Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA (arachidonic acid)</td>
<td>19, 20, 76–7, 110</td>
</tr>
<tr>
<td>AAP (American Academy of Pediatrics)</td>
<td>68, 77, 133</td>
</tr>
<tr>
<td>Abrams, B.</td>
<td>151</td>
</tr>
<tr>
<td>absorption</td>
<td></td>
</tr>
<tr>
<td>iron, mineral, during pregnancy</td>
<td>29</td>
</tr>
<tr>
<td>acrodermatitis enteropathica</td>
<td>26, 28</td>
</tr>
<tr>
<td>active transport, of minerals</td>
<td>30</td>
</tr>
<tr>
<td>activity, maternal, and birth size</td>
<td>47–8</td>
</tr>
<tr>
<td>acupuncture</td>
<td>140</td>
</tr>
<tr>
<td>acute lymphoblastic leukemia (ALL)</td>
<td>157</td>
</tr>
<tr>
<td>adaptation to pregnancy</td>
<td></td>
</tr>
<tr>
<td>changes in maternal physiology, 1–2</td>
<td></td>
</tr>
<tr>
<td>early pregnancy, and placental and fetal growth, 3</td>
<td></td>
</tr>
<tr>
<td>endocrinology, 2</td>
<td></td>
</tr>
<tr>
<td>maternal nutrient availability, 3–4</td>
<td></td>
</tr>
<tr>
<td>maternal nutrition and fetal growth, 4</td>
<td></td>
</tr>
<tr>
<td>metabolic changes, 2–3</td>
<td></td>
</tr>
<tr>
<td>mineral requirements</td>
<td></td>
</tr>
<tr>
<td>absorption</td>
<td>29</td>
</tr>
<tr>
<td>excretion</td>
<td>29</td>
</tr>
<tr>
<td>overview</td>
<td>29</td>
</tr>
<tr>
<td>placental transfer, 30</td>
<td></td>
</tr>
<tr>
<td>recommended daily intake, 30</td>
<td></td>
</tr>
<tr>
<td>utilization and redistribution of body stores, 29–30</td>
<td></td>
</tr>
<tr>
<td>overview</td>
<td>1</td>
</tr>
<tr>
<td>adipokines</td>
<td>5–6</td>
</tr>
<tr>
<td>adiponectin</td>
<td>5–6</td>
</tr>
<tr>
<td>adiposity, fetal, 18</td>
<td>See also fat</td>
</tr>
<tr>
<td>adjustable fortification of human milk,</td>
<td>86–7</td>
</tr>
<tr>
<td>adolescent pregnancies. See teenage pregnancies</td>
<td></td>
</tr>
<tr>
<td>agouti viable yellow (Av) mouse, 184–5, 191, 192</td>
<td></td>
</tr>
<tr>
<td>Agtr1b (angiotensin II receptor, type 1b gene)</td>
<td>188</td>
</tr>
<tr>
<td>ALA (alpha-linolenic acid)</td>
<td>66, 134</td>
</tr>
<tr>
<td>(\alpha)-linolenic acid (LNA)</td>
<td>76–7</td>
</tr>
<tr>
<td>ALL (acute lymphoblastic leukemia)</td>
<td>157</td>
</tr>
<tr>
<td>allergies</td>
<td></td>
</tr>
<tr>
<td>and breast-feeding, 66, 68</td>
<td></td>
</tr>
<tr>
<td>introduction of complementary foods, 103</td>
<td></td>
</tr>
<tr>
<td>peanuts and other nuts, 133–4</td>
<td></td>
</tr>
<tr>
<td>alpha-linolenic acid (ALA)</td>
<td>66, 134</td>
</tr>
<tr>
<td>alternative therapies, for HG</td>
<td>140</td>
</tr>
<tr>
<td>American Academy of Pediatrics (AAP)</td>
<td>68, 77, 133</td>
</tr>
<tr>
<td>American Dietetic Association, 100</td>
<td></td>
</tr>
<tr>
<td>American Society of Parenteral and Enteral Nutrition (ASPEN), 141</td>
<td></td>
</tr>
<tr>
<td>amino acids</td>
<td></td>
</tr>
<tr>
<td>abnormal delivery of to fetus with IUGR, 17</td>
<td></td>
</tr>
<tr>
<td>arginine, and pre-eclampsia, 55</td>
<td></td>
</tr>
<tr>
<td>fetal metabolism, 16–17</td>
<td></td>
</tr>
<tr>
<td>formulas based on, 97</td>
<td></td>
</tr>
<tr>
<td>neonate nutritional requirements, 76</td>
<td></td>
</tr>
<tr>
<td>placental and fetal metabolism, 12, 17–18</td>
<td></td>
</tr>
<tr>
<td>placental transport capacity, 7</td>
<td></td>
</tr>
<tr>
<td>placental transport from mother to fetus, 16</td>
<td></td>
</tr>
<tr>
<td>preterm infant requirements, 83–4</td>
<td></td>
</tr>
<tr>
<td>protein requirements during pregnancy, 15–16</td>
<td></td>
</tr>
<tr>
<td>transport across placenta, 7</td>
<td></td>
</tr>
<tr>
<td>anabolic hormones, 12. See also insulin</td>
<td></td>
</tr>
<tr>
<td>Anderson, A.S., 125</td>
<td></td>
</tr>
<tr>
<td>anemia. See iron</td>
<td></td>
</tr>
<tr>
<td>anencephaly, 28</td>
<td></td>
</tr>
<tr>
<td>Angelman syndrome (AS)</td>
<td>186</td>
</tr>
<tr>
<td>angiotensin II receptor, type 1b gene (Agtr1b), 188</td>
<td></td>
</tr>
<tr>
<td>animal studies</td>
<td></td>
</tr>
<tr>
<td>agouti viable yellow mouse, 184–5, 191, 192</td>
<td></td>
</tr>
<tr>
<td>Axin1v mouse, 185, 191–2</td>
<td></td>
</tr>
<tr>
<td>cow and sheep IVF, 187</td>
<td></td>
</tr>
<tr>
<td>diet-associated hypomethylation in sheep, 183–4</td>
<td></td>
</tr>
<tr>
<td>embryo culture, 186–7</td>
<td></td>
</tr>
<tr>
<td>maternal nutrient availability, 3</td>
<td></td>
</tr>
<tr>
<td>transgenerational epigenetic modification, 191–2</td>
<td></td>
</tr>
<tr>
<td>antenatal estimates of fetal growth, 34–5</td>
<td></td>
</tr>
<tr>
<td>antibodies, in breast milk, 66</td>
<td></td>
</tr>
<tr>
<td>antiemetics, 139</td>
<td></td>
</tr>
<tr>
<td>antihistamines, 139</td>
<td></td>
</tr>
<tr>
<td>antioxidants, 54–5. See also specific antioxidants by name</td>
