The acute inflammatory response is the body’s first system of alarm signals that are directed toward containment and elimination of microbial invaders. Uncontrolled inflammation has emerged as a pathophysiologic basis for many widely occurring diseases in the general population that were not initially known to be linked to the inflammatory response, including cardiovascular disease, asthma, arthritis, and cancer. To better manage treatment, diagnosis, and prevention of these wide-ranging diseases, multidisciplinary research efforts are under way in both academic and industry settings. The purpose of this book is to provide an introduction to the cell types, chemical mediators, and general mechanisms of the host’s first response to invasion. World-class experts from institutions around the world have written chapters for this introductory text. The text is presented as an introductory springboard for graduate students, postdoctoral fellows, medical scientists, and researchers from other disciplines who wish to gain an appreciation and working knowledge of current cellular and molecular mechanisms fundamental to inflammation.

Charles N. Serhan, PhD, is the Director of the Center for Experimental Therapeutics and Reperfusion Injury at Brigham and Women’s Hospital and the Simon Gelman Professor of Anesthesia (Biochemistry and Molecular Pharmacology) at Harvard Medical School, Boston, Massachusetts. He is one of the world’s top researchers on the mechanisms and mediators of acute inflammation and its resolution.

Peter A. Ward, MD, is Stobbe Professor of Pathology at the University of Michigan Medical School, Ann Arbor, Michigan. Dr. Ward is past president of the United States and Canadian Academy of Pathology, as well as a number of other scientific societies. He is a world leading authority on sepsis and the impact of inflammation in human disease.

Derek W. Gilroy, PhD, is a Wellcome Trust Senior Fellow in the Centre for Clinical Pharmacology, University College, London, United Kingdom. He has received the Bayer Aspirin Prize and Novartis Prize. He is a world leader in resolution mechanisms in inflammation and the immunopharmacology of anti-inflammatory therapeutics.
FUNDAMENTALS OF INFLAMMATION

Edited by

CHARLES N. SERHAN
Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts

PETER A. WARD
University of Michigan Medical School, Ann Arbor, Michigan

DEREK W. GILROY
University College, London, United Kingdom
CONTENTS

Contributors
Preface page ix

PART I. THE INFLAMMATORY RESPONSE – AN OVERVIEW

1 Acute and Chronic Inflammation
 Peter A. Ward 1

2 Resolution of Acute Inflammation and Wound Healing
 Derek W. Gilroy 17

3 Links between Innate and Adaptive Immunity
 Christopher L. Karp 28

PART II. INDIVIDUAL CELL TYPES

4A Neutrophils I
 Jose U. Scher, Steven B. Abramson, and Michael H. Pillinger 39

4B Neutrophils II
 Marco A. Cassatella 49

5 Mast Cells as Sentinels of Inflammation
 Joshua A. Boyce 65

6 Basophils
 Jonathan Arm and David Sloane 74

7 Eosinophils
 Sophie Fillon, Steven J. Ackerman, and Glenn T. Furuta 86

8 Macrophages
 Sarah Fox and Adriano G. Rossi 96

9 Lymphocytes
 Tracy Hussell, Mary Cavanagh, Erika Wissinger, and Emily G. Findlay 107

10 Fibroblasts and Stromal Cells
 Andrew Filer and Christopher D. Buckley 126

11 Neutrophil–Endothelial Cell Interactions
 Janos G. Filep and Sean P. Colgan 141
PART III. CHEMICAL MEDIATORS

12 Lipid Mediators in Acute Inflammation and Resolution: Eicosanoids, PAF, Resolvins, and Protectins
Charles N. Serhan and Jesper Z. Hæggström

13 Cytokines and Chemokines in Inflammation
Dennis M. Lindell and Nicholas W. Lukacs

14 Adenosine Receptors: Therapeutic Aspects for Inflammatory and Immune Diseases
György Haskó and Bruce Cronstein

15 Leukocyte Generation of Reactive Oxygen Species
William M. Nauseef

16 Cell Adhesion Molecules
Lucy V. Norling, Giovanna Leoni, Dianne Cooper, and Mauro Perretti

PART IV. IMMUNOPHARMACOLOGY

17 Mediators and Mechanisms of Inflammatory Pain
Tony L. Yaksh

18 Nonsteroidal Anti-Inflammatory Drugs
Samir S. Ayoub and Roderick Flower

19 Cytokines and Chemokines in Inflammation and Cancer
Thorsten Hagemann and Toby Lawrence

PART V. INFLAMMATORY DISEASES/HISTOLOGY

20 Lung
Bruce D. Levy

21 Neural Inflammation, Alzheimer’s Disease, and Stroke
Andrew P. Lieberman and Constance D’Amato

22 Rheumatoid Arthritis/SLE
Karim Raza and Caroline Gordon

23 Gastrointestinal Inflammation and Ulceration: Mediators of Induction and Resolution
Linda Vong, Paul L. Beck, and John L. Wallace

