
CHAPTER 1

The Evolution of Object
Categorization and the

Challenge of Image Abstraction

Sven J. Dickinson

1.1 Introduction

In 2004, I was a guest at the Center for Machine Perception at the Czech Technical
University. During my visit, a graduate student was kind enough to show me around
Prague, including a visit to the Museum of Modern and Contemporary Art (Veletrz̆nı́
Palác). It was there that I saw the sculpture by Karel Nepras̆ entitled “Great Dialogue,” a
photograph of which appears in Figure 1.1. The instant I laid eyes on the sculpture, I rec-
ognized it as two humanoid figures seated and facing each other; when I’ve presented a
2-D image (Fig. 1.1) of the sculpture to classroom students and seminar audiences, their
recognition of the two figures was equally fast. What’s remarkable is that at the level
of local features (whether local 2-D appearance or local 3-D structure), there’s little, if
any, resemblance to the features constituting real 3-D humans or their 2-D projections.
Clearly, the local features, in terms of their specific appearance or configuration, are
irrelevant, for individually they bear no causal relation to humans. Only when such
local features are grouped, and then abstracted, do the salient parts and configuration
begin to emerge, facilitating the recognition of a previously unseen exemplar object
(in this case, a very distorted statue of a human) from a known category (humans).

The process of image (or feature) abstraction begins with the extraction of a set of
image features over which an abstraction can be computed. If the abstraction is parts-
based (providing the locality of representation required to support object recognition in
the presence of occlusion and clutter), the local features must be perceptually grouped
into collections that map to the abstract parts. For the features to be groupable, nonac-
cidental relations [152] must exist between them. Although such relations could be
appearance-based, such as color and texture affinity, appearance is seldom generic to a
category. Had the statue been painted a different color or textured with stripes or spots,
for example, recognition would have been unaffected. Clearly, we require more pow-
erful grouping cues that reflect the shape regularities that exist in our world – cues that
have long been posited by the perceptual organization community [131, 265, 42, 43].

The ability to group together shape-based local features, such as contours or re-
gions, is an important first step that has been acknowledged by shape-based object
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2 sven j. dickinson

Figure 1.1. The two shapes depicted in this statue clearly represent two humanoid figures
seated and facing each other. At the level of local features, the figures are unrecognizable.
At a more abstract level, however, the coarse parts of the figures begin to emerge, which,
along with their relations, facilitate object categorization. The local features that constitute
the abstract parts were not learned from training examples (they don’t exist on a real human),
nor were they grouped/abstracted using a prior target (human) model. This sculpture by Karel
Nepras̆, entitled “Great Dialogue,” is found in the Museum of Modern and Contemporary Art
(Veletrz̆nı́ Palác), in Prague. Image reproduced with permission. (See color plate 1.1.)

recognition researchers since the 1960s [198]. However, the grouping of causally (i.e.,
nonaccidentally) related features is necessary but not sufficient for object categoriza-
tion. Returning to Figure 1.1, the grouping of the various local features that make up the
torso of one of the figures is indeed an extremely challenging and important problem.
Having recovered and grouped a set of salient shape features, a typical recognition
system would proceed to establish one-to-one correspondence between salient image
features (in the grouping) and salient model features. But herein lies the problem. The
assumption that a one-to-one correspondence exists between local image features, such
as points, patches, contours, or even regions, constrains the model to be little more than
a template of the image.

The true correspondence between the collection of local features making up the
torso and the torso “part” on any intuitive model of a human lies not at the level of
local image features but at a more abstract level of shape features. For example, one
such abstraction of the seated human model is shown in Figure 1.2, which includes
an elliptical part corresponding to the torso.1 Under a one-to-one correspondence

1 This is not meant to imply that the abstraction process is necessarily 2-D. Many, including Biederman [27] and
Pizlo [184], would argue that such abstraction is 3-D. In that case, the ellipses in Figure 1.2 might be interpreted
as the projections of ellipsoids.
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the evolution of object categorization 3

Figure 1.2. A shape abstraction of the seated humanoid on the left in Figure 1.1. Note that
the boundaries of the shape abstraction do not map one-to-one to (or align well with) local
features (e.g., contours) in the image. (See color plate 1.2.)

assumption, the myriad local features making up the statue torso (including many long,
“salient” contours) must be abstracted before correspondence with the model torso can
be established. It is important to note that this abstraction does not live explicitly in
the image; that is, it is not simply a subset of the grouped image features. Moreover,
although such an abstraction clearly requires a model (in this case, an elliptical shape
“prior”), the model assumes no object- or scene-level knowledge.

