INDEX

1-bit predictors
limitations, 120
misprediction rate, 119–20

2-bit predictors
advantages, 120
state diagrams, 120

5-stage pipelines, 92–100
arithmetic logic unit instructions, 93–4
block multi-threading in, 432–4
independent loads, 93
interleaved multi-threading in, 438–9
mechanisms, 74
miss latencies, 431–2
precise exceptions in, 99
prefetching, 211
stores, 93–4
translation lookaside buffers, 220

accesses
atomic cache, 359–60
temporal order of, 366
see also memory accesses
access history, cache lines, 202
access ordering rules, for sequential consistency, 378–9
access times
disks, 11, 12
memories, 9, 10–11
access types, matrices, 160
accumulators, 80
ACE (architecturally correct execution), 63
active processes, 430, 431
blocked, 431
ready, 431
activity factor, 46
AD (area times delay) metric, 53
Ada (programming language), 89
adaptive networks, 350
adaptive routing, 336–7
ADD, 77, 80–1, 493
ADDA, 80
ADDI, 81, 106
addressable registers, 81
address generation unit (AGU), 113–14
addressing, Big Endian vs. Little
Endian, 82
addressing modes, 82–3
synthesized, 83
address translation, 274
ADDU, 77
Advanced Micro Devices (AMD), Hyper Transport, 455
aging
components, 59
devices, 64
AGU (address generation unit), 113–14
algorithms
classification, 272
optimization, 25
parallel, 237–9
sequential, 235
software pipelining, 149–51
sorting, 25
thread selection, 439
see also Dekker’s algorithm; routing algorithms; Tomasulo algorithm
aliases, 214
all-path execution, 117–18
Alpha ISA, 497–8
AltiVec, 158
ALUs see arithmetic logic units (ALUs)
AM (attraction memory), 294–5, 297
AMAT (average memory access time), 205
AMD (Advanced Micro Devices), Hyper Transport, 455
Amdahl, Gene, 22
Amdahl’s law, 22–6, 79, 83, 151
criticisms, 25
and Gustafson’s law compared, 26
amperes, 38
AND, 77
antialiasing hardware, 223
APIs (application-programming interfaces), 233
application-programming interfaces (APIs), 233
application-specific integrated circuits (ASICs), 2
APTs (atomic protocol transactions), 360–1, 364–5, 367
arbitration, 318
architecturally correct execution (ACE), 63
architectural vulnerability factors (AVFs), 62–3
L1 cache bit cell analysis, 63–4
architecture
chip multiprocessors, 446–59
innovations, 7–8
parallelism in, 13–17
see also cache-only memory architecture (COMA); computer architecture; instruction set architectures (ISAs); microarchitectures; non-uniform memory architectures (NUMAs); very long instruction word (VLIW)
arithmetic/logic vector instructions, 159–60
array processors, 15–17
area overheads, 62
area times delay (AD) metric, 53
arithmetic instructions, 77
arithmetic logic units (ALUs), 77, 481
instructions, pipelining, 93–4
memory operands, 83–4
power-optimized, 509, 510
arithmetic/logic vector instructions, 159–60
arithmetic means
execution times, 19
speedups, 20
array processors, 15–17
see also single instruction multiple data (SIMD) processors
Index

ASICs (application-specific integrated circuits), 2

Asim, 491

assembly code, 4

assist threads see helper threads

asynchronous message-passing, 242

asynchronous SEND primitives, 241–2

asynchronous snooping, 256

ATOM, 497–8

atomic blocks, 465

atomic buses, 323

atomic cache accesses, 359–60

atomic events, 358–9

atomic memory accesses, 360–1

atomic protocol transactions (APTs), 360–1, 364–5, 367

attraction memory (AM), 294–5, 297

automatic parallelization, with OpenMP, 462–3

average memory access time (AMAT), 205

average routing distance, 317

AV F s see architectural vulnerability factors (AVFs)