24 Inflammatory Skin Diseases
Gayathri K. Perera and Frank O. Nestle

25 Kidney Glomerulonephritis and Renal Ischemia
Jeremy S. Duffield and Joel M. Henderson

26 Inflammation in Cardiovascular Diseases
Kenneth K. Wu

PART VI. ANIMAL MODELS OF INFLAMMATION

27 Models of Acute Inflammation – Air-Pouch, Peritonitis, and Ischemia-Reperfusion
André L.F. Sampaio, Neil Dafton, and Mauro Perretti

28A Experimental Models of Glomerulonephritis
Aidan Ryan, Denise M. Sadlier, and Catherine Godson
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28B</td>
<td>Glomerulonephritis and Ischemia Reperfusion Injury</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>Jagdeep Obhrai and Jeremy S. Duffield</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Asthma</td>
<td>376</td>
</tr>
<tr>
<td></td>
<td>Bruce D. Levy</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Animal Models of Rheumatoid Arthritis</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td>H.B. Patel, B. Dawson, F. Humby, M. Blades, C. Pitzalis, M. Burnet,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and M. Seed</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Ocular Inflammation Models</td>
<td>413</td>
</tr>
<tr>
<td></td>
<td>Karsten Gronert</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Atherosclerosis in Experimental Animal Models</td>
<td>427</td>
</tr>
<tr>
<td></td>
<td>Aksam Merched and Lawrence Chan</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Oral Inflammation and Periodontitis</td>
<td>433</td>
</tr>
<tr>
<td></td>
<td>Alpdogan Kantarci, Hatice Hasturk, and Thomas E. Van Dyke</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Pathogens and Inflammation</td>
<td>448</td>
</tr>
<tr>
<td></td>
<td>Julio Aliberti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>457</td>
</tr>
</tbody>
</table>
CONTRIBUTORS

Steven B. Abramson
Department of Rheumatology
New York University Langone Medical Center
New York Harbor Veterans Affairs Health Care System
New York, New York

Steven J. Ackerman
Department of Biochemistry and Molecular Genetics
Department of Medicine
University of Illinois, Chicago
Chicago, Illinois

Julio Aliberti
Division of Molecular Immunology
Cincinnati Children's Hospital Medical Center
University of Cincinnati College of Medicine
Cincinnati, Ohio

Jonathan Arm
Division of Rheumatology, Immunology and Allergy
Brigham and Women's Hospital
Boston, Massachusetts

Samir S. Ayoub
Biochemical Pharmacology
The William Harvey Research Institute
Barts and the London School of Medicine and Dentistry
Queen Mary College
University of London
London, United Kingdom

Paul L. Beck
Inflammation Research Network and Gastrointestinal Research Group
Faculty of Medicine

M. Blades
William Harvey Research Institute
Barts and the London School of Medicine and Dentistry
Queen Mary College
University of London
Charterhouse Square
London, United Kingdom

Joshua A. Boyce
Harvard Medical School
Allergy and Inflammation Research Division of Rheumatology, Immunology and Allergy
Brigham and Women's Hospital
Boston, Massachusetts

Christopher D. Buckley
Rheumatology Research Group
School of Immunity and Infection
Medical Research Council Centre for Immune Regulation
College of Medical and Dental Sciences
University of Birmingham
Edgbaston, Birmingham
United Kingdom

M. Burnet
Synovo GmbH
Düsseldorf
Germany

Marco A. Cassatella
Department of Pathology
Division of General Pathology
School of Medicine
University of Verona
Verona, Italy

Mary Cavanagh
Imperial College London
Leucocyte Biology Section
National Heart and Lung Institute
London, United Kingdom

Lawrence Chan
Departments of Medicine and Molecular & Cellular Biology
Baylor College of Medicine
Houston, Texas

Sean P. Colgan
Mucosal Inflammation Program
University of Colorado Health Sciences Center
Denver, Colorado

Dianne Cooper
William Harvey Research Institute
Barts and the London School of Medicine and Dentistry
London, United Kingdom

Bruce Cronstein
Department of Medicine
New York University School of Medicine
New York, New York

Constance D'Amato
Department of Pathology
University of Michigan Medical School
Ann Arbor, Michigan