The problem of abstraction is arguably the most important and most challenging
problem facing researchers in object categorization. This is not a new problem, but
one that was far more commonly acknowledged (but no more effectively solved) by
early categorization researchers whose models captured object shape at high levels
of abstraction. Over the last four decades, our inability to recover effectively such
abstractions from real images of real objects has led us to increasingly specific object
recognition domains that require little or no abstraction. Understanding this evolution
not only brings the abstraction problem into focus, but helps to identify the many
important contributions made by categorization researchers over the last four decades.

1.2 Avoiding the Abstraction Problem: A Historical Trend

The evolution of object recognition over the past 40 years has followed a very clear path,
as illustrated in Figure 1.3. In the 1970s, the recognition community focused on generic
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1970s 1980s 1990s 2000s 2010s

Figure 1.3. The evolution of object categorization over the past four decades (see text for
discussion).

(alternatively, prototypical, categorical, or coarse) 3-D shape representations in sup-
port of object categorization. Objects were typically modeled as constructions of 3-D
volumetric parts, such as generalized cylinders (e.g., [29, 2, 169, 45]), superquadrics
(e.g., [176, 91, 229, 107, 238, 143, 144]), or geons (e.g., [27, 72, 74, 73, 24, 191, 40]).
Figure 1.4 illustrates an example output from Brooks’ ACRONYM system, which
recognized both categories and subcategories from the constraints on the projections
of generalized cylinders and their relations. The main challenge facing these early
systems was the representational gap that existed between the low-level features that
could be reliably extracted and the abstract nature of the model components. Rather
than addressing this representational gap through the development of effective abstrac-
tion mechanisms, the community effectively eliminated the gap by bringing the images
closer to the models. This was accomplished by removing object surface markings and
structural detail, controlling lighting conditions, and reducing scene clutter. Edges in
the image could then be assumed to map directly (one-to-one) to the occluding bound-
aries (separating figure from background) and surface discontinuities of the high-order
volumetric parts making up the models.

The results left many unsatisfied, as the images and objects were often contrived
(including blocks world scenes), and the resulting systems were unable to deal with
real objects imaged under real conditions. Nevertheless, some very important principles
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the evolution of object categorization 5

(a) (b)

(c) (d)

Figure 1.4. Brooks’ ACRONYM system [45] recognized 3-D objects by searching for the
projections of their volumetric parts and relations: (a) input image; (b) 3-D models composed
of generalized cylinders; (c) extracted ribbons from extracted edges; and (d) recognized objects.
Images courtesy of Rod Brooks.

emerged in the 1970s, many of which are being rediscovered by today’s categorization
community:

1. the importance of shape (e.g., contours) in defining object categories;
2. the importance of viewpoint-invariant, 3-D shape representations;
3. the importance of symmetry and other nonaccidental relations in feature grouping;
4. the need for distributed representations composed of shareable parts and their relations

to help manage modeling complexity, to support effective indexing (the process of
selecting candidate object models that might account for the query), to support object
articulation, and to facilitate the recognition of occluded objects;

5. the need for hierarchical representations, including both part/whole hierarchies and
abstraction hierarchies;

6. the need for scalability to large databases – that is, the “detection” or target recognition
problem (as it was then known) is but a special case of the more general recognition
(from a large database) problem, and a linear search (one detector per object) of a large
database is unacceptable; and

7. the need for variable structure – that is, the number of parts, their identities, and their
attachments may vary across the exemplars belonging to a category.