<td></td>
</tr>
<tr>
<td>antral follicle development, 168</td>
<td></td>
</tr>
<tr>
<td>appropriateness of fetal growth</td>
<td></td>
</tr>
<tr>
<td>birthweight versus estimated fetal weights and statistically modelled trajectories, 37–8</td>
<td></td>
</tr>
<tr>
<td>importance of accurate data for gestational duration, 34–5</td>
<td></td>
</tr>
<tr>
<td>nonpathological determinants, 36–7</td>
<td></td>
</tr>
<tr>
<td>overview, 34</td>
<td></td>
</tr>
<tr>
<td>selecting standard of growth, 35–6</td>
<td></td>
</tr>
<tr>
<td>ways to measure, 38–9</td>
<td></td>
</tr>
<tr>
<td>arachidonic acid (AA), 19, 20, 76–7, 110</td>
<td></td>
</tr>
<tr>
<td>arginine and preeclampsia, 55</td>
<td></td>
</tr>
<tr>
<td>for preterm infants, 83–4</td>
<td></td>
</tr>
<tr>
<td>ART (assisted reproduction), 174. See also egg and embryo quality</td>
<td></td>
</tr>
<tr>
<td>arterial blood pressure, during pregnancy, 1</td>
<td></td>
</tr>
<tr>
<td>AS (Angelman syndrome), 186</td>
<td></td>
</tr>
<tr>
<td>ascorbic acid. See vitamin C</td>
<td></td>
</tr>
</tbody>
</table>
ASSEN (American Society of Parenteral and Enteral Nutrition), 141
assisted reproduction (ART), 174. See also egg and embryo quality
asthma, and breast-feeding, 111
atopic diseases and breast-feeding, 66, 68 introduction of complementary foods, 103
peanuts and other nuts, 133–4
Australian Breastfeeding Association, 76, 78
aversions, 133
Av (agouti viable yellow) mouse, 184–5, 191, 192
AXIN1m methylation, variation in human, 185
AXIN1m mouse, 185, 191–2
Beckwith-Wiedemann syndrome (BWS), 174, 186
best growth, of neonates, 73. See also individualized fetal growth curves
birth defects. See also specific defects by name
and mineral deficiencies, 28
and vitamin A, 158
birth weight. See also fetal growth; low birth weight; maternal diet
and hyperemesis gravidarum, 141
maternal nutrition and, 29
metabolic programming, 73
multiple pregnancy, 151–2
teenage pregnancies, 122
vegetarian/vegan pregnancies, 130
birth weight ratio, 39
bisphenol A (BPA), 185
blood pressure
impact of breast-feeding on adult, 111
lactation and, 114
during pregnancy, 1
blood volume, increase in during pregnancy, 1
body fat. See also fat
fetal, 18
preterm infant, 83
body mass index (BMI)
teensage pregnancies, 122
weight gain guidelines specific to, 151
body stores
mineral, in infants, 28–9
redistribution of during pregnancy, 29–30
body weight, parental. See also birth weight; weight
Botto, L. D., 156
Boyd Orr Cohort, 111
BPA (bisphenol A), 185
brain, impact of mineral deficiencies on, 29
brain tumors, 157
breast cancer, and breast-feeding in child, 111
in mother, 112–13
breast milk. See human milk
breast-feeding
benefits for child
asthma, 111
breast cancer, 111
cardiovascular disease, 111
coognition, 110–11
immune function, 108–9
overweight and obesity, 109–10
type 1 diabetes, 111–12
type 2 diabetes, 112
benefits for mother
breast cancer, 112–13
cardiovascular disease, 114–15
diabetes, 114
postpartum weight loss, 113–14
versus formula-feeding, 66–7, 92, 99–100
milk production and composition, 63–5
and mineral deficiencies, 28
nutritional requirements beyond 6 months of age, 78–9
carbohydrate, 77
fat and fatty acids, 76–7
fluids, 77
micronutrients, 77–8
overview, 72
protein, 76
6 months debate regarding energy requirements, 75–6
targets for, 73–5
overview, 106–8
preterm infants
early nutrition and later health, 88–9
important considerations, 65
nutritional requirements, 86
postdischarge, 88
Bunin, G. R., 157
B-vitamins in periconceptional diet, 174–5. See also specific B-vitamins by name
BWS (Beckwith-Wiedemann syndrome), 174, 186
calcium
in breast milk, 28
importance during pregnancy, 24
mineral deficiencies, 26
neonatal nutritional requirements, 78
placental transfer, 30
and preeclampsia, 40, 55–6
preterm infant requirements, 84–5
supplementation during multiple pregnancy, 150
transport across placenta, 7
utilization and stores of during pregnancy, 30
vegetarian and vegan pregnant women, 132
calcium signalling, 171–2
calcium soaps, 84
California Birth Defects Monitoring Program, 159
Callins, K. R., 123
cancers
breast, and breast-feeding in child, 111
in mother, 112–13
folate and, 160
pediatric, 156–7
carbohydrates
in cow's milk–based formulas, 95
multiple pregnancy, 148–9
neonate nutritional requirements, 77
vegetarian/vegan pregnancies, 131
CARDIA (Coronary Artery Risk and Development in Young Adults Study), 114
cardiac output, during pregnancy, 1
cardiovascular disease, and breast-feeding in child, 111
in mother, 114–15
cardiovascular system, changes in maternal, 1
carnitine palmitoyl transferase 1 (CPT1), 20
Carter, J. P., 58

