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Progress and issues for computationally guided lead

discovery and optimization

William L. Jorgensen

INTRODUCTION

Since the late 1980s there have been striking advances,

fueled by large increases in both industrial and NIH-

funded academic research, that have revolutionized drug

discovery. This period has seen the introduction of high-

throughput screening (HTS), combinatorial chemistry,

PC farms, Linux, SciFinder, structure-based design, vir-

tual screening by docking, free-energy methods, absorp-

tion/distribution/metabolism/excretion (ADME) software,

bioinformatics, routine biomolecular structure determina-

tion, structures for ion channels, G-protein-coupled recep-

tors (GPCRs) and ribosomes, structure/activity relation-

ships (SAR) obtained from nuclear magnetic resonance

(SAR by NMR), fragment-based design, gene knockouts,

proteomics, small interfering RNA (siRNA), and human

genome sequences. The result is a much-accelerated pro-

gression from identification of biomolecular target to lead

compound to clinical candidate. However, a serious con-

cern is that the dramatic increase in drug discovery abilities

and expenditures has not been paralleled by an increase in

FDA approvals of new molecular entities.1 High demands

for drug safety, broader and longer clinical trials, too much

HTS, too little natural products research, and effective

generic drugs for many once-pressing afflictions have all

been suggested as contributors.2–4 Numerous corporate

mergers and acquisitions may have also had adverse effects

on productivity through distractions of reorganization and

integration. Nevertheless, one should consider what the

success would have been in the absence of the striking tech-

nical advances. Certainly, progress with some critical and

challenging target classes such as kinases would have been

greatly diminished, and the adverse impact on many can-

cer patients would have been profound. Indeed, further

gains in the treatment and prevention of human diseases

must require even more emphasis and commitment to fun-

damental research. As in other discovery enterprises, the

answer is to drill deeper.

The topic of this volume focuses on one of the areas

in drug discovery that has seen major transformation and

progress: structure- and ligand-based design. The design

typically features small molecules that bind to a biomolec-

ular target and inhibit its function. The distinction stems

from whether a three-dimensional structure of the target is

available and used in the design process. Structure-based

design can be carried out with nothing more than the

target structure and graphics tools for building ligands in

the proposed binding site. However, additional insights

provided by evaluation of the molecular energetics for the

binding process are central to most current structure-based

design activities. Ligand-based design does not require a

target structure but rather stems from analysis of struc-

ture/activity data for compounds that have been tested in

an assay for the biological function of the target. One seeks

patterns in the assay results to suggest potential modifi-

cations of the compounds to yield enhanced activity. The

upside is that a target structure is not required; the down-

side is that substantial activity data are needed. My research

group has focused on the development and application of

improved computational methodology for structure-based

design. Some of the experiences and issues that have been

addressed are summarized in the following.

LEAD GENERATION

Both lead generation and lead optimization may be pur-

sued through joint computational and experimental stud-

ies. As summarized in Figure 1.1, our approach has evolved

to feature two pathways for lead generation, de novo

design with the ligand-growing program BOMB (Biochem-

ical and Organic Model Builder)5 and virtual screening

using the docking program Glide.6 Fragment-based design,

which involves the docking and linking together of mul-

tiple small molecules in a binding site, is another popu-

lar alternative.7,8 Desirable compounds resulting from de

novo design normally have to be synthesized, whereas com-

pounds from virtual screening of commercial catalogs are

typically purchased. In both cases, it is preferable to begin

with a high-resolution crystal structure for a complex of the

target protein with a ligand; though the ligand is removed,

it is advisable to start from a complex rather than an

apo structure, which may have side chains repositioned to

fill partially the binding site. An extreme example occurs

with HIV-1 reverse transcriptase (HIV-RT) for which the

allosteric binding site for nonnucleoside inhibitors (NNR-

TIs) is fully collapsed in apo structures.9
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Figure 1.1. Schematic outline for structure-based drug lead discovery

and optimization.

De Novo design with BOMB

BOMB is used to construct complete analogs by adding 0–

4 substituents to a core that has been placed in a bind-

ing site. A thorough conformational search is performed

for each analog, and the position, orientation, and dihe-

dral angles for the analog are optimized using the OPLS-AA

force field for the protein and OPLS/CM1A for the analog.10

The resultant conformer for each analog with the lowest

energy is evaluated with a dockinglike scoring function to

predict activity. The core may be as simple as, for exam-

ple, ammonia or benzene, or it may represent a polycyclic

framework of a lead series. For the example in Figure 1.2,

ammonia was the original core, and it was positioned to

form a hydrogen bond with the carbonyl group of Lys101.