back-end, 113, 133

design issues, 138

backpointers, 223

backward compatibility, 77

concept of, 4

backward slices, 479

bandwidth

bisection, 319

cache, 453–5

effective, 318

link, 315

off-chip, 453–4

see also memory bandwidth

bandwidth models, 318–19

BAR (barrier count), 391

barrel processors, 440–1

effects, 441–2

barrier count (BAR), 391

barriers, 391–2

barrier synchronization, 237, 504–5, 507

baseline directory protocols

behavior, 279–82

memory requirements, 283–4

reducing latencies in, 282–3

basic block vectors (BBVs), 513–14

bathtub curves, 59

BBVs (basic block vectors), 513–14

behavioral specifications

cache protocols, 354

state-transition diagrams as, 252–3

benchmarking, 18–22

benchmarks, 490

synthetic, 515

benchmark suites, 18–19, 489

roles, 18

BEQ, 153

branch handling, 98

Berkeley Spice Simulation, 510

BEZ, 104, 120

Big Endian addressing, vs. Little

Endian addressing, 82

binary code, and high-level languages, 4

binning

definition, 70

and die-to-die variations, 70

bisection bandwidth, 319

bitarea, definition, 61

bit overheads, 62

blocked threads, 431

blocking, 249, 397

blocking caches

definition, 207

and non-blocking caches compared, 208–9

blocking message-passing primitives, 242–3

block localization, 295

block multi-threading, 432–8

in 5-stage pipelines, 432–4

and cache misses, 434

in out-of-order cores, 434–7

processors with, 437–8

speculative scheduling with, 436–7

block relocation, 295

BNEZ, 104

bottlenecks

elimination, 309

performance, 514–15

BPBs see branch prediction buffers (BPBs)

branches, 78–9

complex, 97–8

delayed, 106

unresolved, execution beyond, 117–18

see also jumps

branch handling, 98

multiple, 138

branch prediction, 104–5

hardwired, 104

static, 104

see also dynamic branch prediction

branch prediction buffers (BPBs), 118–19, 124

with global branch history, 121

branch predictors

combining, 122, 123

correlating, 120–1

branch target buffers (BTBs), 122–3, 124

breakpoints, 85

broadcast, definition, 348–9

broadcast, definition, 348–9

broadcast requests, 312

BTBs (branch target buffers), 122–3, 124

bubble sort, 25

buffer overflows, 269

buffers

branch target, 122–3, 124

physical, 334

real store, 399

see also branch prediction buffers (BPBs); re-order buffers (ROBs); translation lookaside buffers (TLBs)

burn-in, 58–60

burn-in testing, 59

bus-based shared-memory multiprocessor systems, 246–76

buses, 322–3

applications, 348–9

atomic, 323

bandwidth, capped, 276

and cache coherence, 348–9

input/output, 5

interconnections, 5

non-pipelined, 323

pipelined, 323

snooping, 256

in symmetric multiprocessors, 362

system, 349

see also split-transaction buses

BusRd see bus-read request (BusRd)

BusRdX see bus-read-exclusive request (BusRdX)

bus-read-exclusive request (BusRdX), 252, 253, 266, 281, 282–3, 286–7, 288, 357, 363, 380, 381–2, 472

definition, 251
bus-read request (BusRd), 253, 264, 278, 279–80, 281, 282–3, 286, 288, 380, 381–2, 472

definition, 251

bus update (BusUpdate), 262–3, 264, 380

BusUpdate (bus update), 262–3, 264, 380

bus-upgrade request (BusUpgr), 254, 264, 266, 268, 277–8, 279, 280, 281, 282–3, 286

BusUpgr (bus-upgrade request), 254, 264, 266, 268, 277–8, 279, 280, 281, 282–3, 286