B. Dawson
BioNet Ltd.
Cheviot
Medstead
Alton, Hampshire
United Kingdom
<table>
<thead>
<tr>
<th>Contributors</th>
<th>University/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruce D. Levy</td>
<td>Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts</td>
</tr>
<tr>
<td>Andrew P. Lieberman</td>
<td>Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan</td>
</tr>
<tr>
<td>Dennis M. Lindell</td>
<td>Assistant Professor, Department of Immunology, University of Washington Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington</td>
</tr>
<tr>
<td>Nicholas W. Lukacs</td>
<td>Professor of Pathology, Director, Molecular and Cellular Pathology Graduate Program, Assistant Dean for Research Faculty, Ann Arbor, Michigan</td>
</tr>
<tr>
<td>Aksam Merched</td>
<td>Departments of Medicine and Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas</td>
</tr>
<tr>
<td>William M. Nauseef</td>
<td>Department of Internal Medicine – Infectious Diseases, The University of Iowa Health Care, Iowa City, Iowa</td>
</tr>
<tr>
<td>Frank O. Nestle</td>
<td>Mary Dunhill Chair of Cutaneous Medicine and Immunotherapy, Division of Genetics and Molecular Medicine, St Johns Institute of Dermatology, King's College London School of Medicine, Guy's Hospital, London, United Kingdom</td>
</tr>
<tr>
<td>Lucy V. Norling</td>
<td>William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom</td>
</tr>
<tr>
<td>Jagdeep Ohbrai</td>
<td>Nephrology and Hypertension</td>
</tr>
<tr>
<td>H.B. Patel</td>
<td>Section of Transplant Medicine and Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon</td>
</tr>
<tr>
<td>Gayathri K. Perera</td>
<td>Clinical Training Research Fellow, Medical Research Council Cutaneous Medicine and Immunotherapy Unit, St John's Institute of Dermatology, Department of Medical and Molecular Genetics, King's College London School of Medicine, London, United Kingdom</td>
</tr>
<tr>
<td>Mauro Perretti</td>
<td>William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom</td>
</tr>
<tr>
<td>Michael H. Pillinger</td>
<td>Department of Rheumatology, New York University Langone Medical Center, New York Harbor Veterans Affairs Health Care System, New York, New York</td>
</tr>
<tr>
<td>C. Pitzalis</td>
<td>William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary College University of London Charterhouse Square, London, United Kingdom</td>
</tr>
<tr>
<td>Karim Raza</td>
<td>Division of Immunity and Infection, University of Birmingham Edgbaston, Birmingham, United Kingdom</td>
</tr>
<tr>
<td>Adriano G. Rossi</td>
<td>Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, Scotland</td>
</tr>
<tr>
<td>Aidan Ryan</td>
<td>Diabetes Research Centre, Conway Institute and School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland</td>
</tr>
<tr>
<td>Denise M. Sadlier</td>
<td>Diabetes Research Centre, Conway Institute and School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland</td>
</tr>
<tr>
<td>André L. F. Sampaio</td>
<td>The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom</td>
</tr>
<tr>
<td>Jose U. Scher</td>
<td>Department of Rheumatology, New York University Langone Medical Center, New York Harbor Veterans Affairs Health Care System, New York, New York</td>
</tr>
<tr>
<td>M. Seed</td>
<td>William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary College University of London Charterhouse Square, London, United Kingdom</td>
</tr>
<tr>
<td>Charles N. Serhan</td>
<td>Director, Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts</td>
</tr>
<tr>
<td>David Sloane</td>
<td>Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts</td>
</tr>
<tr>
<td>Thomas E. Van Dyke</td>
<td>Goldman School of Dental Medicine, Department of Periodontology and Oral Biology, Boston University, Boston, Massachusetts</td>
</tr>
</tbody>
</table>
Contributors

Linda Vong
Farncombe Family Digestive Health Research Institute
McMaster University
Hamilton, Ontario
Canada

John L. Wallace
Director
Farncombe Family Digestive Health Research Institute
McMaster University
Hamilton, Ontario
Canada

Peter A. Ward
The University of Michigan Medical School
Ann Arbor, Michigan

Erika Wissinger
Imperial College London
Leucocyte Biology Section
National Heart and Lung Institute
London, United Kingdom

Kenneth K. Wu
National Health Research Institute
Zhunan, Miaoli

Taiwan
University of Texas Health Science Center
Houston, Texas

Tony L. Yaksh
Department of Anesthesiology
University of California – San Diego
San Diego, California
The acute inflammatory response is the body’s first system of alarm signals that are directed toward containment and elimination of microbial invaders. Uncontrolled inflammation has emerged as a pathophysiologic basis to many of the widely occurring diseases in the general population that were not initially known to be linked to events in the inflammatory response. These include cardiovascular diseases and neurodegenerative diseases (including Alzheimer’s disease), and it has now become apparent that inflammation is an important component of cancer progression and the persistence of neuropathic pain. These are diseases that cross many disciplines. To better manage treatment, diagnosis, and prevention of diseases, multidisciplinary research efforts are under way in both academic and industry settings. Since knowledge of the acute inflammatory response in itself spans many disciplines, the editors’ mission is to provide in this textbook an introduction to the cell types, chemical mediators, and general mechanisms that are involved in this primordial first response of the host to invasion. It is also now clear that the termination or the resolution of the acute inflammatory response is an active process, which is pivotal and is the outcome of the acute response. As an endogenous programmed response, the terrain of resolution holds many new possibilities for treatment and prevention of uncontrolled inflammation in a wide range of diseases.