A library of molecules is then often built using a “template”

that has been envisioned by the user to be complemen-

tary to the binding site and often to also be amenable to

straightforward synthesis. For Figure 1.2, the template was

Het-NH-34Ph-U, where Het represents a monocyclic hete-

rocycle, 34Ph is a 3- or 4-substituted phenyl group, and U is

an unsaturated hydrophobic group. The template specifies

the components that constitute the desired molecules and

the topology by which they are linked together.

Tyr181

Tyr188

Trp229

Phe227
Leu100

Lys101

Val106

Figure 1.2. An inhibitor built using BOMB in the NNRTI binding site of

HIV-RT.

BOMB includes a library of approximately 700 possi-

ble substituents, with code numbers from 1 to about 700,

including most common monocyclic and bicyclic heterocy-

cles and about 50 common U groups such as allyl, propar-

gyl, phenyl, phenoxy, and benzyl derivatives. They are pro-

vided as groupings by the code numbers or the user can

create a custom grouping with desired code numbers. The

groupings correspond to template components such as

Het, 5Het (just 5-membered ring heterocycles), 6Het, biHet,

U, oPhX, mPhX, pPhX, mOPhX, pSPhX, OR, NR, SR, and

C = OX. The program then builds all molecules that corre-

spond to the template. In the example, if there were 50 Het

and 20 U options, the program would build the 1,000 Het-

NH-3-Ph-U and 1,000 Het-NH-4-Ph-U possibilities. This de

novo design exercise with HIV-RT as the target resulted in

identification of Het = 2-thiazolyl and U = dimethylally-

loxy as a promising pair. Subsequent synthesis of the thi-

azole 1 in Figure 1.3 did provide a 10-�M lead in an MT-2

cell-based assay for anti-HIV activity. As described below,

the lead was optimized to multiple highly potent NNRTIs,

including the chlorotriazine in Figure 1.2 (31 nM), the corre-

sponding chloropyrimidine (10 nM), and the cyanopyrimi-

dine analog 2 (2 nM).11–14

Some additional details should be noted. The host, typ-

ically a protein, is rigid in the BOMB optimizations except

for variation of terminal dihedral angles for side chains with
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Figure 1.3. Example of a 10-�M lead proposed by BOMB that was optimized to provide numerous potent anti-HIV

agents.
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Figure 1.4. Progression of a false positive from docking to potent anti-HIV agents.

hydrogen-bonding groups, for example, the OH of tyro-

sine or serine and ammonium group of lysine. The current

scoring function has been trained to reproduce experimen-

tal activity data for more than 300 complexes of HIV-RT,

COX-2, FK506 binding protein, and p38 kinase.5 It yields

a correlation coefficient r2 of 0.58 for the computed ver-

sus observed log(activities). The scoring function contains

only five descriptors that were obtained by linear regres-

sion, including an estimate of the analog’s octanol/water

partition coefficient from QikProp (QPlogP),15 the amount

of hydrophobic surface area for the protein that is buried

on complex formation, and an index recording mismatched

protein/analog contacts, such as a hydroxyl group in con-

tact with a methyl group. Interestingly, the most significant

descriptor is QPlogP, which alone yields a fit with an r2 of

0.47. Thus, the adage that increased hydrophobicity leads

to increased binding is well supported, though it requires

refinement for quality of fit using the host/ligand interac-

tion energy or an index of mismatched contacts. Overdone,

it also leads to ADME problems, especially poor aqueous

solubility and high serum protein binding.

The results from a BOMB run include the structure

for each protein/analog complex as a Protein Data Bank

(PDB) file or BOSS/MCPRO Z-matrix (internal coordinate

representation)16 and a spreadsheet with one row for each

analog summarizing computed quantities from the BOMB

calculations, including host–analog energy components

and surface area changes as well as predicted properties for

the analog, including log Po/w, aqueous solubility, and Caco-

2 cell permeability from QikProp, which is called as a

subroutine. The processing time for Het-NH-Ph-U using

ammonia as the core is approximately 15 s per analog on

a 3-GHz Pentium IV processor. The required time increases

roughly linearly with the number of conformers that need

to be constructed. For large libraries, multiple processors

are used.

Virtual screening

The common alternative is to perform virtual screening on

available compound collections using docking software.