case-control studies, 106

casein, 64, 93

catch-up growth, 73

cell differentiation, 181–2

Centers for Disease Control and Prevention (CDC)

BMI percentiles, 122

breast-feeding, 106

growth references, 99–100

CESDI (Confidential Enquiry into Stillbirths and Deaths in Infantery), 53

CHDs (congenital heart defects), 156

cheeses, 134

Chinese herbal medicine, 56

chloride-deficient formulas, 97

cholesterol infant requirements, 65

low-density lipoprotein, 19

clefts, 155–6

cobalamin. See vitamin B12

Cochrane reviews

antioxidants and preeclampsia, 40, 54

calcium and preeclampsia, 55–6

cognition, and breast-feeding, 110–11

cohort studies, 106

colostrum, 63

Committee on Toxicity, UK, 134

compaction, 173

complementary feeding, 100–3. See also weaning

conception, maternal undernutrition before, 45–7

Confidential Enquiry into Stillbirths and Deaths in Infantery (CESDI), 53

conflict theory of imprinting evolution, 189

congenital heart defects (CHDs), 156

congenital malformations, and vitamin A, 158

Consumer Attitudes Survey 2007, UK Food Standards Agency, 125–6

continuum theory, preeclampsia, 53

cooking skills program, 125

copper

excretion during pregnancy, 29

importance during pregnancy, 24

mineral deficiencies, 28

placental transfer, 30

teenage pregnancies, 123

Coronary Artery Risk and Development in Young Adults Study (CARDIA), 114

corticosteroids, for HG, 139–40

cow’s milk

fatty acids in, 102

as formula replacement, 97

formulas based on, 93–95

versus human milk, 106

teenage pregnancies, consumption during, 124

CpGs (cytosine guanine dinucleotides), 181

CPT1 (carnitine palmitoyl transferase 1), 20

cravings, 133

Crowley, J. E., 192

crowther, C. A., 57

cultural beliefs and practices, and undernutrition, 47

culture, embryo epigenetic aberrations after animal, 186–7

preimplantation development, 173–4

cycloheximide-activated embryos, 171

cytokines, 172

cytosine guanine dinucleotides (CpGs), 181

Czeizel, A. E., 155, 156

daily intake, of minerals, 25–6, 30

dairy products, 134

Daly, S., 160

DBM (donor breast milk), 87

deficiencies, nutritional effects of, 27–9

extent of, 25–7

overview, 25

and preeclampsia

antioxidants, 54–5

arginine, 55

calcium, 55–6

Chinese herbal medicine, 56

fish oil, 56

folic acid, 56

garlic, 56

iron, 57

Japanese herbal medicine, 57

magnesium, 57

multiple micronutrient supplementations, 57

overview, 53–4

salt intake, 57

zinc, 58

Department of Health Services, 106

developing world

breast-feeding and immune function in, 109

maternal diets in macronutrients, 47–8

maternal undernutrition before conception, 45–7

micronutrients, 48–50

overview, 44

prevalence of LBW in, 45

reappraisal of maternal interventions, 50

teenage pregnancies in, 120

use of formula in, 100

developmental legacy of calcium signalling, 171–2

DHA (docosahexaenoic acid)

cognition and, 110

fetal accumulation of, 20

infant requirements, 66, 76–7

maternal needs during lactation, 68

transfer by placenta, 19

vegetarian and vegan pregnant women, 134–5

diabetes mellitus

environmental effects during embryogenesis, 187–8

maternal, and breast-feeding, 114

type I, 111–12

type II, 15, 112, 114

diarrhea, and breast-feeding, 108–9

diet, maternal. See maternal diet

diet-associated hypomethylation in sheep, 183–4

diet-induced hypermethylation in agouti mouse, 184–5

Dietary Guidelines for Americans 2005, 130

dietary manipulations, and epigenetics, 180
differentiation, cell, 181–2
diseases. See also specific diseases by name
and mineral deficiencies, 27
and neonate nutritional requirements, 73
DNA methylation. See also epigenetics
B-vitamins in periconceptional diet, 174–5
epigentic variation in human AXIN1, 185
and histone modification, 182
hypermethylation in agouti\(^{\text{V}}\) mouse, 184–5
hypomethylation in sheep, 183–4
maternal nutrition and, 4
overview, 181–2
transcriptional activity and, 167–8, 173

docosahexaenoic acid. See DHA
donor breast milk (DBM), 87
Doyle, W., 125
D-penicillamine, 27