World-class experts from many different universities and fields have written the chapters of this introductory textbook. The main sections of this book are focused on the cell types, processes, and molecular events that constitute the acute inflammatory response as we know it today. They cross the biomedical disciplines of hematology, infectious disease, pulmonary medicine, gastroenterology, oral medicine and dentistry, biochemistry, immunology, immunopharmacology, and general pathology. Given the need to gain a more complete understanding of the acute inflammatory response and its resolution, the scope of this text is presented as an introductory springboard intended for graduate students, postdoctoral Fellows, medical scientists, and senior researchers from other disciplines who wish to gain an appreciation and working knowledge of the current cellular and molecular mechanisms of the effector immune system that are fundamental in inflammation.

Part I of this text is devoted to examining acute inflammation, chronic inflammation, wound healing, and resolution, with an emphasis on current concepts in molecular and cellular events and their relevance to health and disease. The first three chapters in Part I thus provide a general view of the terrain and cellular players in inflammation.

Part II of this text brings into focus the individual cell types important in acute and chronic inflammation, their cellular and molecular biology, and, importantly, an introduction of their role in disease processes. Attention is also directed toward the importance of cell-cell interactions in the acute inflammatory response and our current understanding of the key interface between vascular, blood-borne cell types and their relation to interstitial events within inflamed tissues.

Part III stresses the importance of endogenous chemical mediators and local mediators in this process. In this regard, an update is provided on the important role of lipid-derived mediators and protein-derived mediators, including chemokines and cytokines, as well as nucleotide mediators such as adenosine and oxygen-derived reactive oxygen species. The importance of surface adhesion molecules in these processes is also stressed. The role and molecular mechanisms of each of these systems as well as their contributions to host defense is presented in view of their physiology and pathobiology in inflammation.

Since there is considerable interest in understanding the endogenous control mechanisms, as well as
new therapeutic approaches to control inflammation in disease. Part IV of this text is devoted to an introduction to immunopharmacology, with a view of current mediators and mechanisms involved in inflammatory pain, currently used nonsteroidal anti-inflammatory drugs, and the importance of cytokines in our current appreciation of the interface between cancer and inflammation.

Part V brings us to one of the unique features of this introductory textbooks. Each of these chapters focuses on the tissue face or histology of inflammation as viewed in human diseases that are characterized by excessive inflammation. The chapters in this part are short and include histology and case reports. This part aims to discuss clinician scientists’ and academic pathologists’ views about inflammation in relation to widely occurring diseases. The goal is to give readers a picture of inflamed tissues and disease processes that we need to address as researchers to develop better approaches for prevention and treatment via new knowledge and innovative research of these diseases. Part V includes examples from airway inflammation, neural inflammation, sepsis, gastrointestinal diseases, and skin diseases characterized by inflammation, as well as kidney and cardiovascular diseases.

Part VI presents current and widely used animal models that are particularly useful in understanding experimental approaches to study inflammation. This part includes chapters with an emphasis on methodological approaches to address tissue injury and reperfusion of tissues, as these events can be viewed as rapid local acute inflammatory responses in vivo. Chapters are also included that evaluate current asthma, arthritis, ocular, atherosclerosis, and oral inflammation. Chapters in this part include the host’s response to pathogens as a classic approach to gain an in-depth appreciation of the cellular and molecular events that have evolved in concert with the microbial world and their dynamic interplay in inflammation.

Each of the chapters is presented as an introduction by experts who are involved in cutting-edge research in their area of expertise. The aim of the editors is to provide a springboard for new investigators and research centers currently devoted to cutting-edge research in these areas. It exposes the reader to the exciting and fascinating cellular and molecular events that are involved in acute inflammation, chronic inflammation, their termination, and our quest for precise pharmacologic control in these life-sparing processes.

Experts worldwide have contributed concise chapters to launch this textbook for students new to this field. The text should be of interest to both students and investigators in academic and industrial settings. The editors trust that the reader will share our enthusiasm and continued excitement for studying the cellular and molecular events in this first response of the human body to invasion, injury, and tissue damage from within the area of inflammation research.

The Editors