Many reviews and comparisons for alternative software and

scoring functions are available.6,17–20 There is no question

that there have been many successes with docking such

that, given a target structure, it is expected to be compet-

itive with and far more cost effective than HTS and is now

an important component of lead discovery programs in the

pharmaceutical industry. New success stories are reported

regularly in the literature and at conferences. However, it

is generally accepted that correct rank-ordering of com-

pounds for activity is beyond the current capabilities. This

is not surprising in view of the thermodynamic complexity

of host/ligand binding, including potential structural

changes for the host on binding, which have usually been

ignored, and the need for careful consideration of changes

in conformational free energetics between the bound and

unbound states.21

In our experience, docking has been a valuable com-

plement to de novo design (Figure 1.1). When large com-

pound collections are docked, interesting structural motifs

often emerge as potential cores that may have been over-

looked otherwise. Our earliest docking effort started out

well, was formally a failure, and then recovered to pro-

vide an interesting lead series that yielded potent anti-HIV

agents.5,22 Leads were sought by processing a collection

of approximately 70,000 compounds from the Maybridge

catalog, which was supplemented with twenty known NNR-

TIs. The screening protocol began with a similarity filter

that retrieves 60% of the known actives in the top 5% of

the screened library. The approximately 2,000 library com-

pounds that were most similar to the known actives were

then docked into the 1rt4 structure of wild-type HIV-RT,

using Glide 3.5 with standard precision.6 The top 500 com-

pounds were then redocked and scored in Glide extrapre-

cision (XP) mode.23 The top 100 of these were postscored

with a molecular mechanics/generalized Born/surface area

(MM-GB/SA) method that was shown to provide high

correlation between predicted and observed activities for

NNRTIs.22 Though known NNRTIs were retrieved well (ten

were ranked in the top twenty), purchase and assaying of

approximately twenty high-scoring compounds from the

library failed to yield any active anti-HIV agents. Persisting,

the highest-ranked library compound, the inactive oxadia-

zoles 3 in Figure 1.4, was pursued computationally to seek
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Figure 1.5. Distributions of the Glide XP scores for the top-ranked 1,000

ZINC compounds, the top-ranked 1,000 Maybridge compounds, and the

10 known tautomerase inhibitors.

constructive modifications. Specifically, the substituents

were removed to yield the anilinylbenzyloxadiazole core. A

set of small substituents was reintroduced in place of each

hydrogen using BOMB; scoring with BOMB, followed by

free-energy perturbation (FEP)-guided optimization, led to

synthesis and assaying of several polychloro analogs with

EC50 values as low as 310 nM in the MT-2 HIV-infected

T-cell assay.5 Further cycles of FEP-guided optimization led

to novel, very potent NNRTIs, including the oxazole deriva-

tive 4, as described more below.24

A more recent virtual screening exercise was strikingly

successful.25 New protocols had evolved, including use of

the much larger ZINC database of approximately 2.1 mil-

lion commercially available compounds.26 The goal in this

case was to disrupt the binding of macrophage migration

inhibitory factor (MIF) to its receptor CD74, an integral

membrane protein, and a major histocompatibility com-

plex (MHC) class II chaperone. MIF is a pro-inflammatory

cytokine that is released by T-cells and macrophages. It

plays a key role in a wide range of inflammatory dis-

eases and is involved in cell proliferation and differentia-

tion and angiogenesis.27,28 Curiously, MIF is also a keto-

enol isomerase. There is evidence that the interaction of

MIF with CD74 occurs in the vicinity of the tautomerase

active site and that MIF inhibition is directly competi-

tive with MIF/CD74 binding.29 The docking was performed

using Glide 4.0 and the 1ca7 crystal structure of the com-

plex of MIF with p-hydroxyphenylpyruvate.30 In addition to

the ZINC collection, the Maybridge HitFinder library was

screened, which provided an additional 24,000 compounds.

After all structures were processed using SP Glide, the top-

ranked 40,000 from ZINC and 1,000 from Maybridge were

redocked and rescored using Glide in XP mode.23 Glide XP

scoring was also shown to provide good correlation with

experimental data for 10 known inhibitors of MIF’s tau-

tomerase activity.