drugs. See also specific drugs by name
for hyperemesis gravidarum, 139–40
and mineral deficiencies, 26–7
and vitamin deficiency, 157
Dudley, N., 38
Dupont, C., 76
duration of gestation (GA)
growth charts, 37–8
importance of accurate data for, 34–5
nonpathological determinants of fetal growth, 36
overview, 34
duration of lactation
and breast cancer risk, 112–13
and diabetes, 114
and postnatal weight loss, 113–14
Dutch famine, 3, 39
early nutrition, preterm infant, 88–9
early pregnancy
as determinant of placental and fetal growth, 3–4
nutrition during and birth weight, 48
weight gain during, for multiple pregnancy, 151–2
economic consequences, of HG, 139
education, maternal, 47
EFAs. See essential fatty acids; long-chain polyunsaturated fatty acids
EFNEP (Expanded Food and Nutrition Education Program), 124–5
egg and embryo quality
fertilization, 171–2
ovarian folliculogenesis and oocyte maturation, 167–71
overview, 167
preimplantation development, 172–5
11-\(\beta\)HSD enzyme, 4
Elster, A. D., 152
embryo, epigenetics of early. See also egg and embryo quality aberrations after animal culture, 186–7
changes restricted to subset of genes, 185
cow and sheep IVF, 187
diet-associated hypomethylation in sheep, 183–4
diet-induced hypermethylation in agouti\(^{\text{V}}\) mouse, 184–5
environmental effect on human IVF, 186
neural tube defects, 185
variation in human AXIN1 methylation, 185
zygote, 183
embryogenesis, environmental effects during, 187–9
Emmett, P. M., 77
endocrinology, of pregnancy, 2
endometrial glands, 3
endothelial dysfunction, 53
energy cost of lactation, 67
energy density, of milk, 64
energy requirements
infant, 65–6
during lactation, 67–8
macronutrient needs in developing countries, 47
for preterm infants, 83, 84
6 months debate regarding, 75–6
vegetarian and vegan pregnant women, 130–1
enteral nutrition
for preterm infants, 86–7
as therapy for hyperemesis gravidarum, 141–2
environmental effects, and epigenetics
animal aberrations, 186–7
during embryogenesis, 187–9
on human IVF, 186
overview, 180
enzymes, antioxidant, 54
epigenetics. See also egg and embryo quality
of early embryo aberrations after animal culture, 186–7
changes restricted to subset of genes, 185
cow and sheep IVF, 187
diet-associated hypomethylation in sheep, 183–4
diet-induced hypermethylation in agouti\(^{\text{V}}\) mouse, 184–5
environmental effect on human IVF, 186
neural tube defects, 185
variation in human AXIN1 methylation, 185
zygote, 183
embryogenesis, environmental effects during, 187–9
during germ cell development, 189–90
growth of placenta and transport capacity, 12
maternal nutrition and fetal growth, 4
modifications
cycles of, 182–3
DNA methylation, 181–2
histone, 182
overview, 180–1
transgenerational modification, 190–2
ESPGHAN Committee on Nutrition, 79
essential fatty acids (EFAs). See also long-chain polyunsaturated fatty acids
fetal accumulation of, 20
maternal diet and supply of, 19–20
metabolism and transfer by placenta, 19
multiple pregnancy, 150–1
estrogen, 2
ethnicity, and fetal growth, 36–7
exaggerated inflammatory response, 53
exclusive breast-feeding, 107. See also breast-feeding
excretion, mineral, during pregnancy, 29
exercise, and preeclampsia, 58
Expanded Food and Nutrition Education Program (EFNEP), 124–5
FABPs (fatty acid binding proteins), 19
famine, Dutch, 3, 39
FAO (fatty acid oxidation), in fetus, 20
farming activities, and birth size, 47–8
fat
in cow’s milk-based formulas, 95
fetal body, 18
infant requirements, 65–6, 76–7
in milk, 64–5
preterm infant body, 83
preterm infant requirements, 84
fatty acid binding proteins (FABPs), 19
fatty acid oxidation (FAO), in fetus, 20
fatty acids. See also essential fatty acids
complementary feeding, 101–3
in cow’s milk-based formulas, 95
early pregnancy, 3
infant requirements, 66, 76–7
during lactation, 68
in milk, 65
multiple pregnancy requirements, 150–1
placental and fetal metabolism, 12
placental lipid metabolism and fetal lipid supply, 18
placental uptake, synthesis, and metabolism of, 18–19
preterm infant requirements, 84
from soya, 134
transport across placenta, 7
vegetarian and vegan pregnant women, 134–5
FDA (Food and Drug Administration), 97
ferritin levels, serum, 149–50
fertilization, 171–2
fetal growth. See also placenta
macronutrients
amino acids, 15–18
glucose, 12–15
lipids, 18–20
overview, 12
measuring appropriateness of birth weight versus estimated fetal weights and statistically modelled trajectories, 37–8
importance of accurate data for gestational duration, 34–5
nonpathological determinants of, 36–7
overview, 34
selecting standard of, 35–6
ways to measure, 38–9
mechanisms linking maternal nutrition and, 4
metabolic programming, 73
nutrient supplementation and, 40–1
overview, 41
role of maternal nutrition in, 39–40
fetal programming, 29
fetometry, ultrasound, 34
fetus. See also fetal growth; mineral requirements; placenta
accumulation of essential fatty acids, 20
amino acid metabolism, 16–17
fatty acid oxidation in, 20
glucose production by, 14
insulin secretion, 14
lipid metabolism, 20
lipid supply, 18
outcome of mineral deficiencies, 28
vascular development in, 4
FFAs (free fatty acids), 18
fiber intake, vegetarian/vegan, 131
fish oil
and preeclampsia, 56
vegetarian and vegan pregnant women, 134–5
folate
childhood insulin resistance and, 188
methyl deficiency, 183–4
neural tube defects and, 28, 155
and preeclampsia, 56
supplementation during pregnancy, 40, 50, 159–60
teenage pregnancies, 123
vegetarian and vegan pregnant women, 131–2
folate antagonists, 160
folliculogenesis, ovarian, 167–71
follow-up formulas, 97
Fomon, S. J., 92
Food and Drug Administration (FDA), 97
food safety advice, 134
Food Standards Agency, 125–6, 133,
134
food vouchers, WIC, 124
food-based maternal interventions, 50
formula feeding
versus breastfeeding, 66–7, 109
complementary feeding, 100–3
composition of formulas, 93–7
fatty acids in infants receiving, 84
growth of infants, 99–100
history of formulas, 92–3
overview, 92
postdischarge formulas, 88, 89
preterm infant formulas, 87, 88, 89
regulation of formulas, 97–9
term formulas for preterm infants, 87, 88
fortified human milk, 86–7
free fatty acids (FFAs), 18
free radical scavengers, 54
free radicals, 57
GA. See duration of gestation
gametogenesis, 189
garlic, and preeclampsia, 56
Garza, C., 73
gastrointestinal infections, and breast-feeding, 108
gastrostomy tubes, 142
gender bias, 46–7
gene promoters, 181
gene silencing, 181
genes, imprinted, 12, 169, 174, 181,
189–90. See also epigenetics
genetic disorders of dietary deficiencies, 26, 28
genetic factors, and vitamin deficiency, 157
genetic predisposition toward preeclampsia, 59
genistein, 185
Gerber Products Company, 100
germ cell development, altered epigenetics during, 189–90
gestation, undernutrition during periods of, 47
gestational duration. See duration of gestation
gestational hypertension. See preeclampsia
GH (growth hormone), placental, 4–5
ghrelin, 3
ginger, for HG, 140
glucocorticoid receptor gene (GR), 188
glucocorticoids, maternal, 4
gluconeogenesis, 14
fetal insulin secretion, 14
fetal production, 14
fetal utilization, 13–14
intrauterine growth restriction, 14–15
placental and fetal metabolism, 12
placental transport and metabolism, 12–13
placental transport capacity, 7
transport across placenta, 7
glucose transport protein isoform 1 (GLUT1), 12–13
glucose transport protein isoform 3 (GLUT3), 12
glycemic control, maternal, 4
glycogen, 14
GM-CSF (granulocyte-macrophage colony-stimulating factor), 172
Goodwin, T. M., 138
GR (glucocorticoid receptor gene), 188
grandparental food supply, 190
granulocyte-macrophage colony-stimulating factor (GM-CSF), 172
Groth, S. G., 122
growth. See also fetal growth; infant growth
catch-up, 73
placental, impact of imprinted genes on, 189–90
growth charts, 37–8, 73
growth factors, placental, 6
growth hormone (GH), placental, 4–5
growth potential, parental, 36
Gunnarsson, B. S., 78
Haaf, T., 169
hem iron, 26, 149
hCG (human chorionic gonadotropin), 2
hCS (human choriionic somatomammotropin), 4–5
Hct (hematocrit), 149–50
