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hydrogen bond acceptors, 41

hydrogen bond contour map, 261

hydrogen bond donors, 41

IFPSC. See Industrial Fluid Properties

Simulation Collective

immucillins, transition-stage analog design

for, 226–230

achiral, 242

acyclic, 241–242

DATMe, 241–242

BIEs and, 238–239

bovine PNP and, 226, 227

crystal structures in, 227–229

inhibition of, 227

clinical trials with, 240

DADMe, 232–234

human PNP and, 232, 234

pharmacological applications of,

239–241

synthesis of, 232–233

in vivo studies of, 241

dissociation constants in, 227, 236, 237,

239

enantiomers of, 234–237

human PNP inhibition by, 231

DADMe immucillins and, 232–234

pharmacological applications of,

239–241

protein dynamics with, 229–230

stoichiometry of, 227

synthesis of, 226–227

in vivo studies on, 239–240

for human T cells, 239–240

for mouse T cells, 240

indinavir, 87

indoles, 204

Industrial Fluid Properties Simulation

Collective (IFPSC), 79

inosine arsenolysis interpretation, 223–224,

226, 230, 238

computational modeling for, 225

intestinal absorption, in ADME models,

168–169

classification regression tree, 168

computational models in, 169

descriptors in, 168

intramolecular hydrogen bonds in,

168–169

PAMPA permeabilities and, 169

Invirase. See saquinavir hard gel

ionization identification, in pharmacore

methods, 140

isothermal calorimetry (ITC), for SBDD,

61

Jarzynski’s relationship, 67–68

BAR in, 68

MBAR in, 68

WHAM in, 68

JNK3 proteins, 108–113

aminopyrimidines, 109–110

compound classes in, 109

oximes, 110–111

p38 inhibitors, 110

public structures in, 108–109

pyrazol placement in, 111–113

with SAMPL challenge, 105

Journal of Information and Modeling, 151,

153

Kaletra. See lopinavir-ritonavir

KIEs. See kinetic isotope effects
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kinetic isotope effects (KIEs), 217–220