A key observation from the docking is illustrated in Fig-

ure 1.5, which shows the distributions of Glide XP scores

for the top-ranked 1,000 compounds from ZINC, the top-

ranked 1,000 Maybridge compounds, and the ten known

MIF inhibitors. Clearly, the large ZINC collection yields

many compounds with much more promising XP scores

than the Maybridge HitFinder library. The average molec-

ular weights for the two sets of 1,000 compounds are 322 for

ZINC and 306 for Maybridge. The variation only amounts

to one additional nonhydrogen atom for the ZINC set, so

the improved performance with the ZINC collection pre-

sumably results from greater structural variety. In view of

the sensitivity of activity to structure, as reflected in Figures

1.3 and 1.4, it is highly unlikely that active compounds can

be found in small libraries like Maybridge HitFinder unless

the assays can be run with the compounds at millimolar or

higher concentrations, which is often precluded by solubil-

ity limits. Even with a viable core (Figure 1.4), the chance is

low that a small library will contain a derivative with a sub-

stituent pattern that yields an active in a typical assay.

Finally, the Glide poses for approximately 1,200 of the

top-ranked compounds were displayed and 34 compounds

were selected by human evaluation of the poses with input

from QikProp on predicted properties and structural lia-

bilities. The filtering included rejection of poses where

the conformation of the ligand was energetically unlikely

or where there were overly short intramolecular contacts

and compounds with generally undesirable features such

as readily hydrolizable functional groups or substructures

such as coumarins, which are promiscuous protein binders.

Only 24 of the 34 selected compounds were, in fact, avail-

able for purchase, which represents a typical ratio. Ulti-

mately 23 compounds were submitted to a protein-protein

binding assay using immobilized CD74 and biotinylated

human MIF with streptavidin-conjugated alkaline phos-

phatase processing p-nitrophenyl phosphate as substrate.

Remarkably, eleven of the compounds were found to have

inhibitory activity in the �M regime including four com-

pounds with IC50 values below 5 �M. Inhibition of MIF

tautomerase activity was also established for several of the

compounds with IC50 values as low as 0.5 �M. Representa-

tive active compounds are shown in Figure 1.6; optimiza-

tion of several of the lead series is being pursued. Notably,

these are the most potent small-molecule inhibitors of MIF-

CD74 binding that have been reported to date.

The first three compounds in Figure 1.6 were ranked

in 285th, 696th, and 394th place by the XP scoring, so

they were not “high in the deck.” However, prior de novo

structure building with BOMB had indicated that 6–5 fused

bicyclic cores should be promising, so the selections were

biased in this direction. The compound ranked first with XP

Glide was also purchased and assayed; it turned out to be

the 250-�M inhibitor in Figure 1.6. In addition, the com-

pounds ranked 26th and 32nd were purchased and found

to be inactive. Overall, it is expected that contributors to

the success with the virtual screening in this case were
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Figure 1.6. Structures and IC50 values for some inhibitors of MIF-CD74 binding discovered by virtual screening.

improvements with Glide 4.0 and the XP scoring, use of

the large ZINC library, the relatively small binding site and

consequently small number of rotatable bonds for potential

inhibitors, and the human filtering.

ADME ANALYSES

As indicated in Figure 1.1, as one pursues leads it is impor-

tant to be aware of potential pharmacological liabilities. The

significance of this issue became increasingly apparent in

the 1990s because of high failure rates for compounds in

clinical trials that could be ascribed to ADME and toxicity

problems.31 This led to the introduction of Lipinski’s rules

and recognition that compounds developed in the post-

HTS era frequently tended to be too large and hydropho-

bic, which is accompanied by solubility and bioavailability

deficiencies.32 In this atmosphere, more effort was placed

on quantitative prediction of molecular properties beyond

log Po/w using statistical procedures such as regression anal-

yses and neural networks, which were trained on experi-

mental data.33,34 The typical regression equation is a lin-

ear one, Equation (1.1), where the sum is over molecular

descriptors i that have values ci for the given structure and

the coefficients ai are determined to minimize the error

with the experimental data:

property =

�

i

ai ci + a0. (1.1)

In Figure 1.1, the choice for ADME analyses is QikProp,

which was among the earliest programs to predict a

substantial array of pharmacologically relevant properties.