healthy growth, of neonates, 73
Hediger, M. L., 149–50
HELLP syndrome, 55
hematocrit (Hct), 149–50
hemoglobin (Hgb), 149–50
herbal medicine
Chinese, 56
Japanese, 57
HG. See hyperemesis gravidarum
Hgb (hemoglobin), 149–50
histone modifications, 181, 182
HIV (human immunodeficiency virus), 157
HMF (human milk fortifier), 86–7
homocysteine, 56, 160–1
Howie, L. A., 122
human AXIN1 methylation, variation in, 185
human chorionic gonadotropin (hCG), 2
human chorionic somatomammotropin (hCS), 4–5
human immunodeficiency virus (HIV), 157
human milk. See also breast-feeding; cow's milk; formula feeding; lactation
and mineral deficiencies, 28
as model for formula composition, 93
prepartum, 63
preterm infants
early nutrition and later health, 88–9
enteral nutrition for, 86–7
production and composition, 63–5
human milk fortifier (HMF), 86–7
humanized milk fortifier, 87
Hunt, D. J., 123–4
hydrocortisone, 140
hydrolyzed formulas, 95–7
hyperemesis gravidarum (HG) and nutrition, 141–3
overview, 138–9
treatment of, 139
hyperhomocysteinemia, 56, 160–1
hypermethylation, diet-induced, 184–5
hyperpyloric stenosis, 156
hypertension. See also preeclampsia
environmental effects during embryogenesis, 188
lactation and, 114
hypoglycemia, fetal, 14–15
hypomethylation, diet-associated, 183–4
ICSI (intracytoplasmic sperm injection), 172
IGF-1 (insulin-like growth factor 1), 4, 6, 16–17
IGF-2 (insulin-like growth factor 2), 6
Igf2 gene, 12, 189–90
IGFBP (insulin-like growth factor binding proteins), 6
illness and mineral deficiencies, 27
and neonate nutritional requirements, 73
immune function, and breast-feeding, 66, 108–9
immunoglobulins, 108
imperforate anus, 156
imprinted genes, 12, 169, 174, 181, 189–90. See also epigenetics
in vitro fertilization (IVF) animal, 186–7
human, 186
in vitro maturation (IVM), 169
individualized birth weight ratio, 39
individualized fetal growth curves measuring appropriateness of growth
birth weight versus estimated fetal weights and statistically modelled trajectories, 37–8
importance of accurate data for gestational duration, 34–5
nonpathological determinants of, 36–7
overview, 34
selecting standard of, 35–6
ways to measure, 38–9
nutrient supplementation, 40–1
overview, 41
role of maternal nutrition, 39–40
Infant Formula Act of 1980, 97–9
infant growth. See also neonatal nutrition
formula-fed infants, 99–100
macronutrients for
breast-fed versus formula-fed infants, 66–7
human milk production and composition, 63–5
infant nutritional requirements, 65–6
mammary growth, 63
maternal malnutrition and restrictions, 69
maternal needs, 67–8
infants. See breast-feeding; formula feeding; infant growth; neonatal nutrition; preterm infants; weaning
infections, breast-feeding and, 108–9
inflammatory response, exaggerated, 53
involvement after lactation, 113
iodine
importance during pregnancy, 24–5
mineral deficiencies, 26, 29
vegetarian and vegan pregnant women, 132
IOM (Institute of Medicine) BMI cutoffs, 122
iron
absorption during pregnancy, 29
in breast milk, 29
complementary feeding, 100–1
and folate, 28
importance during pregnancy, 25
mineral deficiencies, 26, 27–8, 29
multiple pregnancy, 149–50
neonate nutritional requirements, 78
and preeclampsia, 57
preterm infant requirements, 85
stores of during pregnancy, 29–30
supplementation during pregnancy, 40, 50
teenage pregnancies, 123
vegetarian and vegan pregnant women, 131
IUGR. See intrauterine growth restriction
IVF. See in vitro fertilization
IVM (in vitro maturation), 169
Korean Women's Health study, 114
LA (linoleic acid), 66, 76–7
large offspring syndrome (LOS), 174, 187
last normal menstrual period (LNMP) method, 34
Lawlor, D. A., 119
LBW. See low birth weight; maternal diet
LCPUFAs. See long-chain polyunsaturated fatty acids
lean body weight, parental, 36
Leeda, M., 56
leptin, 4, 6, 122
leucine, 17
levomepromazine, 139
lifestyle factors, and preeclampsia, 58
limb defects, 156
linoleic acid (LA), 66, 76–7
linolenic acid, 19
lipids
essential fatty acid metabolism and transfer by placenta, 19
fatty acid oxidation in fetus, 20
fetal accumulation of essential fatty acids, 20
fetal lipid metabolism, 20
fetal lipid supply, 18
infant requirements, 65–6
maternal diet and essential fatty acid supply, 19–20
in milk, 64–5
placental lipid metabolism, 18, 20
placental transport capacity, 7
placental uptake, synthesis, and metabolism of fatty acids, 18–19
lipolysis, 18
lipoprotein cholesterol, low-density, 19
lipoprotein lipase activity, 18
listeria, 134
literacy, maternal, 47
LNA (α-linolenic acid), 76–7
LNMP (last normal menstrual period) method, 34
long-chain polyunsaturated fatty acids (LCPUFAs)
atopic diseases and, 66
complementary feeding, 102–3
in cow’s milk-based formulas, 95
fetal accumulation of, 20
in human milk, 65
infant requirements, 66, 76–7
during lactation, 68
maternal diet and supply of, 19–20
metabolism and transfer by placenta, 19
multiple pregnancy, 150–1
preterm infant requirements, 84
reactive oxygen species production, 171–2
from soya, 134
vegetarian and vegan pregnant women, 134–5
LOS (large offspring syndrome), 174, 187
LOVs (lacto-ovo vegetarians). See vegetarian/vegan pregnant women
low birth weight (LBW). See also maternal diet in developing world, 44, 45
teenage pregnancies, 122
low-density lipoprotein cholesterol, 19
lower respiratory tract infections (LRTI), 108–9, 111
Lubchenco, L. O., 35, 38
Lucas, A., 88
Luke, B., 149–50
lysines, methylation of, 182
macrobiotic diets, 130. See also vegetarian/vegan pregnant women
macronutrients. See also specific macronutrients by name
for lactation and infant growth
breast-fed versus formula-fed infants, 66–7
human milk production and composition, 63–5
infant nutritional requirements, 65–6
mammary growth, 63
maternal malnutrition and restrictions, 69
maternal needs, 67–8
maternal diets in developing world, 47–8
pregnancy and feto-placental growth
amino acids, 15–18
glucose, 12–15
lips, 18–20
overview, 12
role of maternal nutrition in fetal growth, 39–40
vegetarian and vegan pregnant women, 130–1
magnesium
importance during pregnancy, 25
mineral deficiencies, 27
and preeclampsia, 57
supplementation during multiple pregnancy, 150
utilization and stores of during pregnancy, 29–30
Maia, P. A., 123
Makrides, M., 57
malformations, and vitamin A, 158. See also specific malformations by name
malnutrition. See also maternal diet and hyperemesis gravidarum, 141–3
and lactation, 69
maternal, before conception, 45–7
malonyl-CoA, 20
mammalian target of rapamycin (mTOR), 3, 8, 17
mammary growth, 63
mastitis, 75
maternal breast milk (MBM). See breast-feeding: human milk; lactation
maternal diet in developing world
macronutrients, 47–8
maternal undernutrition before conception, 45–7
micronutrients, 48–50
overview, 44
prevalence of LBW in, 45
reappraisal of maternal interventions, 50
and egg quality, 169–70
and embryo quality, 174
and essential fatty acid supply, 19–20
manipulations to, and epigenetics, 180
multiple pregnancy, 148–49
and preeclampsia, 58, 59
maternal nutrition. See mother
Maternity Alliance, 125–6
MBD (metabolic bone disease), 85
MBM (maternal breast milk). See breast-feeding; human milk; lactation
McCance, R. A., 47
medical risks of teenage pregnancies, 120
medications. See also specific medications by name
for hyperemesis gravidarum, 139–140
and mineral deficiencies, 26–7
and vitamin deficiency, 157
Menkes syndrome, 26, 28
metabolic bone disease (MBD), 85
metabolic programming, 73
metabolic syndrome, 187–8
metabolism carbohydrate, and multiple pregnancy, 148–9
changes in gestation, 2–3
essential fatty acid, and transfer by placenta, 19
fetal
amino acid, 16–18
lipid, 20
nutrient substrates for, 12
placental
amino acid, 17–18
fatty acid, 18–19
glucose, 12–13
lipid, 18
nutrient substrates for, 12
methionine, 95, 159, 183–4
methyl deficiency, 183–4
methylation. See DNA methylation; epigenetics
methylprednisolone, 140
metoclopramide, 139
MI (myocardial infarction), 114
mice agouti viable yellow, 184–5, 191, 192
Axin1−/−, 185, 191–2
micronutrients. See also specific micronutrients by name