BusWrite see bus-write request (BusWrite)

bus-write request (BusWrite), 252, 253
definition, 251

busy bits, 281

busy waiting, 397

butterfly networks, 326

schematics, 325

byte addressability, 81–2

bytes, 87

C++ , 3, 76, 233

cache bandwidth, chip multiprocessors, 453–5

cache-centric directory protocols, 278, 285–7, 293

cache coherence, 248–9

buses and, 348–9

components, 3
definition, 249

maintenance in multi-level cache hierarchies, 269

multiple clusters, 288

cache coherence problem, 248, 351–4

cache coherence protocols, 345

generalized class of, 258–60

cache-coherent non-uniform memory architectures (cc-NUMAs), 289, 296–7

cache protocols, 354
correctness issues, 342
definition, 277
directory protocols, 277–8, 293–4, 356–7

home nodes, 281–2

organization, 277

plain coherence, 369

snoopy cache protocols, 277

store atomicity in, 363–5

cache designs, enhancements, 193
cached setups, 516
cache exceptions, 155
cache hierarchies, 5, 193, 198–211, 380, 454–5

applications, 10–11

exclusion, 197

inclusion, 197

multi-level, 348
cache coherence maintenance, 269

see also memory hierarchies

cache hierarchy performance, 204–5

metrics, 204

cache hits, multiple, 193

cache indexing, 199

cache lines, 193, 223

access history, 202

fault containment, 56–7

latency, 62

cache mapping, 198–201

cache misses, 155

and block multi-threading, 434

classification, 205–7, 271–3

multiple, 193

cache-miss models, 4C, 270

cache-only memory architecture (COMA)

block relations, 297

correctness issues, 342
design issues, 294–6

hardware structures, 294–6

structure, 294

see also flat cache-only memory architecture

cache-only shared-memory multiprocessor systems, 293–7

concepts, 294–6

hardware structures, 294–6

protocols, 294–6

cache organizations

multiprocessor, 246–9

private, 246–8

shared, 246–8

cache prefetching, 209–11
types of, 209

cache preloading, 209–11

cache protocols, 354–7

behavioral specifications, 354

inputs, 252, 253

outputs, 252, 253

on split-transaction buses, design issues, 267–9

variations, 260–4

see also invalidation-based cache protocols; snoopy cache protocols; update-based cache protocols

caches, 9, 196, 347–8
design issues, 252
directory, 285
drowsy, 53
dynamic voltage frequency scaling, 61

first-level, 223

fully associative, 201

instruction trace, 138

invention, 36

L1, 447–55, 493

L2, 447–55, 493

local, 250

narrow, 198–9

organization, 198–201

remote, 250

structure, 193

transaction, 469–73

transient faults in, 62

wide, 198–9

see also blocking caches;
direct-mapped caches; I-caches;
lockup-free caches;
non-blocking caches; on-chip caches; set-associative caches;
virtual-address caches;
write-back caches;
write-through caches

cache simulation, 206

cache states

non-atomic, 266–7

transient, 266–7

capacitance, 38

measurement, 508–9

 capacitors, 39

capacity misses, 206

determination, 206

carrier tunneling, 51

CAS (compare_and_swap), 395, 396

cc-NUMAs see cache-coherent non-uniform memory architectures (cc-NUMAs)

