
1 Phase noise and frequency stability

In theoretical physics, the word “oscillator” refers to a physical object or quantity
oscillating sinusoidally – or at least periodically – for a long time, ideally forever,
without losing its initial energy. An example of an oscillator is the classical atom, where
the electrons rotate steadily around the nucleus. Conversely, in experimental science
the word “oscillator” stands for an artifact that delivers a periodic signal, powered by
a suitable source of energy. In this book we will always be referring to the artifact.
Examples are the hydrogen maser, the magnetron of a microwave oven, and the swing
wheel of a luxury wrist watch. Strictly, a “clock” consists of an oscillator followed by a
gearbox that counts the number of cycles and the fraction thereof. In digital electronics,
the oscillator that sets the timing of a system is also referred to as the clock. Sometimes
the term “atomic clock” is improperly used to mean an oscillator stabilized to an atomic
transition, because this type of oscillator is most often used for timekeeping.

A large part of this book is about the “precision”1 of the oscillator frequency and
about the mechanisms of frequency and phase fluctuations. Before tackling the main
subject, we have to go through the technical language behind the word “precision,” and
present some elementary mathematical tools used to describe the frequency and phase
fluctuations.

1.1 Narrow-band signals

The ideal oscillator delivers a signal

v(t) = V0 cos(ω0t + ϕ) (pure sinusoid) , (1.1)

where V0 = √
2 Vrms is the peak amplitude, ω0 = 2πν0 is the angular frequency,2 and ϕ

is a constant that we can set to zero. Let us start by reviewing some useful representations
associated with (1.1).

A popular way of representing a noise-free sinusoid v(t) in Cartesian coordinates
is the phasor, also called the Fresnel vector. The phasor is the complex number V =
A + j B associated with v(t) after factoring out the ω0t oscillation. The absolute value

1 Here, the word “precision” is not yet used as a technical term.
2 The symbol ω is used for the angular frequency. Whenever there is no ambiguity, we will omit the adjective

“angular” and give the numerical value in Hz, which of course refers to ν0 = ω/(2π ).

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88677-2 - Phase Noise and Frequency Stability in Oscillators
Enrico Rubiola
Excerpt
More information

http://www.cambridge.org/9780521886772
http://www.cambridge.org
http://www.cambridge.org


2 Phase noise and frequency stability

|V| is equal to the rms value of v(t), and the phase arg V is equal to ϕ. The phase
reference is set by cos ω0t . Alternatively, the phasor is obtained by expanding v(t) as
V0 (cos ω0t cos ϕ − sin ω0t sin ϕ). Then, the real part is identified with the rms value
of the cos ω0t component and the imaginary part with the rms value of the − sin ω0t
component. Thus, the ideal signal (1.1) may be represented as the phasor

V = V0√
2

e jϕ

V = V0√
2

(cos ϕ + j sin ϕ)

(phasor) . (1.2)

A more powerful tool is the analytic signal z(t) associated with v(t), also called the
pre-envelope and formally defined as

z(t) = v(t) + j v̂(t) (analytic signal) , (1.3)

where v̂(t) is the Hilbert transform of v(t), i.e. v(t) shifted by 90◦. The analytic signal is
most often used to represent narrowband signals, i.e. signals whose power is clustered
in a narrow band centered at the frequency ω0. However, it is not formally required that
the bandwidth be narrow, nor that the power be centered at ω0, and not even that ω0 be
contained in the power bandwidth. Amplitude and phase can be (slowly) time-varying
signals.

The analytic signal z(t) is obtained from v(t) by deleting the negative-frequency side
of the spectrum and multiplying the positive-frequency side by a factor 2. Alternatively,
z(t) can be obtained using any of the following replacements:

v(t) = V0√
2

cos(ω0t + ϕ) ⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z(t) = V (t)e j[ω0t+ϕ(t)]

z(t) = V (t)e jϕ(t) e jω0t

z(t) = V (t)(cos ϕ + j sin ϕ) e jω0t .

(1.4)

The analytic signal has two relevant properties.

1. A phase shift θ applied to v(t) is represented as z(t) multiplied by e jθ .
2. Since the power associated with negative frequencies is zero, the total signal power

can be calculated using the positive frequencies only.