depletion of, and teenage pregnancy outcome, 123
maternal diets in developing world, 48–50
multiple supplementations, and preeclampsia, 57
neonate nutritional requirements, 77–8
reappraisal of maternal interventions, 50
role of maternal nutrition in fetal growth, 40

milk, human. See also breast-feeding; cow’s milk; formula feeding; lactation
fortified, 86–7
and mineral deficiencies, 28
as model for formula composition, 93
prepartum, 63
preterm infants
early nutrition and later health, 88–9
enteral nutrition for, 86–7
production and composition, 63–5

Milman, N., 40
Milunsky, A., 155

mineral absorption, and cow’s milk–based formulas, 95
mineral content of soy-based formulas, 95
mineral requirements. See also See supplementation
adaptations during pregnancy and lactation
absorption, 29
excretion, 29
overview, 29
placental transfer, 30
recommended daily intake, 30
utilization and redistribution of body stores, 29–30
deficiencies
effects of, 27–9
extent of, 25–7
overview, 24
for pregnancy, 24–5
minimal enteral feeding, for preterm infants, 86
mirtazapine, 139
miscarriage, and mineral deficiencies, 27

morbidity, LBW-related, 45
mortality
LBW-related, 45
preeclampsia, 53
mother. See also adaptation to pregnancy; lactation; maternal diet; mineral requirements; multiple pregnancy; vegetarian/vegan pregnant

benefits of breast-feeding
breast cancer, 112–13
cardiovascular disease, 114–15
diabetes, 114
postpartum weight loss, 113–14
nonpathological determinants of fetal growth, 36
nutrition of, and fetal growth, 4, 39–40
placental lipid metabolism and fetal lipid supply, 18
placental uptake, synthesis, and metabolism of fatty acids, 18–19
resources, and gene imprinting, 189–90
well-being of, and mineral deficiencies, 27–8
mTOR (mammalian target of rapamycin), 3, 8, 17
Multicenter Growth Reference Study, WHO, 99–100
multimineral supplementation. See supplementation
multiple pregnancy
calcium supplementation, 150
carbohydrate metabolism, 148–9
essential fatty acid requirements, 150–1
and fetal growth, 37
iron status, 149–50
key clinical points, 152
magnesium supplementation, 150
maternal weight gain, 151–2
multivitamin and multimineral supplementation, 150
overview, 147
zinc supplementation, 150
multivitamin supplementation. See supplementation
myocardial infarction (MI), 114
n-3 fatty acids, 65, 66. See also long-chain polyunsaturated fatty acids
n-6 fatty acids, 65. See also long-chain polyunsaturated fatty acids
nasogastric enteral nutrition, 141–2
nasojejunal feeding, 142
National Diet and Nutrition Survey (NDNS) of Young People aged 4 to 18 years, 121
National Institute for Health and Clinical Excellence (NICE), 129–30
neonatal estimates of fetal growth, 34–5
neonatal nutrition. See also breast-feeding; formula feeding beyond 6 months of age, 78–9
carbohydrate, 77
fat and fatty acids, 76–7
fluids, 77
micronutrients, 77–8
overview, 28–9, 72
protein, 76
6 months debate regarding energy requirements, 75–6
targets for, 73–5
neural tube defects (NTDs) epigenetics of early embryo, 185
folate in decreased risk of, 159–60
and mineral deficiencies, 28
supplementation and prevention of, 155
neuroblastoma, 157, 160
NHS (Nurses’ Health Study), 111, 112, 114
NHS II (Nurses’ Health Study II), 109–10, 111, 113, 114
niacin (vitamin B3), 159
NICE (National Institute for Health and Clinical Excellence), 129–30
Nielson, J., 125
nitrogen
nonprotein, 64
requirements during pregnancy, 15–16
non-hem iron, 26, 149
nonprotein nitrogen, 64, 76
NTDs. See neural tube defects
nucleosomes, 182
Nurses’ Health Study (NHS), 111, 112, 114
Nurses’ Health Study II (NHS II), 109–10, 111, 113, 114
nutrients. See also macronutrients; micronutrients; mineral requirements; neonatal nutrition; nutritional deficiencies; specific nutrients by name; supplementation.