in bovine PNP, 222–223

inosine arsenolysis interpretation and,

223–224, 226, 230, 238

V/K KIEs and, 223

computational modeling for, 219–220

features of, 218

inhibitor design approach to, 220

for inosine arsenolysis interpretation,

223–224, 226, 230, 238

as intrinsic, 219

kinetic mechanisms, for PNP drug design,

220–221

laboratory information management

system (LIMS), 33

fragment X-ray screening and, 34–35

LBDD. See ligand-based drug design

lead generation, 1–5

BOMB, 1, 2–3

core binding sites, 2

docking, 3–4

protein hosts, 2–3

results, 3

scoring function, 3

substituent library, 2

GLIDE program, 1

filtering, 4

virtual screening, 3, 4–5

HIV-RT, 1

virtual screening, 3–4

docking, 3–4

GLIDE program, 3, 4–5

NNRTIs, 3–4

ZINC database, 4

lead optimization, 7–12

complex modeling, 7

conversions, 7

FEP calculations, 7–11

azines as NNRTIs, 8

heterocycle scans, 8–10

in HCV drug design, 211

macrocyclization approach to,

212–213

heterocycle scans, 8–10

linker refinement, 11

logistics, 11–12

molecular design calculations, 7–8

FEP, 7–11

protocols, 12

small group scans, 10–11

BOMB, 10

Lennard-Jones parameters, for SBDD, 69

Lexiva. See fosamprenavir

libraries. See combinatorial libraries, for

SBDD; fragment libraries

LIE calculations. See linear interaction

energy calculations

ligand binding affinity, 184–185, 187

BACE inhibitors and, 184–186

with FEP, 184

LIE calculations for, 184

ligand binding calculations, for SBDD,

70–77

absolute free energies and, 73–74

MM-PBSA as, 70–72

computational costs of, 70

MSE values for, 70–71

positive/negative partitioning in, 71

scores for, 71

ligand preparation, in pharmacore

methods, 140–141

docking and, 140

ionization identification for, 140

with MCMM, 140

with MMFF, 140

model development in, 140

with OPLS, 140

sampling methods for, 140

tautomerization in, 140

ligand-based drug design (LBDD), 120

QSAR methods for, 120

quantum mechanics and, 131

with QSAR, 131–132

ligand-directed methods, of NMR, 47–50

advantages of, 47

disadvantages of, 47

ligands, in drug discovery and optimization

design for, 1

in FBLD, 44

NMR and, 45–46

in fragment libraries, efficiency of, 31

quantum mechanics and, 123–125

SAR optimization and, 36

LIGANDSCOUT model, 144–145

LIMS. See laboratory information

management system

linear interaction energy (LIE) calculations,

184

linear scaling, 130–131

MOZYME program for, 130

technology development for, 130–131

with water molecules, 130

Lipinski’s rules, 31

lopinavir-ritonavir, 87

LUDI interaction map, 144

mammalian proteins, crystallization of,

17

mapping. See also surface mapping

of pharmacore features, 141–142

feature dictionary for, 141

fragment dictionary for, 141–142

of interaction sites, 141

of ionic groups, 141

Martin, Yvonne, 138

matched molecular pairs analysis, 167

Maybridge HitFinder library, 4

anticonvulsive models and, 161

MBAR. See multistate Bennett Acceptance

Ratio

MCMM. See Monte Carlo Multiple Model

Merck Molecular Force Field (MMFF), 140

metabolism, in ADME models, 172–173

aromatic hydroxylation extraction and,

172

cytochrome analysis and, 173

GLUE docking program for, 173

MetaSite program for, 173

QSAR models, 173

quantum mechanics and, 172

MetaSite program, 173

Mining Minima method, 66

MMFF. See Merck Molecular Force Field

MM-PBSA. See Molecular Mechanics with

Poisson Boltzmann and Surface

Area

molecular design calculations, 7–11

molecular dynamic simulations, for GPCRs,

252–253

bilayer and solvent models

explicit, 252–253

implicit, 253

model building for, 253

Molecular Mechanics with Poisson

Boltzmann and Surface Area

(MM-PBSA), 64–65

bound/unbound stimulation and, 64–65

coordinate sampling in, 64

in drug discovery, 71–72

dynamic trajectory analysis in, 65

entropic costs with, 65

gas-phase potential energies in, 64

as ligand binding calculation, 70–72

computational costs of, 70

MSE values for, 70–71

solute entropy change in, 64

solvation energy term in, 64–65

structure generation in, 64

molecular quantum similarity, 133

molecular replacement, 20

Monte Carlo Multiple Model (MCMM),

140

MOZYME program, 130

multiple intermediates, as SBDD

methodology, 66–67

double-wide sampling in, 67

thermodynamic integration in, 67

curvature from, 67

slow growth simulation in, 67

Zwanzig relationship expansion in,

67

multistate Bennett Acceptance Ratio

(MBAR), 68

NACs. See near-attack conformers

near-attack conformers (NACs), 216

neutrophil elastase inhibitors, 73

nevirapin, 87

NNRTIs

FEP calculations, 8

virtual screening, 3–4

NOEs. See nuclear Overhauser effects

NOESY. See nuclear Overhauser effect

spectroscopy

Norvir. See ritonavir

nuclear magnetic resonance (NMR), with

FBLD, 41–50, 55

applications of, 50–55

fragment fusion in, 51

fragment linking in, 51–52

variation and elaboration in, 53–55

competitive binding methods of, 49–50

diffusion-based methods of, 48–49

for HIV-1 protease, 88–89

ligand binding in, 45–46

ligand-directed methods of, 47–50

advantages of, 47

disadvantages of, 47

quantum mechanics in, 123–125

CSP in, 123–124
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DFT and, 124