The complex envelope of z(t), also referred to as the low-pass process associated with
z(t), is obtained by deleting the complex oscillation e jω0t in the analytic signal. The
complex envelope is the natural extension of the phasor and is used when the amplitude
and phase are allowed to vary with time:

V = V0√
2

e jϕ ⇐⇒ ṽ(t) = V (t) e jϕ(t) . (1.5)

Strictly speaking, the phasor refers to a pure sinusoid. Yet the terms “phasor” and
“time-varying phasor” are sometimes used in lieu of the term “complex envelope.”
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Figure 1.1 Amplitude and phase noise: V0 is in volts, α(t) is non-dimensional, ϕ(t) is in radians,
and x(t) is in seconds.

1.1.1 The clock signal

In the real world, an oscillator signal fluctuates in amplitude and phase. We introduce
the quasi-perfect sinusoidal clock signal (Fig. 1.1)

v(t) = V0[1 + α(t)] cos[ω0t + ϕ(t)] , |α(t)| 
 1 , |ϕ(t)| 
 1 . (1.6)

The term “clock signal” emphasizes the fact that the cycles of v(t), and fractions thereof,
can be counted by suitable circuits, so that v(t) sets a time scale. When talking about
clocks, we assume that (1.6) has a high signal-to-noise ratio. Hence we note the following.

� The peak amplitude V0 of (1.1) is replaced by the envelope V0[1 + α(t)], where α(t)
is the random fractional amplitude.3 The assumption

|α(t)| 
 1 (1.7)

reflects the fact that actual oscillators have small amplitude fluctuations. Values |α(t)| ∈
(10−3, 10−6) are common in electronic oscillators.

� The constant phase ϕ of (1.1) is replaced by the random phase ϕ(t), which originates
the clock error. In most cases, we can assume that

|ϕ(t)| 
 1 . (1.8)

A slowly varying phase is often referred to as drift. Observing a clock in the long
term, the assumption |ϕ(t)| 
 1 is no longer true. Yet it is possible to divide the carrier
frequency by a suitably large rational number. The phase scales down accordingly, so
that the condition |ϕ(t)| 
 1 is obtained at low frequencies.

3 The symbol ε(t) is often used in the literature instead of α(t).
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4 Phase noise and frequency stability
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Figure 1.2 Phasor representation of a noisy sinusoid.

The clock signal can be rewritten in Cartesian coordinates by separating the cos ω0t
and − sin ω0t components4 (Fig. 1.2):

v(t) = V0 cos ω0t + vx (t) cos ω0t − vy(t) sin ω0t . (1.9)

The signals vx (t) and vy(t) are called the in-phase and quadrature components of the
noise, respectively.

The polar representation (1.6) and the Cartesian representation (1.9) are connected by

α(t) =
√[

1 + vx (t)

V0

]2

+
[
vy(t)

V0

]2

− 1 (fractional amplitude) , (1.10)

ϕ(t) = arctan
vy(t)

V0 + vx (t)
(phase) . (1.11)

Equation (1.10) is the Pythagorean theorem written in terms of the real component
(V0 + vx )/

√
2 and the imaginary component vy/

√
2. Equation (1.11) is arctan �/
, i.e.

the arctangent of the imaginary-to-real ratio. A problem with (1.11) is that the arctangent
returns the principal value, i.e. the value defined in (−π/2, π/2), or in (−π, π ) using a
two-argument arctangent. The cycles accumulated, if any, are to be counted separately.
In low-noise conditions, it holds that, for |vx/V0| 
 1 and |vy/V0| 
 1,

α(t) = vx (t)

V0
(fractional amplitude) (1.12)

ϕ(t) = vy(t)

V0
(phase) . (1.13)

The spectrum of a pure sinusoid such as (1.1) is an ideally thin line at ω0, mathe-
matically described as a Dirac delta function δ(ω − ω0). Noise broadens the spectrum:
the clock signal (1.6) looks like a line of bandwidth twice that of α(t) and ϕ(t) if the
signal-to-noise ratio is high. In the case of a low signal-to-noise ratio, ϕ(t) yields a
linewidth larger than twice the bandwidth.