complementary feeding, 100–3 in formulas, regulation of, 99 maternal availability of, 3–4 partitioning across placenta, 6–7 placental transport of amino acids from mother to fetus, 16 capacity, and fetal growth, 7–8 growth of placenta and, 12 minerals, 30 regulation of, 8 requirements infant, 65–6 teenage pregnancies, 120–3 term versus preterm infant, 86

nutrition education, WIC, 124

nutritional deficiencies

contribution to preeclampsia antioxidants, 54–5 arginine, 55 calcium, 55–6 Chinese herbal medicine, 56 fish oil, 56 folic acid, 56 garlic, 56 iron, 57 Japanese herbal medicine, 57 magnesium, 57 multiple micronutrient supplemements, 57 overview, 53–4 salt intake, 57 zinc, 58 effects of, 27–9 extent of, 25–7 overview, 25

nuts, 133–4

obesity and breast-feeding, 109–10 and egg quality, 169–70 and intrauterine growth restriction, 15 and preeclampsia, 58 teenage pregnancies, 122 observational studies, 106–7 odansetron, 139 offspring development, and mineral deficiencies, 29 oleic acid, 65

oligosaccharides, 64, 108 Olshan, A. F., 157 omega-3/6 fatty acids. See long-chain polyunsaturated fatty acids omphalocoe, 156 oocyte maturation, 167–71 optimal growth trajectory, 36. See also individualized fetal growth curves; neonatal nutrition optimal nutrition in preterm infants, 86–8 oral clefts, 155–6 oitisis media, and breast-feeding, 108 Oumachigui, A., 120 output, cardiac, during pregnancy, 1 ovarian folliculogenesis, 167–71 ovarian stimulation, and oocyte maturation, 168–9 overgrowth syndromes, 174 overweight and breast-feeding, 109–10 and egg quality, 169–70 and intrauterine growth restriction, 15 and preeclampsia, 58 teenage pregnancies, 122 ovulations, 112 oxidation amino acid, 16 fatty acid, 20 palmitic acid, 65 pantothenic acid (vitamin B5), 159 parental growth potential, 36 parenteral nutrition for preterm infants, 86 as therapy for hyperemesis gravidarum, 142–3 parity, and fetal growth, 37 pathogenesis, of preeclampsia, 53 PCOS (polycystic ovary syndrome), 169–70 PDF (postdischarge formulas), 88, 89 peanuts, 133–4 pediatric cancers, 156–7 percentiles, fetal growth and birth weight, 38–9 percutaneous endoscopic gastrostomy (PEG), 142 percutaneous endoscopic gastrostomy with a jejunial port (PEGJ), 142 periconceptional diet, B-vitamins in, 174–5 peroxisome proliferator-activated receptor gamma (PPAR gamma), 19, 169 pharmaceutical therapy. See medications phosphorus, 84–5 physiology, changes in maternal, 1–2. See also adaptation to pregnancy placenta. See also macronutrients adipokines, role of, 5–6 essential fatty acid metabolism and transfer by, 19 glucose transport and metabolism, 12–13 growth factors, 6 impact of imprinted genes on growth of, 189–90 lipid metabolism, 18, 20 multiple pregnancy, 152 nutrient partitioning across, 6–7 nutrient transport capacity and fetal growth, 7–8 minerals, 30 regulation of, 8 placental-fetal amino acid cycling, 16 secretion of hCS and growth hormone, 4–5 transport of amino acids from mother to fetus, 16 uptake, synthesis, and metabolism of fatty acids, 18–19 vascular development in, 4 plant-based LCPUFAs, 135 plasma, seminal, 172 PLCζ, 171 PMNS (Pune Maternal Nutrition Study), 46, 48, 50 polycystic ovary syndrome (PCOS), 169–70 postdischarge breast-feeding, 88 postdischarge formulas (PDF), 88, 89 postdischarge nutrition, in preterm infants, 87–8, 89 postnatal feeding practices, for IUGR, 15
postnatal programming, 188–89
postpartum weight loss, 67, 113–14
PPARs gene (PPARA), 188
PPAR gamma (peroxisome proliferator-activated receptor gamma), 19, 169
prednisolone, 140
preeclampsia defined, 53
dietary advice, 59
future research, 59
genetic predisposition, 59
implications of, 53
key clinical points, 59
and mineral deficiencies, 27
nutrient supplementation, 40
pathogenesis of, 53
potential contribution to antioxidants, 25–6
primordial-to-primary follicle transition, 167
PROBIT (Promotion of Breastfeeding Intervention Trial), 79, 108
progesterone, 2
promoters, gene, 181
proportion of optimal birth weight, 39
protein. See also amino acids
in cow’s milk-based formulas, 93–5
macronutrient needs in developing countries, 47
in milk, 64
requirements infant, 65, 76
during lactation, 68
during pregnancy, 15–16
for preterm infants, 83
in soy-based formulas, 95
vegetarian/vegan pregnancies, 131
protein hydrolysate formulas, 95–7
protein:energy ratio, 66–7
proteinuria. See preeclampsia
PTF (preterm infant formulas), 87, 88, 89
Pune Maternal Nutrition Study (PMNS), 46, 48, 50
pyloric stenosis, 156
pyridoxine (vitamin B₆), 139, 159
pyridoxine-metaclopramide, 139
RDA (recommended dietary allowance), 30
reactive oxygen species (ROS), 171–2
reappraisal of maternal interventions, 50
recommended daily intake of minerals, 30
recommended dietary allowance (RDA), 30
red blood cell mass, during pregnancy, 1
redistribution of body stores, during pregnancy, 29–30
regulation, of formulas, 97–9
relaxin, 2
renal system
changes in maternal, 2
epigenetic modification, 188
resistant hyperemesis gravidarum, 139
respiratory tract infections, and breast-feeding, 108
rest, and preeclampsia, 58
retinoid syndrome, 158
riboflavin (vitamin B₂), 159
Rogers, I. S., 77
ROS (reactive oxygen species), 171–2
rosiglitazone, 169
Rothman, K. J., 158
S-adenosyl methionine (SAM), 183
salmonella, 134
salt intake, and preeclampsia, 57
Sarasua, S., 157
Schanler, R. J., 87
Scholl, T. O., 122, 150, 151
secondary mineral deficiencies, 25, 26–7
selenium
excretion during pregnancy, 29
importance during pregnancy, 25
mineral deficiencies, 26, 27
placental transfer, 30
utilization and stores of during pregnancy, 30
Selvin, S., 151
seminal plasma, 172
serum, within culture media, 186
serum ferritin levels, 149–50
SES (socioeconomic status), 109
Shaw, G. M., 156
Shaw, M., 119
sheep
diet-associated hypomethylation in, 183–4
in vitro fertilization, 187
Shi, W., 169
silencing, gene, 181
Sinclair, K. D., 183–4
6 months debate regarding energy requirements, 75–6
size at birth. See birth weight; fetal growth