The 1980s ushered in 3-D models that captured the exact shape of an ob-
ject. Such models, inspired by CAD models, were effectively 3-D templates (e.g.,
[106, 225, 116, 152, 153, 240, 60, 5, 57, 61]). Figure 1.5 illustrates an example output
from Lowe’s SCERPO system, which recognized a 3-D polyhedral template of an
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6 sven j. dickinson

(a) (b) (c)

Figure 1.5. Lowe’s SCERPO system [152] used perceptual grouping to prune hypothesized
correspondences between image contours and polyhedral edges: (a) extracted edges; (b) ex-
tracted perceptual groups; and (c) detected objects and their poses. Images courtesy of David
Lowe. (See color plate 1.5.)

object from nonaccidental groupings of features comprising its projection. Provided
that such models could be acquired for a real object (requiring considerable over-
head), the community found that it could build object recognition systems capable
of recognizing real (albeit restricted) objects – a very important development indeed.
Although object models were still viewpoint-invariant (since they were 3-D), hierar-
chical representations became less common as the models became less coarse-to-fine.
This time, the representational gap was eliminated by bringing the model closer to the
imaged object, which required the model to capture the exact geometry of the object.
Moreover, because the presence of texture and surface markings seriously affected the
search complexity of these systems, once again the objects were texture-free, so that a
salient image edge mapped to, for example, a polyhedral edge. Again, there was dis-
satisfaction, because the resulting systems were unable to recognize complex objects
with complex surface markings. Moreover, the overhead required to construct a 3-D
model, either by hand or automatically from image data, was significant.

It is important to note that although both the generations of systems just discussed
assumed a one-to-one correspondence between salient image features and model fea-
tures, there was a dramatic redefinition of the problem from category recognition to
exemplar recognition. In earlier systems, the bottom-up recovery of high-level vol-
umetric parts and their relations, forming powerful indexing structures, meant that
models could accommodate a high degree of within-class shape variation. However,
as the scope of indexing structures later retreated to individual lines, points, or small
groups thereof, their indexing ambiguity rose dramatically, and extensive verification
was essential to test an abundance of weak model hypotheses. The need for 3-D model
alignment, as a prerequisite for verification, required that models were essentially 3-D
templates that modeled the shape of an exemplar rather than a category (although some
frameworks supported the articulation of rigid parts). Still, at the expense of backing
down from the more challenging categorization problem, recognition had begun to
penetrate real industrial domains, providing real solutions to real problems.

Most object recognition systems up to this point employed 3-D models and attempted
to recognize them in 2-D images (3-D from 2-D). However, a number of researchers
(e.g., [102, 23, 213, 251, 47, 263, 75, 20]) began to study the invariant properties
of views and their application to view-based 3-D object recognition (2-D from 2-D).
Inspired by the early aspect graph work of Koenderink and van Doorn [129], a large
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the evolution of object categorization 7

(a) (b)

(c) (d)

Figure 1.6. Murase and Nayar’s appearance-based (view-based) recognition system [166]:
(a) a database of objects; (b) a dense set of views is acquired for each object; (c) the views trace
out a manifold in low-dimensional space, with each view lying on the manifold; (d) recognizing
a query object. Images reproduced from [166] with permission of the International Journal of
Computer Vision, Springer.

community of researchers began to explore the properties of aspect graphs in support
of view-based object recognition [118, 132, 185, 76, 206, 233, 74, 73, 79, 70, 77,
101, 100, 217, 230]. Although view-based methods were gaining momentum, they still
lagged behind the 3-D from 2-D methods, which were now shifting toward the use of
geometric invariants to enable recognition from larger object databases [136, 165, 94].