Finally, the random phase ϕ(t) does not contribute to the signal power. The instan-
taneous power is P(t) = v2(t)/R0. In low-noise conditions the power, averaged over

4 The form x(t) cos ω0t − y(t) sin ω0t is preferable for a signal in Cartesian coordinates, but in this chapter
x and y are used for other relevant quantities.
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1.2 Physical quantities of interest 5

a time Tm longer than the oscillation period yet shorter than the time scale Tα of the
amplitude fluctuations, is

P(t) = V 2
0

2R0

[
1 + 2α(t)

]
, |α(t)| 
 1, 2π/ω0 
 Tm 
 Tα . (1.14)

Example 1.1. Let us estimate the error accumulated in 1 year by a clock based
on a 10 MHz oscillator accurate to within 10−10. The maximum clock error is
Te = (�ω/ω)Tmeas; thus Te = 10−10 × 3.16 × 107 s = 3.2 ms in one year. The oscil-
lation period is Tc = 2π/ω0 = 10−7 s. Hence the clock error accumulated in one year is
n = Te/Tc = 3.16 × 104 cycles of the 10 MHz carrier; thus ϕ = 2πn = 2 × 105 rad.

1.2 Physical quantities of interest

Traditionally, physicists use the symbol ν for the frequency while electrical engineers
prefer f . It is unfortunate that in the domain of time-and-frequency metrology the
notation is sometimes unclear or difficult to understand because both ν and f are found
in the same context. When I came to metrology in the early 1980s with a background in
electronics and telecommunications, it took me a long time to get used to this unnecessary
complication. The early articles about frequency stability use ν for fixed frequencies,
such as a carrier or a beat note, and f for the Fourier frequency, i.e. the variable of
spectral analysis. Other articles use ν in the carrier signal cos 2πν0t and f for the
spectral analysis of the low-pass fluctuations (α, ϕ, etc.), considering the carrier and
the low-pass fluctuations as nearly separate worlds. Of course, these two distinctions
between ν and f are similar, so it may be difficult to decide whether a frequency should
be ν or f . Additional confusion arises from the fact that fluctuations even smaller than
10−16 are sometimes measured;5 no frequency can be taken as constant. In the end, it is
recommended that the exact meaning of a frequency symbol in a particular equation is
always checked.

Another point is that the oscillator instability can be described as a phase fluctuation
or as a frequency fluctuation. The first choice is made in the definition of the clock signal
(1.6), here repeated:

v(t) = V0[1 + α(t)] cos[ω0t + ϕ(t)] .

In this representation, it is implicitly assumed that ω0 is the best estimate of the oscillator
frequency, so that ω0t describes the oscillation and ϕ(t) describes its phase fluctuation.
This approach is suitable for short-term measurements, where the oscillator stability
is sufficient for ϕ(t) to stay in the interval (−π, π ). In the longer term, the oscillator

5 It is instructive to relate this small value to the internal computer representation of numbers. Since the
IEEE standard “double precision” format has a 15 digit mantissa, the value 10−16 is one order of magnitude
smaller than the roundoff error.
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6 Phase noise and frequency stability

ends up drifting more than a half-cycle of the carrier frequency and the phase ϕ(t)
becomes ambiguous. In such cases, we may prefer to characterize the oscillation using
the frequency fluctuations. Then the clock signal is written as

v(t) = V0[1 + α(t)] cos

[
ω0t +

∫
(�ω)(t) dt

]
(clock signal) , (1.15)

where

(�ω)(t) = ϕ̇(t) (angular-frequency fluctuation) (1.16)

is the angular frequency fluctuation.
Additionally, it is often useful to normalize ϕ(t) in order to transform the phase noise

into time fluctuations, expressed in seconds (see below), and to normalize the oscillator
frequency.

The definitions summarized below are aimed at giving straightforward access to the
general literature on phase noise and frequency stability; Fig. 1.3 relates the quantities
described to a typical experimental setup.