Slc38a4 gene, 189–90
small antral follicles, 168
Smithells, R. W., 155
soaps, calcium, 84
sociodemographic factors, and maternal undernutrition, 46–7
socioeconomic status (SES), 109
solid foods, introduction of, 88. See also weaning
soya, 134
soy-based formulas, 95
Spatone iron supplement, 131
Special Supplemental Food Program for Women, Infants and Children (WIC), 124
spinabifida, 28
ST (syncytiotrophoblast), 6–7
“Starting Well” intervention scheme, 125
stores, body mineral, in infants, 28–9
redistribution of during pregnancy, 29–30
sudden death, cardiac, 114
Sukalich, S., 122
supplementation and fetal growth, 40–1
long-chain polyunsaturated fatty acids, 135
during multiple pregnancy, 150 and nausea and vomiting, 140 overview, 153–8
during pregnancy, 59
role of maternal nutrition in fetal growth, 39
vegetarian and vegan pregnant women, 131, 134–9
vitamin A, 158
vitamin B₁, 158–9
vitamin B₁₂, 160–1
vitamin B₂, 159
vitamin B₆, 159
vitamin B₉, 159
vitamin B₁₂, 159–60
vitamin C, 161
vitamin D, 161
vitamin E, 161
syncytiotrophoblast (ST), 6–7
synthesis, placental, of fatty acids, 18–19
systematically underestimated gestations, 38
systemic vascular resistance, during pregnancy, 1
TIDM (type I diabetes mellitus), 111–12
TIIDM (type II diabetes mellitus), 15, 112, 114
taurine, 83
teenage pregnancies interventions to improve nutritional intake, 123–6
key clinical messages, 119
medical risks of, 120
nutritional requirements of, 120–3 overview, 119–20
term formulas (TF), 87, 88
term infants. See breast-feeding; formula feeding; infant growth; neonatal nutrition; preterm infants; weaning
tGFβ (transforming growth factor beta), 172
therapeutic drugs. See drugs thiamine (vitamin B₁), 138, 158–9
Thorisdottir, I., 78
thyroxine, 24–5
timing of maternal nutrition interventions, 50
TNFα (tumor necrosis factor-alpha), 5
tocopherol. See vitamin E
Tokishakuyaku-san (TS), 57
toxoplasmosis, 134
t trans fatty acids, 68
transcriptional activity, 167–8, 173
transforming growth factor beta (TGFβ), 172
transgenerational epigenetic modification, 190–92
transitional milk, 63
transport, placental nutrient of amino acids from mother to fetus, 16
capacity, and fetal growth, 7–8
glucose, 12–13
growth of placenta and, 12
minerals, 30
regulation of, 8
transporters, glucose, 12–13
treatment, hyperemesis gravidarum, 139
tree nuts, 133
triglycerides, 18, 65
triiodothyronine, 24–5
triplet pregnancies. See multiple pregnancy
true protein content, of milk, 64
TS (Tokishakuyaku-san), 57
tumor necrosis factor-alpha (TNFα), 5
tumors, pediatric, 156–7
twin pregnancies. See multiple pregnancy
two-stage process, preeclampsia, 53
type I diabetes mellitus (TIDM), 111–12
type II diabetes mellitus (TIIDM), 15, 112, 114
UK Committee on Toxicity, 134
UK Food Standards Agency, 125–6, 133, 134
ultrasound fetometry, 34
undernutrition, maternal. See also maternal diet before conception, 45–7 and hyperemesis gravidarum, 141–3
and lactation, 69
United Kingdom Medical Research Council, 155
University of Dundee, 125
University of Helsinki, 79
University of Iowa, 100
uptake, placental, of fatty acids, 18–19
urea, 64
urinary tract anomalies, 156
U.S. Department of Health Services, 106
U.S. Special Supplemental Food Program for Women, Infants and Children (WIC), 124
utilization, mineral, during pregnancy, 29–30
van de Ven, C. J. M., 142
vascular development, placental and fetal, 4
vegetarian/vegan pregnant women clinical approach, 129–30
health professional concerns calcium, 132
ergy and macronutrients, 130–1
folate, 131–2
iodine, 132
iron, 131
pregnancy outcome, 130
vitamin B12, 132
vitamin D, 132
zinc, 132
overview, 129
women's concerns cravings and aversions, 133
impact of food safety advice, 134 overview, 133
peanuts and other nuts, 133–4
soya, 134
supplements, 134–5
venous thrombosis, 142
vitamin A
preterm infant requirements, 85–6
supplementation, 158
toxicity of during pregnancy, 150
vitamin B1 (thiamine), 138, 158–9
vitamin B12 (cobalamin) and birth weight, 48
childhood insulin resistance and, 188
imbalance between folate and, 50
methyl deficiency, 183–4
supplementation, 160–1
vegetarian and vegan pregnant women, 132
vitamin B2 (riboflavin), 159
vitamin B3 (niacin), 159
vitamin B5 (pantothenic acid), 159
vitamin B6 (pyridoxine), 139, 159
vitamin B9. See folate
vitamin C (ascorbic acid) and preeclampsia, 40, 54–5, 161
supplementation during pregnancy, 161
vitamin D
neonatal nutritional requirements, 77–8
supplementation during pregnancy, 161
toxicity of during pregnancy, 150
vegetarian and vegan pregnant women, 132
vitamin E (tocopherol)
and preeclampsia, 40, 54–5, 161
preterm infant requirements, 85–6
supplementation during pregnancy, 161
vitamin K, 77
vitamins. See also micronutrients; specific vitamins by name; supplementation
preterm infant requirements, 85–6
in soy-based formulas, 95
volume, milk, 63–4
vomiting. See hyperemesis gravidarum
water requirements during lactation, 67
neonate, 77
weaning defined, 72
nutritional requirements beyond 6 months, 78–9
overview, 75
preterm infants, 88
6 months debate, 75–6
weight. See also birth weight; fetal growth
gain, maternal
and fetal growth, 36
multiple pregnancy, 151–2
teenage pregnancies, 122
parental body, 36
postpartum loss of, 67, 113–14
well-being, maternal, 27–8
Wen, W., 157
Wernicke's encephalopathy, 138
Wharton, B. A., 83
whey proteins, 64, 93
WHO (World Health Organization),
78, 99–100, 107
WIC (Special Supplemental Food Program for Women, Infants and Children), 124
Widdowson, E. M., 47
Williams, R. L., 152
women. See mother
work, maternal, and birth size, 47–8
World Health Organization (WHO),
78, 99–100, 107
“Yom Kippur effect,” 148
zinc
importance during pregnancy, 25
mineral deficiencies, 28
and preeclampsia, 58
preterm infant requirements, 85
supplementation during multiple pregnancy, 150
teenage pregnancies, 123
utilization and stores of during pregnancy, 29–30
vegetarian and vegan pregnant women, 132
zygote, epigenetic programming in, 183