In the early 1990s, a number of factors led to a major paradigm shift in the recogni-
tion community, marking the decline of 3-D shape models in favor of appearance-based
recognition. Faster machines could now support the high throughput needed to accom-
modate the multitude of image templates required to model a 3-D object. Moreover, no
3-D modeling (including software and trained personnel) was required for model acqui-
sition; a mere turntable and camera would suffice. More importantly, by focusing on the
explicit pixel-based appearance of an object, the complex, error-prone problem of seg-
mentation could be avoided. For the first time, recognition systems were constructed
that could recognize arbitrarily complex objects, complete with texture and surface
markings (e.g., [128, 250, 166, 193, 142, 162, 170, 49, 32]). Figure 1.6 illustrates
an example output from the appearance-based (view-based) 3-D object recognition
system of Murase and Nayar, which used PCA and nearest-neighbor search to reduce
drastically the complexity of image correlation over a large database.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-88738-0 - Object Categorization: Computer and Human Vision Perspectives
Edited by Sven J. Dickinson, Ales Leonardis, Bernt Schiele and Michael J. Tarr
Excerpt
More information

http://www.cambridge.org/9780521887380
http://www.cambridge.org
http://www.cambridge.org


8 sven j. dickinson

(a) (b)

Figure 1.7. Learning scale-invariant parts-based models from examples (from Fergus et al.
[87]): (a) Learned motorcycle model with ellipses representing part covariances and labels
representing probability of occurrence; (b) example model detections in query images, with
colored circles representing matched part hypotheses. Images reproduced from [87] with
permission of the International Journal of Computer Vision, Springer. (See color plate 1.7.)

This time, the representational gap was eliminated by bringing the models all the way
down to the image, which yielded models that were images themselves. The resulting
systems could therefore recognize only exemplar objects, which were specific objects
that had been seen at training time. Despite a number of serious initial limitations of
this approach, including difficulties in dealing with background clutter, illumination
change, occlusion, translation, rotation, and scaling, the approach gained tremendous
popularity, and some of these obstacles were overcome [142, 49, 21, 141, 19]. But
the templates were still global, and invariance to scale and viewpoint could not be
achieved.

To cope with these problems, the current decade (2000s) has seen the appearance
model community turn to the same principles adopted by their shape-based predeces-
sors: a move from global to local representations (parts), and the use of part represen-
tations that are invariant to changes in translation, scale, image rotation, illumination,
articulation, and viewpoint (e.g., [154, 155, 261, 262, 50, 1, 53, 52, 161, 137, 130, 210]).
Whereas early systems characterized collections of such features as either overly rigid
geometric configurations or, at the opposite extreme, as unstructured “bags,” later sys-
tems (e.g., [209, 256, 51, 52, 89, 90, 82, 87, 189]) added pairwise spatial constraints,
again drawing on classical shape modeling principles from the 1970s and 1980s. For ex-
ample, Figure 1.7 illustrates the system of Fergus et al. [87], in which a scale-invariant,
parts-based object model is learned from a set of annotated training examples and is
used to detect new instances of the model in query images. Unlike the systems of the
1970s and 1980s, today’s systems are applied to images of cluttered scenes containing
complex, textured objects. Yet something may have been lost in our evolution from
shape to appearance, for today’s appearance-based recognition systems are no more
able to recognize yesterday’s line drawing abstractions than were yesterday’s systems
able to recognize today’s images of real objects.

Like the models of the 1990s, today’s models have been brought close to the
image; however, this trend is clearly reversing and starting to swing back. Unlike the
previous three decades, the representational gap has not been completely eliminated.
The scope of a local feature has expanded from a single pixel to a scale-invariant
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the evolution of object categorization 9

patch. Moreover, the patch representation encodes not the explicit pixel values but
rather a weak abstraction of these values (e.g., the gradient histograms found in SIFT
[155] or the radial distribution of mass found in the shape context of Belongie et al.
[22]). The increased level of abstraction offered by these local features supports an
increased amount of within-class variation of a category’s appearance. This proved to
be sufficient to handle some restricted categories whose exemplars do indeed share the
same local features. Such categories, including cars, faces, people, and motorcycles, can
be characterized as geometrically regular configurations of recurring, distinctive, local
features. However, such categories are likely to be the exception rather than the rule,
for local features are seldom generic to a shape category. In fact, for most categories,
it’s quite possible for two exemplars to not share a single local appearance-based
feature.

