3 Self-excited turbulence	142	
	4.7	Routes to planetesimal formation	144	
	4.8	Further reading	145	
5	Teri	restrial planet formation	146	
	5.1	Physics of collisions	147	
		5.1.1 Gravitational focusing	147	
		5.1.2 Shear versus dispersion dominated encounters	148	
		5.1.3 Accretion versus disruption	152	
	5.2	Statistical models of planetary growth	156	
		5.2.1 Approximate treatment	157	
		5.2.2 Shear and dispersion dominated limits	159	
		5.2.3 Isolation mass	164	
	5.3	Velocity dispersion	165	
		5.3.1 Viscous stirring	166	
		5.3.2 Dynamical friction	169	
		5.3.3 Gas drag	169	
	5.4	5 1 50	171	
	5.5	1 6	176	
	5.6		178	
	5.7	Final assembly	182	
	5.8	Further reading	184	
6		nt planet formation	185	
	6.1	Core accretion	186	
		6.1.1 Core/envelope structure	191	
		6.1.2 Critical core mass	195	
		6.1.3 Growth of giant planets	198	
	6.2	Disk instability	203	
		6.2.1 Fragmentation conditions	204	
		6.2.2 Disk cooling time scale	206 210	
	6.3	1		
	6.4	Further reading	217	

viii				
7	Ear	ly evolu	218	
	7.1	Migrat	tion in gaseous disks	219
		7.1.1	Resonant torques	222
		7.1.2	Type 1 migration	226
		7.1.3	Type 2 migration	229
		7.1.4	Applications	234
	7.2	Reson	ant evolution	238
		7.2.1	Resonant capture	241
		7.2.2	Kozai resonance	244
	7.3	Migrat	tion in planetesimal disks	247
		7.3.1	Application to the outer Solar System	251
		7.3.2	The Nice Model	252
		7.3.3	Application to extrasolar planetary systems	253
	7.4	Planetary system stability		253
		7.4.1	Hill stability	255
		7.4.2	Planet–planet scattering	259
	7.5	Furthe	er reading	262
Ap	ppendix 1 P		hysical and astronomical constants	263
Ap	pendi	x 2 N	-body methods	264
Re	273			
In	281			

Preface

The study of planet formation has a long history. The idea that the Solar System formed from a rotating disk of gas and dust - the Nebula Hypothesis - dates back to the writings of Kant, Laplace, and others in the eighteenth century. A quantitative description of terrestrial planet formation was already in place by the late 1960s, when Viktor Safronov published his now classic monograph Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets, while the main elements of the core accretion theory for gas giant planet formation were developed in the early 1980s. More recently, a wealth of new observations has led to renewed interest in the problem. The most dramatic development has been the identification of extrasolar planets, first around a pulsar and subsequently in large numbers around main-sequence stars. These detections have furnished a glimpse of the Solar System's place amid an extraordinary diversity of extrasolar planetary systems. The advent of high resolution imaging of protoplanetary disks and the discovery of the Solar System's Kuiper Belt have been almost as influential in focusing theoretical attention on the initial conditions for planet formation and the role of dynamics in the early evolution of planetary systems.

My goals in writing this text are to provide a concise introduction to the classical theory of planet formation and to more recent developments spurred by new observations. Inevitably, the range of topics covered is far from comprehensive. The emphasis is firmly on the *astrophysical* aspects of planet formation, including the physics of the protoplanetary disk, the agglomeration of dust into planetesimals and planets, and the dynamical interactions between those bodies and the disk and between themselves. Planets are made of rock, ice, and gas, but the information that can be deduced from study of the chemical and geological make-up of those materials – the subject of *cosmochemistry* and much of traditional planetary science – is mostly ignored.

This book is an outgrowth of a graduate course that I teach at the University of Colorado in Boulder, for which the prerequisites are undergraduate classical Cambridge University Press 978-0-521-88745-8 - Astrophysics of Planet Formation Philip J. Armitage Frontmatter More information

х

Preface

physics and elementary mathematical methods. The primary readership is beginning graduate students, but most of the text ought to be accessible to undergraduates who have had some exposure to Newtonian mechanics and fluid dynamics. For the more sophisticated reader there is nothing here that is new, though the tone of the presentation – and in particular the emphasis on the coupling between turbulent processes in the disk and planet formation – focuses on what I consider to be important modern developments to a greater extent than older reviews. Despite recent progress one cannot disguise the fact that several critical problems in planet formation – foremost among them the nature of angular momentum transport within the protoplanetary disk and the formation mechanism of planetesimals – remain unsolved, and I have given extensive references to the technical literature to enable interested readers to explore these and other controversial topics further.

A number of colleagues have helped out in the preparation of this book. The discussion of the internal structure of the Solar System's gas giants draws heavily on the work of Tristan Guillot, who generously provided figures illustrating constraints on the core masses of Jupiter and Saturn. Keiji Ohtsuki was kind enough to provide figures showing the velocity evolution of planetesimals, while Sean Raymond prepared new figures depicting the late stages of terrestrial planet formation. My thanks also to Richard Alexander, Eric Feigelson, Dave Stevenson, Michele Trenti, Dimitri Veras, and Jared Workman, who shared their expertise on different topics and gave many of the chapters a critical reading.

Parts of the book were completed during a stay at UCLA, and I warmly thank Andrea Ghez and her colleagues in the Physics and Astronomy Department for their hospitality.