ϕ(t) represents the phase noise, i.e. the random phase fluctuation defined by (1.6).
α(t) represents the fractional-amplitude noise (for short, “amplitude noise”), i.e. the

random amplitude fluctuation defined by (1.6).
ν is used for the carrier frequency, either radio, microwave, or optical, and also for the

beat note between two carriers. The symbol ν can be a variable, as on the frequency
axis of a spectrum analyzer, or a constant, as in the nearly constant frequency of
an oscillator. We can also find ν(t) used in the same way as the quantity (�ν)(t)
introduced below.
Example: let ν1 = 10 GHz and ν2 = 10.24 GHz be the frequency of two oscillators.
On the spectrum analyzer, we see two lines at ν = ν1 and ν = ν2. After mixing,
the beat frequency is νb = ν2 − ν1 = 240 MHz.

�ν = ν − ν0 is the difference between the actual frequency ν and a reference value
ν0. The latter can be the nominal frequency or a reference value close to ν.

(�ν)(t) represents the instantaneous frequency fluctuation (or noise). This implies
the assumption of slow modulation with a high modulation index, so that the signal
can be approximated by a slow-swinging carrier. This means that the carrier and
sidebands degenerate into a single Dirac δ function that tracks the modulation.
In most practical cases, (�ν)(t) should be regarded as the fluctuating output of a
frequency comparator, after discarding the dc component.

f is used for frequency in the spectral analysis of low-pass processes, close to dc,
after detection. Thus, f is used in connection with α(t), ϕ(t), vx (t), vy(t), etc. The
symbol f can refer to a variable, as on the frequency axis of a FFT6 analyzer, or
to a constant.

6 There is no theoretical need to use a FFT (fast Fourier transform) analyzer to measure a near-dc process.
However, this is the type of spectrum analyzer used in virtually all cases.
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1.2 Physical quantities of interest 7
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Figure 1.3 Simplified diagram of oscillator noise measurements in the time domain, illustrating
the main physical quantities of interest in time-and-frequency metrology.

Example: inspecting the phase noise of a microwave amplifier in some specific
conditions, we find white noise at high f and flicker noise below the corner
frequency fc.

ω is the angular frequency. The unit associated with ω is rad/s. In this book, ω is a
shorthand for either 2πν or 2π f . We also use �ω and (�ω)(t). The word “angular”
is often omitted, and numerical values are given in Hz, which of course refers to
ω/(2π ).

� is used instead of ω in some special cases, as in Chapter 5, where we need to
represent several angular frequencies at the same time. Preferentially, � refers to
low-pass phenomena.
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8 Phase noise and frequency stability

x(t) is the phase-time fluctuation, that is, the random phase fluctuation ϕ(t) converted
into time, and measured in seconds:

x(t) = ϕ(t)

ω0
= ϕ(t)

2πν0
(phase-time fluctuation) . (1.17)

Here ν0 is either the nominal or the estimated frequency.
Interestingly, x(t) does not become ambiguous when ϕ(t) exceeds half a cycle of
the carrier (Fig. 1.3) because it allows the accumulation of phase cycles.

y(t) is the fractional-frequency fluctuation, i.e. the instantaneous frequency fluctua-
tion normalized to the carrier frequency ν0. The quantity y(t) is dimensionless.

y(t) = ẋ(t) = ϕ̇(t)

ω0

= (�ω)(t)

ω0
= (�ν)(t)

ν0
(fractional-frequency fluctuation) . (1.18)

The output of digital instruments is a stream of sampled values, denoted by an integer
subscript. Thus, xk is x(t) sampled at the time t = kτ .

Finally, a number of relationships are written in their usual form, found in most
textbooks. Therefore, it is inevitable that some of the above symbols are also used in
expressions such as “let f (x) be a function . . . ,” etc.

Three frequencies have a special rôle all through this book and are used extensively
in Chapters 4 and 5; thus they deserve to be mentioned here.

ω0 and ν0 are the oscillator frequency and angular frequency, i.e. those of the carrier.
ωn and νn are the natural angular frequency and natural frequency of a resonator.
ωp and νp are the free-decay pseudofrequency and angular pseudofrequency of a

resonator. It holds that ωp � ω0.

In most oscillators, the oscillation frequency ω0 is determined by the natural frequency
ωn of a resonator. However, ω0 differs slightly from ωn because of feedback.