If one extrapolates this upward trajectory in (decreasing) feature specificity, one
might first predict a return to those image contours that encode the shape (occluding
boundaries or surface discontinuities) of an object – features that are far more generic
to a category than appearance.2 Yet the cost of more generic features is their increased
ambiguity, for a small fragment of contour (e.g., resulting from a curve partitioning
process that parses contours at curvature discontinuities or inflections) carries very
little category-specific information. As proposed decades earlier, the solution lies in
grouping together causally related, nearby contours into more distinctive structures.

How distinctive depends entirely on the problem. In a detection (or target recogni-
tion) task, for which model selection is provided, the need for complex, bottom-up con-
tour grouping to yield distinctive indexing structures is absent in the presence of a strong
template; rather, only minimal grouping is required to test a particular model. This is
precisely the approach taken in recent work (e.g., [167, 172, 87, 145, 88]) which builds
relational models of contour fragments in support of object detection. However, in a
more general recognition task, more ambitious domain-independent grouping, which
clearly introduces additional complexity, is essential. To help manage this complexity,
feature hierarchies have reemerged, in combination with powerful learning tools, to
yield exciting new categorization frameworks [7, 6, 179, 41, 241, 92, 171, 4, 242, 273].3

Figure 1.8 illustrates the system of Todorovic and Ahuja [242], in which a region-based
hierarchical object model is learned from training examples and used to detect new
instances of the model in query images.

But what of the more general categorization problem of recognition from a large
database? Continuing our trajectory of working with image contours, we will have to
group them into larger, more distinctive indexing structures that can effectively prune
a large database down to a few candidates.4 If we want our models to be articulation
invariant, then our indexing structures will map naturally to an object’s parts. Moreover,

2 In all fairness, appearance-based methods (based on explicit pixel values) implicitly encode both shape and
nonshape information, but cannot distinguish between the two. Hence, they are less invariant to changes in
appearance when shape is held constant.

3 In fact, Tsotsos [247, 248, 249] proved that such hierarchies are essential for managing the complexity of visual
recognition.

4 Indexing can take many forms, including hashing (e.g., [136, 93, 94]), decision trees (including kd-trees) e.g.
[118, 102, 20, 214, 215], and coarse-to-fine model hierarchies, (e.g., [45]). All assume that the query object is
unknown and that a linear search of the database is unacceptable (or intractable).
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(a) (b)

Figure 1.8. Learning hierarchical segmentation tree-based models from examples (from Todor-
ovic and Ahuja [242]): (a) learned hierarchical tree-union model (right) from examples (left),
capturing the recursive containment and spatial layout of regions making up the model; (b)
example model detections (below) in query images (above). Images reproduced from [242],
c©2008 IEEE with permission.

if we want to reduce the dimensionality of the parts to allow part sharing across
categories, then we somehow have to boost the power of our indexing structures to
offset the increased ambiguity of our parts. That means grouping parts together until
the resulting indexing structures are sufficiently powerful. Interestingly enough, this is
exactly the original framework proposed in the 1970s, meaning that if our prediction
holds, we will have come full circle. If we do revisit this paradigm, we will do so with
vastly faster machines, more powerful inference and search algorithms, and a desire
to learn representations rather than to handcraft them. Yet has this convergence of
machine learning and object categorization led to deeper representational insight?

The trend over the last four decades is clear. Rather than developing mechanisms
for image and shape abstraction that are required to bridge the representational gap
between our favorite “salient” image features and true categorical models, we have
consistently and artificially eliminated the gap, originally by moving the images up
the abstraction hierarchy (simulating the abstraction) and later by moving the models
down the abstraction hierarchy (making them less categorical). Driven by a desire to
build recognition systems that could solve real problems, the evolution of recognition
from category to exemplar was well-motivated. But the community is clearly headed
back toward categorization. Although our models are slowly creeping back up the
abstraction hierarchy, image features are still tightly coupled to model features, and the
critical problem of abstraction continues to receive little attention. Until this important
problem is addressed, progress in more general categorization seems unlikely.

1.3 The Abstraction of Shape

In the 1970s, there was no shortage of abstract shape representations. For example,
Binford’s generalized cylinder (GC) [29] (see Fig. 1.4) was a powerful, symmetry-based
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