NOE in, 123

screening methods for, 123

relaxation-based methods of, 48–49

saturation transfer difference methods of,

47

with spectroscopy, 47

surface mapping and, 27–28

target-directed methods of, 45–47

chemical shift perturbation in, 46

ligand binding in, 45–46

WaterLOGSY method in, 47–48

nuclear Overhauser effect spectroscopy

(NOESY), 92

nuclear Overhauser effects (NOEs), 48–49,

123

OPLS. See Optimized Potential for Liquid

Simulation

Optimized Potential for Liquid Simulation

(OPLS), 140

PAHs. See polycyclic aromatic

hydrocarbons

PAMPA. See parallel artificial membrane

permeability assay

parallel artificial membrane permeability

assay (PAMPA), 169

partition function computation, 65–66

Mining Minima method, 66

mode integration in, 66

Patchett, Arthur, 165

Pauling, Linus, 215

PDB file. See Protein Data Bank (PDB) file

Pearlman, David, 72

P-glycoprotein effluxes, in ADME models,

170–171

BBB penetration and, 170–171

pharmacores for, 170

QSAR models for, 170

3D-QSAR for, 170

GRIND descriptors in, 170

TOPS-MODE descriptors in, 170

pharmacore methods, 137–148

active analog approach in, 137

ALADDIN, 139

APEX-3D, 139

automated perception, from ligand

structures, 139–140

CATALYST, 138–139

CAVEAT, 139

CHEM-X, 139

common identification for, 142

with DISCO, 142

DANTE, 139

definition of, 137

DISCO, 138

ensemble distance geometry, 138

evolution of, 137–139

excluded volumes in, 145

crystallographic receptor structure as,

145

inactive structures and, 145

shrink-wrap method for, 145

fingerprints, 146

with CHEM-X software, 146

creation of, 146

with 3D database screening, 146

for triplet sets, 146

GALAHAD, 139

GASP, 138–139

HIPHOP, 138–139

features of, 138

history of, 137–139

ligand preparation in, 140–141

docking and, 140

ionization identification for, 140

with MCMM, 140

with MMFF, 140

model development in, 140

with OPLS, 140

sampling methods for, 140

tautomerization in, 140

manual construction for, 139

with Seeman model, 139

mapping features for, 141–142

feature dictionary for, 141

fragment dictionary for, 141–142

of interaction sites, 141

of ionic groups, 141

model development for, 139

for P-glycoprotein effluxes, 170

receptor-based, 144–145

development of, 144

docking in, 144

with LIGANDSCOUT model, 144–145

with LUDI interaction map, 144

SCAMPI, 139

scoring of, 143–144

with APEX-3D, 144

with CATALYST, 143, 144

with DANTE, 143

with HIPHOP, 143, 144

with PHASE method, 143, 144

with SCAMPI, 144

3D chemical features in, 137

3D database screening in, 146–148

automated perception in, 147

hits in, 146

information returns with, 148

partial matching in, 147

as point-based, 147

precomputed conformers in, 146

torsion angles in, 137–138

PHASE method, pharmacore scoring by,

143, 144

phasing, in x-ray crystallography, 20–21

electron density map for, 20, 21–22

molecular replacement and, 20

structure determination from, 20–21

for protein models, 21

waves and, 20

phenyl diacid compounds, 258, 262

plasma protein binding, 171–172

PNP. See purine nucleoside phosphorylase

(PNP), drug design for

point charge models, 127–128

polycyclic aromatic hydrocarbons (PAHs),

154

polycyclic heterocycle scans, 9

predictive tests, 76

Prezista. See darunavir

protease dimer interfaces, 94

protein(s)