Version 1.0, which was released in March 2000, provided

predictions for intrinsic aqueous solubility, Caco-2 cell

permeability, and hexadecane/gas, octanol/gas, water/gas,

and octanol/water partition coefficients. The required

input for QikProp is a three-dimensional structure of an

organic molecule, and it mostly uses linear regression equa-

tions with molecular descriptors such as surface areas

and hydrogen-bond donor and acceptor counts. By ver-

sion 3.0 from 2006, the output covered eighteen quan-

tities, including log BB for brain/blood partitioning, log

Khsa for serum albumin binding, hERG K+ channel block-

age, primary metabolites, and overall percentage human

oral absorption.15 The prediction of primary metabolites

is based on literature precedents and recognition of cor-

responding substructures; for example, methyl ethers and

tolyl methyl groups are typically metabolized to the alco-

hols. Execution time with QikProp is negligible because the

most time-consuming computation is for the molecule’s

surface area. Average root-mean-square (rms) errors for

most quantities are about 0.6 log unit, as in Figure 1.7.

To gauge acceptable ranges of predicted properties,

QikProp 3.0 was used to process approximately 1,700

known neutral oral drugs,13 which were compiled by

Proudfoot.35 For submission to QikProp, the original

two-dimensional structures were converted to three-

dimensional structures and energy-minimized with BOSS

using the OPLS/CM1A force field.10,16 Some key results

from the analyses are summarized as histograms in Fig-

ures 1.8 and 1.9. Consistent with the log Po/w limit of 5 in

Lipinski’s rules,32 91% of oral drugs are found to have
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aqueous solubilities (right). S is aqueous solubility in moles per liter. Correlation coefficients r 2 are 0.92 and 0.90
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Figure 1.8. QikProp distributions for log Po/w (left) and log S (right) for 1712 oral drugs.

QPlogP values below 5.0. However, values below zero are

uncommon, presumably because of poor cell permeability,

and the “sweet” range for log Po/w appears to be 1–5. For

aqueous solubility, 90% of the QPlogS values are above −5.7,

that is, S is greater than 1 �M. QPlogS values less than −6 or

greater than −1 are undesirable. The QikProp results also

state that 90% of oral drugs have cell permeabilities, PCaco,

above 22 nm/s and no more than six primary metabolites.

These quantities and limits address important components

of bioavailablility, namely, solubility, cell permeability, and

metabolism.

For our design purposes (Figure 1.1), a compound is

viewed as potentially ADME challenged if it does not

satisfy all components of a “rule-of-three”: predicted log

S � −6, PCaco � 30 nm/s, and maximum number of pri-

mary metabolites of 6. For central nervous system (CNS)

activity requiring blood-brain barrier penetration, an

addendum is that QPlogBB should be positive. Also, some

caution is warranted for a compound with no metabolites

because of possible clearance problems.17 A further note

is that QPlogP and QPlogS are correlated with an r2 of

0.68, so there would be some redundancy in invoking limits

on both. Among reasons for preferring solubility, there

are quite a few examples of relatively small drugs that

have log Po/w values greater than 5 but have acceptable

solubility, for example, meclizine, prozapine, clocinizine,

bepridil, denaverine, bopindolol, phenoxybenzamine, and

terbinafine. Of course, compounds with reactive functional

groups, for example, those that are readily hydrolizable or

strongly electrophilic, are flagged by QikProp and normally

eliminated from inclusion in a lead structure. For example,

in rofecoxib (Vioxx) concern could be expressed for possi-

ble nucleophilic attack and ring opening at the furanone

carbonyl and for Michael addition to the �,�-double bond;

metabolic oxidation at the allylic methylene group is also

expected to yield the 5-hydroxy derivative (Scheme 1). For

celecoxib (Celebrex), metabolic oxidation to the benzylic

alcohol is noted by QikProp, and an “alert” is given that

O O
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Figure 1.9. QikProp distributions for log PCaco (left) and number of primary metabolites (right) for 1,712 oral drugs.

PCaco is the Caco-2 cell permeability in nm/s.
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and X and Y are two ligands.

the primary sulfonamide group can be associated with sulfa

allergies and indiscriminant metal chelation.36

Overall, for the 1,712 oral drugs, 278 violate one or more

of the four Lipinski rules (MW � 500, logPo/w � 5, H-bond

donors ≤ 5, H-bond acceptors ≤10) with QPlogP used for

log Po/w. There are 178, 82, and 18 oral drugs with one,

two, and three violations, respectively. The group with

two violations includes macrolides such as erythromycin

and azithromycin and some other well-known drugs like

atorvastatin, amiodarone, chloramphenicol, ketoconazole,

and telmisartan. These examples all fail one member of

the rule-of-three, either the solubility limit or number of

primary metabolites, for example, respectively, atorvastatin

and the macrolides. The group with three rule-of-five vio-

lations includes the HIV-protease inhibitors ritonavir and

saquinavir, which are known to have low bioavailability.