1.2.1 � Frequency synthesis

In a large number of applications the oscillator is the reference of a frequency synthesizer.
A noise-free synthesizer can be regarded as a gearbox that multiplies the input frequency
ωi by a rational number N /D and outputs a frequency

ωo = N
D ωi

(
νo = N

D νi

)
. (1.19)

In the presence of small fluctuations, the input fluctuations propagate to the synthesizer
output with the same N /D law, that is,

(�ωo)(t) = N
D (�ωi)(t)

(
(�νo)(t) = N

D (�νi)(t)

)
, (1.20)

ϕo(t) = N
D ϕi(t) . (1.21)
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1.3 Elements of statistics 9

A time lag can be present from input to output if the synthesizer includes a phase-locked
loop (PLL). However, the fractional frequency fluctuation and the phase-time fluctuation
observed at the output are equal to the input fluctuations:

yo(t) = yi(t) , (1.22)

xo(t) = xi(t) . (1.23)

Finally, we notice that there is no general law for the propagatation of the amplitude
fluctuation α(t) through a synthesis chain. The reason is that the synthesis needs strong
nonlinearity, hence the amplitude is saturated.

Large phase noise
The above rules hold when the phase noise is low. In large-phase-noise conditions, the
synthesizer’s behavior is governed by the energy conservation law. The easiest way to
understand this is to write the output signal in the analytic form z(t) = Vrms e jω0t e jϕ(t).
The phase-noise term e jϕ(t) spreads the power into the noise sidebands, yet without
changing the total power because |e jϕ(t)| = 1. If the output phase noise exceeds some
2 radians, the sidebands sink most of the power and the carrier power drops abruptly. This
phenomenon is referred to as carrier collapse. As a consequence, extremely high spectral
purity is needed when the multiplication ratio is high, for example in the synthesis of
THz or optical signals from electronic oscillators.

Mathematically, carrier collapse is a consequence of the application of the Angers–
Jacobi expansion

e jz cos α =
∞∑

n=−∞
Jn(z) e jnα (1.24)

to the angular modulation, according to which the carrier amplitude is dominated by the
Bessel function J0(z). The function J0(z) nulls at z � 2.405. Further consideration of
this phenomenon is beyond our scope, however.

1.3 Elements of statistics

In the previous sections, we expressed the phase noise and amplitude noise in terms
of simple time-dependent functions, denoted by α(t) and ϕ(t). In reality, to address
the nature of noise properly some statistical tools are necessary, and the concept of a
random process needs to be introduced. A few definitions are given below to establish the
vocabulary. The reader is encouraged to study the subject using appropriate references,
among which I prefer [32, 74].
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10 Phase noise and frequency stability

1.3.1 Basic definitions

Random or stochastic process
A random process is defined through a random experiment e that associates a time-
domain function xe(t) with each outcome e. The specification of such an experiment,
together with a probability law, defines a random process x(t). Each random process has
an infinite number of realizations, which form an ensemble. A realization, also called
a sample function, is a time-domain signal xe(t). For short, the subscript e is dropped
whenever there is no ambiguity or no need to refer to a specific outcome e.

A random process and its associated ensemble are powerful mathematical concepts,
but they are not directly accessible to the experimentalist, who can only measure a finite
number of realizations.

Mean, time average, and expectation
In the measurement of random processes (subsection 1.3.2) we use simultaneously three
types of “average,” the simple mean, the time average, and the mathematical expectation.
Hence, for clarity we need different notation for these.

Given a series of N data xi , the simple mean of x is denoted by angle brackets:

〈x〉N = 1

N

N∑
i=1

xi (mean) . (1.25)

The simple mean is often used to average the output stream of an instrument. The
quantity x is unspecified. For example, we can average in this way a series of numbers,
a series of spectra, etc.

The time average of x is denoted by an overbar:

x = 1

T

∫ T/2

−T/2
x(t) dt (time average) (1.26)

In the case of causal systems, where the response starts at t = 0, the integration limits can
be changed from −T/2 and T/2 to 0 and T . In most cases, the readout of an instrument
is of the form (1.26). This means that the input quantity x is averaged uniformly over
the time T .

More generally, the time average includes a weight function w(t):

x =
∫ ∞

−∞
x(t) w(t) dt (weighted time average) (1.27)

with ∫ ∞

−∞
w(t) dt = 1 .

In theoretical discussions the definition (1.27) is generally adopted as the definition of
the measure of x . The readout of sophisticated instruments can be of this type.
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