computer-aided drug design with, 182,

183

geometry optimization for, 183

protonation state determination with,

182–183

configuration integrals for, 99

crystallization of, 17

cloned, 17

docking and, 99

homologous, 17

mammalian, 17

refinement data for, 26

truncation for, 17

JNK3, 108–113

aminopyrimidines, 109–110

compound classes in, 109

oximes, 110–111

p38 inhibitors, 110

public structures in, 108–109

pyrazole placement in, 111–113

with SAMPL challenge, 105

phasing and, 21

quantum mechanics and, structure

modeling of, 125–127

AMBER force fields in, 126

geometry validation in, 125

native discrimination in, 126–127

semiempirical geometry

approximations in, 125–126

protein configuration integrals, 99

Protein Data Bank (PDB) file, 3

in SGX FAST, 33

p38, SBDD for, 197–206

DFG-out binding pocket and, 201–202

access to, 201–202

five-membered heterocyclic core,

205–206

trisubstituted imidazole, 205

fused heterocyclics and, 199–201

indoles and, 204

with pyrazolopyrimidines, 202

with pyrimidines, 197–199

with thiazoles, 202–204

with triazines, 197–199

purine nucleoside phosphorylase (PNP),

drug design for, 220–239. See also

immucillins, transition-stage

analog design for

binding isotope effects and, 238–239, 240

bovine, transition-state structure of,

221–226

immucillins and, 226, 227

KIEs and, 222–223

labeled substrate synthesis in, 221–222

V/K KIEs and, 223

human, transition-state structure of,

230–234

crystal structure of, 234

features of, 230–231

immucillin inhibition of, 231

immucillins and, 226–230

achiral, 242

acyclic, 241–242

BIEs and, 238–239

bovine PNP and, 226, 227

clinical trials with, 240

DADMe, 232–234
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purine nucleoside phosphorylase (cont.)