There are exceptions to such rules because they are based

on 90th-percentile limits. Nevertheless, in all stages of

lead generation, it would be imprudent to ignore property

distributions for known drugs such as those in Figures 1.8

and 1.9.

LEAD OPTIMIZATION

It is assumed that inhibitory potency increases with increas-

ing biomolecule-inhibitor binding. So, on the computa-

tional side, the key for lead optimization is accurate pre-

diction of biomolecule-ligand binding affinities. There are

many approaches, but the potentially most accurate ones

are the most rigorous.17 At this time, the best that is done

is to model the complexes in the presence of hundreds or

thousands of explicit water molecules using Monte Carlo

(MC) statistical mechanics or molecular dynamics meth-

ods (Figure 1.10).17 Classical force fields16 are used, and

extensive sampling is performed for key external (transla-

tion and rotation) and internal degrees of freedom for the

complexes, solvent, and any counterions. FEP and ther-

modynamic integration (TI) calculations then provide for-

mally rigorous means to compute free-energy changes.37

For biomolecule/ligand affinities, perturbations are made

to convert one ligand to another using the thermody-

namic cycle in Figure 1.10. The conversions involve a

coupling parameter, �, that causes one molecule to be

smoothly mutated to the other by changing the force

field parameters and geometry.38 The difference in free

energies of binding for the ligands X and Y then comes from

� �G b = �G X − �G Y = �G F − �G C. Two series of muta-

tions are performed to convert X to Y unbound in water and

complexed to the biomolecule, which yield �G F and �GC.

Absolute free energies of binding are not obtained, but

for lead optimization it is sufficient to assess the effects

of making changes or additions to a core structure in the

same spirit as synthetic modifications. Though the MC or

MD plus FEP or TI calculations are rigorous, the accuracy

of the results is affected by many issues, including the use

and quality of force fields; missing energy terms, such as

instantaneous polarization effects; and possible inade-

quate configurational sampling, which may be associated

with, for example, infrequent conformational changes

that are beyond the duration of the simulations. In the

author’s experience, more approximate methods are not

accurate enough to provide satisfactory guidance in lead

optimization.

The idea of using such calculations for molecular design

goes back more than twenty years, at least to the report

of the first FEP calculation for conversion of a molecule X

to molecule Y in 198538 and to the earliest application of

FEP calculations for protein-ligand binding by Wong and

McCammon.39 A final comment from McCammon’s review

on computer-aided molecular design in Science in 1987 was

perspicacious: “The attentive reader will have noticed that

no molecules were actually designed in the work described

here.”40 The situation has remained basically unchanged

since the late 1980s. As the convergence of FEP calcula-

tions was investigated, it was apparent that they were too

computationally intensive for routine use in molecular
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design given the computer resources available before ca.

2000. In 1985, the ethane-to-methanol FEP calculation in a

periodic cube with 125 water molecules required two weeks

on a Harris-80 minicomputer,38 and the Wong/McCammon

MD simulation for the trypsin-benzamidine complex cov-

ered only 29 ps but was performed on a Cyber 205

“supercomputer.”39

Thus, until recently the application of FEP or TI calcu-

lations on protein-ligand systems predominantly featured

retrospective calculations to reproduce known experimen-

tal inhibition data and generally addressed small numbers

of compounds. Kollman was a strong advocate of the poten-

tial of free-energy calculations for molecular design, and

he and Merz reported a rare, prospective FEP result on the

binding of a phosphonamidate versus phospinate inhibitor

with thermolysin.41,42 Pearlman also advanced the tech-

nology, though publications in 2001 and 2005 were still

retrospective and confined to a simple congeneric series

of 16 p38 kinase inhibitors.43,44 In addition, Reddy and

Erion have been steady contributors; they have used FEP

calculations to evaluate contributions of heteroatoms and

small groups to the binding of inhibitors to gain insights

on directions for improvement.45,46 Our own computations

on protein/ligand binding began to appear in 1997 using

MC/FEP methodology.47,48 Many issues and systems were

subsequently addressed, including substituent optimiza-

tion for celecoxib analogs,49 COX-2/COX-1 selectivity,50

and heterocycle optimization for inhibitors of fatty acid

amide hydrolase.51 An additional series of publications

used MC/FEP calculations to compute the effects of HIV-

RT mutations on the activity of NNRTIs.52–55 The latter work

included predictions for the structures of the complexes

of efavirenz and etravirine with HIV-RT, which were sub-

sequently confirmed by x-ray crystallography.52,54,56 Con-

fidence in the predicted structures came from agree-

ment between the FEP results and experimental activity

data.