CCs (condition codes), 78

CC simulations see cycle-by-cycle (CC) simulations

CDB (common data bus), 113

CDC see Control Data Corporation (CDC)
central processing units (CPUs) definition, 6 multiple, 2 superpipelined, 103–4 superscalar, 103–4 see also cores chaining (vector processing), 161–3 channel-dependence graphs, 332–4 channels, 333 virtual, 334–5 charges, 37–8 chip designs, improved, 1 chip multiprocessors (CMPs), 6, 425–87 advantages, 425 applications, 425 architecture, 446–59 shift to, 36 bus-based, 447–8 cache bandwidth issues, 453–5 characteristics, 447 classification, 446–7 conjoined cores, 458–9 core multi-threading, 429–46 correctness issues, 342 crossbar interconnects, 450 faults in, 56 heterogeneous, 446–7, 455–8 and higher performance, 4–5 homogeneous, 446–55 interconnection networks, 309–10 many-core, 446–7 memory bandwidth issues, 453–5 multi-core, 446–7 opportunities, 428–9 and parallel processing, 425 programming models, 459–82 rationale, 426–9 ring-based, 448–50 shared cache architecture, 450–3 and shared-memory multiprocessor systems compared, 425, 428–9 technology trends, 426–8 use of term, 2 see also multi-core microprocessors circuit design, and clock rates, 7 circuit switching, 313–14, 319–20 circular dependency chains, 332 CISC see complex instruction set computer (CISC) CISC ISAs dealing with, 138–40 definition, 87 front-end for, 139 and hardware, 90 classification algorithms, 272 clean misses, 258 clock frequency see clock rates clock gating, 47 clock per instruction (CPI), 17–18 variance measurement, 512 clock rates 5-stage pipelines, 74 dynamic pipelines, 75 factors affecting, 6–7, 44 higher, 1 increased, 2 Intel microprocessors, 7 limitations, 8 CMOS see complementary metal oxide silicon (CMOS) CMOS endpoint, 26, 30 use of term, 1 CMOS inverters see complementary metal oxide silicon (CMOS) inverters CMPs see chip multiprocessors (CMPs) coarse-grain multi-threading see block multi-threading coarse-vector directory protocols, 285 code fragments see programs code profiling, 105 code segments see programs coherence, 342–424 formal model of, 365–6 issues, 222 in multiprocessors, issues, 351–4 need for, 193 privacy principle, 369 single-thread, enforcement, 351 and store atomicity, 350–74 see also cache coherence; memory hierarchy coherence; plain coherence; strict coherence coherence misses, 206, 270 coherence orders, conflicts, 372–3 coherence transactions, 265–6, 357 cold misses definition, 205 determination, 206 COMA see cache-only memory architecture (COMA) common data bus (CDB), 113 communication events, classification, 270–4 compact thermal models (CTMs), 510 compare_and_swap (CAS), 395, 396 competitive snooping, 264 compilers, 74 design, 3 functions, 3, 76 optimization, 74–5 static machines, 140 static pipelines, 110 see also parallelizing compilers compiling, microcodes, 90 complementary metal oxide silicon (CMOS), 42 see also multi-threshold complementary metal oxide silicon (MTCMOS) complementary metal oxide silicon (CMOS) inverters dynamic power dissipation, 45 ideal behavior, 50 principles, 42–3 schematics, 43 complex instruction set computer (CISC) definition, 87 and hardware, 90 vs. reduced instruction set computer, 87–91 see also CISC ISAs component failure rate, bathtub curves, 59 component reliability, 58 components aging, 59 cache coherence, 3 hardware, 346–50 latency, 315–16 memory systems, 9 parallel computer architecture, 5–13 processor microarchitecture, 74 compulsory misses, definition, 205 compute processors (CPs), 246 computer architects goals, 3, 489 roles, 2, 62 computer architecture, 2–5 definition, 2 evolution, 36 field of study, 1 simulations, 488 technological impacts, 36–73 see also parallel computer architecture
computer simulations, numerical programs, 232
computer systems design, 3
layered view of, 3, 76
performance improvements, 232
concurrency control mechanisms, 466
conditional gating, 47
conditional statements, 163
condition codes (CCs), 78
conductivity, 38
conductors, 38