dissociation constants in, 227, 236, 237,

239

enantiomers of, 234–237

human PNP inhibition by, 231

pharmacological applications of,

239–241

protein dynamics with, 229–230

stoichiometry of, 227

synthesis of, 226–227

in vivo studies on, 239–240

kinetic mechanisms for, 220–221

mechanistic implications of, 234–239

enantiomers as, 234–237

transition-state discrimination as,

234

remote interactions for, 237–238

third-generation, 241–242

pyrazolopyrimidines, 202

pyrimidines, 197–199

pyrazolopyrimidines, 202

QIKPROP, 5–7

required input, 5

submission to, 5–6

QSAR. See quantitative structure/activity

relationship

QSM. See quantum similarity measure

QTMS. See quantum topological molecular

similarity

quantitative structure/activity relationship

(QSAR). See also quantitative

structure/activity relationship

(QSAR) models

in drug discovery, 151–162

applicability domains in, 154–155

combinatorial criteria for, 155–156

criticism of, 151–152

development of, 151

Hansch approach to, 152

mechanistic models for, 154

methodologies for, 152–153

model validation in, 153–154

modern data sets in, 152

multiple descriptors in, 152–153

PAHs and, 154

target properties for, 153

LBDD and, 120, 131–132

models for, 157

acceptability criteria for, 155–156

for AmpC �-lactamase inhibitors, 161

for anticancer agents, 161

for anticonvulsive compounds,

159–161

applicability domains in, 154–155

consensus prediction in, 156–159

future research for, 161–162

good practices in, 156–159

mechanistic, 154

predictive workflow, 159

statistical figures of merit for, 156–157

toxicity results for, 158

validation of, 153–154

virtual screening for, 159

quantum mechanics and, 131–132

3D model, 131–132

spectroscopic, 132

quantitative structure/activity relationship

(QSAR) models, 157

acceptability criteria for, 155–156

for AmpC �-lactamase inhibitors, 161

classification of, 161

for anticancer agents, 161

for anticonvulsive compounds, 159–161

Maybridge HitFinder library and, 161

applicability domains in, 154–155

confidence index for, 155

definition of, 155

consensus prediction in, 156–159

future research for, 161–162

good practices in, 156–159

mechanistic, 154

for metabolism, in ADME models, 173

for P-glycoprotein effluxes, 170

predictive workflow, 159

for lead optimization, 159–161

statistical figures of merit for, 156–157

toxicity results for, 158

validation of, 153–154

virtual screening for, 159

quantum mechanics, in SBDD, 120–131,

133. See also electrostatic potential

(ESP) maps

catalysis and, 128

CoMFA method in, 132

disadvantages in, 133

CoMSIA method in, 132

ESP maps and, 127–131

relative proton potential and, 127–131

interaction energy decomposition in, 131

LBDD and, 131

with QSAR, 131–132

linear scaling in, 130–131

MOZYME program for, 130

technology development for, 130–131

with water molecules, 130

metabolism and, 172

molecular quantum similarity and, 133

AIM theory and, 133

in NMR refinement, 123–125

CSP in, 123–124

DFT and, 124

NOE in, 123

screening methods for, 123

protein structure modeling with, 125–127

AMBER force fields in, 126

geometry validation in, 125

native discrimination in, 126–127

semiempirical geometry

approximations in, 125–126

QSAR and, 131–132

QSM for, 133

spectroscopic, 132

3D model, 131–132

QTMS and, 133

in RBDD

qualitative uses of, 127

quantitative uses of, 128–129

in x-ray refinement, 120–123

EREF formalism for, 121–122

quantum similarity measure (QSM), 133

CSI for, 133

quantum topological molecular similarity

(QTMS), 133

R factor, 23

RBDD

linear scaling in, 130–131

quantum mechanics in

qualitative uses of, 127

ESP maps and, 127–131

quantitative uses of, 128–129

relative proton potential and, 127–131

receptor-based pharmacore methods,

144–145

development of, 144

docking in, 144

with LIGANDSCOUT model, 144–145

with LUDI interaction map, 144

recursive partitioning, in ADME models,

167

relative binding free energies, 72–73

estrogen receptors and, 73

for fructose 1, 6 bisphosphatase, 73

HIV-1 and, 72, 73

for neutrophil elastase inhibitors, 73

relative proton potential, 127–131

catalysis and, 128

charge transfers in, 128

docking programs in, 128–129

interaction energy decomposition in, 131

linear scaling in, 130–131

MOZYME program for, 130

technology development for, 130–131

with water molecules, 130

point charge models in, 127–128

polarization in, 128

proton affinity in, 128

ZINC database and, 129

relaxation-based methods, of NMR, 48–49

Reviews in Computational Chemistry, 151

Reyataz. See atazanavir

rhodopsin, 248–249

ligand-binding sites in, 249–250

ritonavir, 87

rofecoxib, 6

SAMPL. See Statistical Assessment of the

Modeling of Proteins and Ligands

saquinavir hard gel, 87

saquinavir soft gel, 87

SAR. See structure/activity relationships

saturation transfer difference methods, of

NMR, 47

with spectroscopy, 47

SBDD. See structure-based drug design

Scaffold MErging via Recursive Graph

Exploration (SMERGE) program,

37

SCAMPI. See Statistical Classification of

Activities of Molecules for

Pharmacore Identification

scans

heterocycle, 8–10

small group, 10–11

BOMB, 10

scattered beams, crystal structures and, 18

Science, 7

scoring, with computer-aided drug design,

183–184

screening

for docking, censuses for, 99–100

www.cambridge.org/9780521887236
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88723-6 — Drug Design
Edited by Kenneth M. Merz, Jr, Dagmar Ringe, Charles H. Reynolds
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