FEP-guided optimization of azines as NNRTIs

With this preparation, large increases in computer

resources, the hiring of synthetic chemists, and collab-

oration with biologists, FEP-guided lead optimization

projects were initiated in 2004. Early successes in the opti-

mization of potent NNRTIs are reflected in Figures 1.2 and

1.3 for the Het-NH-3-Ph-U series.11–13 MC/FEP calculations

were used to optimize the heterocycle and the substituent

in the 4-position of the phenyl ring. The calculations are

run with MCPRO and all use the OPLS/CM1A force field for

the ligands and OPLS-AA for the protein.10,16 This quickly

led to selection of 2-pyrimidinyl and 2-(1,3,5)-triazinyl

for the heterocycle and chlorine or a cyano group at the

4-position. These combinations yielded NNRTIs with EC50

values near 200 nM.

Extensive FEP calculations then focused on optimiza-

tion of substituents for the heterocycle.13 For the 2-

pyrimidines, the immediate question concerned whether

4,6-disubstitution would be favorable or if mono substitu-

tion at the 4- or 6-position is preferred. In complexes with

HIV-RT, the 4- and 6-positions are not equivalent; for exam-

ple, in Figure 1.2, the methoxy group could be directed

toward the viewer (“out”) or away (“in”), as shown. From

display of structures of the complexes, the preferences for

in or out were not obvious. This was clarified by MC/FEP

results, which showed a strong preference for having a sin-

gle small substituent on the pyrimidine ring and that the

substituent would be oriented “in” (Figure 1.11). Synthe-

sis of a variety of such mono-substituted pyrimidines and

triazines yielded ten NNRTIS with EC50s below 20 nM.11–13

There was good correlation between the FEP results and the

observed activities.11,13 The methoxypyrimidine 2 in Figure

1.3 (2 nM) was the most potent, although it was also rela-

tively cytotoxic (CC50 = 230 nM). The corresponding 1,3,5-

triazine is also a potent anti-HIV agent (11 nM) and has a

large safety margin (CC50 = 42 �M).

Heterocycle scans

FEP results also established the orientation of the methoxy

methyl group in the pyrimidine and triazine derivatives

shown in Figure 1.2, that is, pointing toward Phe227 rather

than Tyr181. This suggested the possibility of cyclizing the

methoxy group back into the azine ring to form 6–5 and 6–6

fused heterocycles in the manner indicated in Scheme 2.
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The decision on which analogs to pursue was driven

by the prospective FEP results shown in Figure 1.12.

Subsequent synthesis and assaying of the series of 6–5

compounds showed close parallel between the predicted

and observed activities.11 The illustrated furanopyrimidine

derivative was predicted and observed to be the most

potent; it is a highly novel and potent (5 nM) NNRTI. The

results highlight the accuracy of the FEP predictions and

again the sensitivity of activity to structure. The pyrrolopy-

rimidine (130 nM) and pyrrolopyrazine (19 nM) pair is

particularly striking. After the fact, analyses showed a larger

dipole moment for the bound pyrrolopyrazine and more

negative charge on the pyrazinyl nitrogen leading to stronger

hydrogen bonding with the backbone NH of Lys101.14

This procedure can be referred to as a heterocycle scan,

which is clearly a powerful lead-optimization strategy.51 It

is also an area where computation is far easier than syn-

thesis, so computational screening to focus the synthetic

options is very beneficial. This is particularly true for poly-

cyclic heterocycles, as in Figure 1.12, where there are many

options and the synthetic challenges can be great. In this

example, heteroaryl halides were needed for reaction with

substituted anilines; several were not previously reported

and required considerable synthetic effort.14 Even with the

notion of pursuing bicyclic heterocycles, in the absence of

the FEP results, the synthetically less accessible ones might

have been skipped.