273 Index

for drug discovery and optimization

in FBLD, 41–42

for lead generation, 3–4

with fragment X-rays, 32, 34–35

LIMS and, 34–35

sensitivity of, 35

for GLIDE program, for lead generation,

3, 4–5

HTS, 1, 42

in FBLD, 42

for fragment-based structure-guided

drug discovery, 30–31

for SBDD, 61

for NNRTIs, 3–4

for SGX FAST

complementary biophysical screening,

35

fragment x-ray screening in, 32,

34–35

with fragment x-rays, 32, 34–35

with SPR, 35

with x-rays, 35

with SPR, 35

virtual

for docking, 3–4, 99–100, 104–105

GLIDE program and, 3, 4–5

ZINC database in, 4

Seeman model, 139

SGX FAST fragment-based structure-guided

drug discovery

aromatic bromine and, 32

biochemical assays for, 35

complementary biophysical screening,

35

with SPR, 35

deliverable properties for, 32

end game for, 32, 37

fragment library design in, 31–32, 37

chemical diversity of, 33

Lipinski’s rules and, 31

properties of, 32–33

size of, 32–33

fragment x-ray screening in, 32, 34–35

LIMS and, 34–35

sensitivity of, 35

visualization clarity of, 35

future prospects for, 38–39

leadlike properties in, 31–32

protein kinases in, 37

SAR optimization in, 35–37

binding sites in, 36, 38

fragment choice in, 36

fragment engineering in, 36

goals for, 36

ligand efficiency in, 36

in target enabling, 32

selectivity in, 37

SMERGE program for, 37

SPR screening for, 35

with complementary biophysical

screening, 35

target enabling in, 32, 33–34

LIMS in, 33

modular robotics in, 33–34

PDB domains in, 33

SAR optimization in, 32

x-ray screening in, 35

siRNA. See small interfering RNA

small group scans, 10–11

BOMB, 10

small interfering RNA (siRNA), 1

SMERGE program. See Scaffold MErging via

Recursive Graph Exploration

(SMERGE) program

solubility, in ADME models, 166–168

in BACE ligands, 191

crystal packing and, 168

in DMSO stock, 166, 167–168

Gaussian process for, 167

matched molecular pairs analysis and,

167

minimum accepted level for, 167

prediction of, 167

recursive partitioning in, 167

solute entropy change, 64

solvation energy terms, 64–65

free, 76

solvent flattening, 21

spectroscopic 3D-QSAR, 132

SPR. See surface plasmon resonance

Statistical Assessment of the Modeling of

Proteins and Ligands (SAMPL),

79

docking and, 105–107

JNK3 structures and, 105

manual process for, 106

semi-automated process for, 106

small-molecule conformations in,

106–107

Statistical Classification of Activities of

Molecules for Pharmacore

Identification (SCAMPI), 139

pharmacore scoring by, 144

structure/activity relationships (SAR), 1

ligand efficiency and, 36

QSAR, LBDD and, 120

in SGX FAST fragment-based

structure-guided drug discovery,

35–37

binding sites in, 36, 38

fragment choice in, 36

fragment engineering in, 36

goals for, 36

ligand efficiency in, 36

in target enabling, 32

structure-based drug design (SBDD), 17.

See also free energy calculations, in

SBDD; quantum mechanics, in

SBDD

catalysis and, 128

combinatorial libraries for, 61

free-energy calculations in, 61–79

accuracy of, 62–63

alchemical, 66, 72–76

future applications for, 77–79

ligand binding calculations, 70–77

methodologies for, 63–70

simulation codes for, 78

GPCRs and, 248

for HGLP, 257–262

AMP sites and, 259–261

design of, 261–262

for diabetes, 257

docking of, 257–258, 259–261

energy calculations for, 262

features of, 257

phenyl diacid compounds and, 258,

262

putative binding pocket prediction for,

258–259

synthesis of, 261–262

for HMGP, 257

ITC for, 61

linear scaling in, 130–131

molecular profiles for, 61

HST screening for, 61

for p38, 197–206

DFG-out binding pocket and, 201–202

five-membered heterocyclic core,

205–206

fused heterocyclics and, 199–201

indoles and, 204

pyrazolopyrimidines and, 202

with pyrimidines, 197–199

with thiazoles, 202–204

with triazines, 197–199

parameters of, 120

physics-based models for, 61

quantum mechanics in, 120–127,

128–129, 131, 133

catalysis and, 128

CoMFA method in, 132

CoMSIA method in, 132

ESP maps and, 127–131

interaction energy decomposition in,

131

LBDD and, 131

linear scaling in, 130–131

molecular quantum similarity and,

133

in NMR refinement, 123–125

protein structure modeling with,

125–127

QSAR and, 131–132

QTMS and, 133

in x-ray refinement, 120–123

screening methods for

docking, 61

with HST, 61

SPR for, 61

surface mapping, 25–28

electron density in, 25–26

molecular binding in, 27

NMR and, 27–28

regional association in, 27–28

substructure decomposition and, 27

for water molecules, 26–27

surface plasmon resonance (SPR), 35

with complementary biophysical

screening, 35

for SBDD, 61

sustained virologic response (SVR), for HCV,

209

SVR. See sustained virologic response (SVR),

for HCV

T4 lysozyme ligand binding, 74–75

negative results for, 77

target-directed methods, of NMR, 45–47

chemical shift perturbation in, 46

ligand binding in, 45–46
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tautomerization, in pharmacore methods,

140

thermodynamic integration, in SBDD, 67

curvature from, 67

slow growth simulation in, 67

Zwanzig relationship expansion in, 67

thiazoles, 202–204

3D database screening, in pharmacore

method, 146–148

automated perception in, 147

hits in, 146

information returns with, 148

partial matching in, 147
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