Changing heterocycles in the center of a structure is also

often challenging from a synthetic standpoint. For exam-

ple, synthesis of the oxadiazoles and oxazole in Figure 1.4

requires fundamentally different procedures for the ring

construction.24 This corresponds to a change in chemo-

type and there can be a significant delay as a viable syn-

thetic route is found for the new target. In the case of

this U-5Het-NH-pPhX series, FEP calculations were car-

ried out for eleven alternative five-membered-ring hete-

rocycles (5Het) by perturbation from the corresponding

thiophene.24 Remarkably, the only one that was predicted to

be more active than the oxadiazole was the 2,5-substituted

oxazole. The prediction was confirmed and provided a

major step forward for the optimization of this series, as

shown in Figure 1.13. It is noted that the approximately

eight-fold activity improvement, which corresponds to a

� �G of about 1.2 kcal/mol, is less than the computed � �G

of 2.5 kcal/mol. This is a common pattern that likely results

from the use of a cell-based assay, so the comparison is

not with actual binding data (Kd). Moreover, it is also prob-

able that the computed electrostatic interactions in the

complexes are not properly damped because of the lack of

explicit polarization effects.

In view of the synthetic challenges, only two alterna-

tives were synthesized, the thiadiazole and thiazole analogs,

∆G = +4.9, not active +4.6, not active
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which were both predicted and found to be inactive (Fig-

ure 1.13). It is noted that the MT-2 assay is run to a maxi-

mum concentration of 100 �M; the thiadiazole showed no

activity or cytotoxicity up to this concentration, whereas

the thiazole has a CC50 of 24 �M and no anti-HIV activity

to this point. Overall, this provides another example of the

sensitivity of activity to structure and the desirability of rig-

orous computational guidance. Graphical display of mod-

eled complexes is inadequate to gauge relative potency. In

retrospect, the results indicate that the longer C-S bonds in

the 2,5-disubstituted sulfur-containing heterocycles cause

crowding of the dichlorobenzyl group and Tyr181, and the

nitrogen in the 3-position has an electrostatically unfavor-

able interaction with Glu138.

An interesting aside is that in the original publication,

it was thought that the 2,5-disubstituted thiazole in Figure

1.13 showed weak activity with an EC50 of 3.1 �M, which

was out of line with the FEP results.24 It was subsequently

found that instead of the 2,5-isomer, the 2,4-isomer (S and

N interchanged in the structure in Figure 1.13) was the

actual compound that had been synthesized and assayed,

as confirmed by a crystal structure. The two isomers are not

unequivocally distinguishable by NMR. An alternative syn-

thetic route was then pursued to yield the 2,5-isomer, which

is indeed inactive, as predicted by the FEP calculations.

Small group scans

In addition to the heterocycle scans, small group scans

are highly informative. These are performed routinely with

BOMB to build the structures and provide initial scor-

ing, followed by refinement with FEP calculations. A stan-

dard protocol with BOMB is to replace each hydrogen of a

core, especially aryl hydrogens, with ten small groups that

have been selected for difference in size, electronic char-

acter, and hydrogen-bonding patterns: Cl, CH3, NH2, OH,

CH2NH2, CH2OH, CHO, CN, NHCH3, and OCH3. This is

generally adequate to define likely places for beneficial sub-

stitution of hydrogen by the least polar groups, Cl, CH3,

and OCH3. The situation with the polar groups is less clear

because of the competition for the ligand between hydro-

gen bonding in the complex versus unbound in water. As

long as some hydrogens appear viable for substitution, a

chlorine and/or methyl scan using FEP calculations is then

desirable to obtain quantitatively reliable predictions. The

potential value of using both a chlorine and methyl scan

is well illustrated by the results in Figure 1.14; knowing the

optimal position for a methyl group and a chlorine provides

an activity boost from 30 �M to 39 nM in this case.11–13

A chlorine scan was also particularly helpful in evolv-

ing the inactive oxadiazole 3 in Figure 1.4 into potent anti-

HIV agents. 3 had emerged in third place after the dock-

ing exercise and embedded among known, potent NNRTIs.

The docking pose and the structure of the complex as

built by BOMB also looked reasonable, although the score

from BOMB was modest because of poor accommoda-

tion of the methoxy groups in the vicinity of Tyr181 and

Tyr188. Assuming that the tricyclic core might be viable,

the substituents were removed and a chlorine scan was

performed using MC/FEP simulations.5,24 The predicted

changes in free energy of binding for replacing each hydro-

gen by chlorine are summarized in Figure 1.15; again for-

mally equivalent positions become nonequivalent in the

complexes. The scan indicated that the most favorable

positions for introduction of chlorines were at C3 and

C4 in the phenyl ring and at C2 and C6 in the benzyl

ring. A series of polychloro analogs were then synthe-

sized and the activities were found to closely parallel the

predictions (Scheme 3). The core and, for example, the

4,4´-dichloro analog were inactive; however, the illustrated
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