conflict detection, eager vs. lazy, 466–7
conflict misses, 206
determination, 206
congestion control, 338–9
crossbar interconnects, in chip multiprocessors, 450
crossbar switches, 323–4
CTMs (compact thermal models), 510
cut-through switching, 316
cut-through switching packet switching under, 320–1 virtual, 321–2
cycle-accurate simulators, vs. functional simulators, 491–4
cycle-by-cycle (CC) simulations, 507
definition, 38
see also leakage current
cutthrough switching
cycle-accurate simulators, vs. functional simulators, 491–4
cycle-by-cycle (CC) simulations, 507
definition, 505
mechanisms, 506
single-threaded, 505
cyclic instruction scheduling, 107
cyclical scheduling, 140, 151
D (dirty node), 357
data dependencies enforcing, 112–16
types of, 94–7
data dependency graphs (DDGs), 149
data-flow graphs, 136
data-flow limits, 136–7
definition, 137
data forwarding, 74, 439
thread-aware, 443
data hazards, 100–1
dealing with, 94–7
data prefetching, 454, 478–9
D-bit (dirty bit), 216, 254, 279, 283, 297, 453
DBNE (delayed branch not equal), 145
DDGs (data dependency graphs), 149
deadlock avoidance, 332–4
DEC (Digital Equipment Corporation), Vax-11 ISA, 89
decisions, 140
Dekker’s algorithm, 375, 401, 405, 408
definition, 391
failure, 402
delay, measures, 44–5
delayed branches, 106
delayed branch not equal (DBNE), 145
delinquent loads, 479
Denelcor, Heterogeneous Element Processor, 441–2
depletion regions, 40
design cache, 193
low-power, 46–9
productivity, 29
design complexity microprocessors, 488
technological issues, 29–30
design quality, in very large scale integration, 53
design space, of interconnection networks, 311–19
design verification constraints, 29
improvements, 29
DESs (discrete-event simulations), 504
destructive interference, 454
detected but unrecoverable errors (DUEs), 56
definition, 55
detection, 62
goals, 58
deterministic routing, 332–4
devices aging, 64
characteristics, 44
device variations, classification, 70
dielectrics, 39
materials, 51
see also gate dielectrics;
time-dependent dielectric breakdown (TDBB)
die-to-die variations binning and, 70
definition, 70
Digital Equipment Corporation (DEC), Vax-11 ISA, 89
dimension-order routing, 331
diminishing returns, law of, 23–4
DIMMs (double inline memory modules), 455
direct-execution simulations, 496–8
direct interconnection networks, 322, 326–30
direct jumps, 79
direct-mapped caches, 198–9
 advantages, 200
 disadvantages, 200
direct memory access (DMA), 13, 245
 controllers, 85
direct memory overhead, 296
directory caches, 285
directory inter-cluster coherence, 288
directory intra-cluster coherence, 288
 see also baseline directory protocols
directory protocols
 cache-centric, 278, 285–7, 293
 cache-coherent non-uniform memory architectures, 277–8, 293–4, 356–7
 coarse-vector, 285
 concepts, 277–8
 hierarchical systems, 289
 implementations, 278–83
 with lower memory overhead, 284–5
 limited-pointer, 284, 285
 memory-centric, 278
 scalability, 283–7
 terminology, 277–8
 dirty bit (D-bit), 216, 216, 254, 279, 283, 297, 453
 dirty misses, 258, 280
 dirty node (D), 357
 discrete-event simulations (DESs), 504
disk densities, growth, 12
 disk memory, 9
 and main memory, speed gaps, 193–4
 speed, 193
 disks, 11–12
 access times, 11, 12
 latency, 11
 seek times, 11
 transfer times, 11
 dispatch, 140
 dynamically scheduled pipelines, 75
 advantages, 140
 disadvantages, 140
 dynamic branch prediction, 118–23
 dynamic data structure sharing
 with locks, 464
 with transactions, 466
 dynamic instruction mixes
 composition, 79–80
 definition, 79
 dynamic memory disambiguation, 126–8
 dynamic MTCMOS, 52
 dynamic page placement, 289–90
 dynamic pipelines
 characteristics, 75
 clock rates, 75
 wide superscalar, 75
 dynamic power, 27, 45–50
 definition, 37
 reduction strategies, 37, 48–9
 and supply voltages, 37
 in very large scale integration, 39
 dynamic power equation, 46
 dynamic power relation, 48–9
 dynamic random-access memories
 (DRAMs), 455
 error correction, 28
 improvements, 11
 as main memory, 10
 performance issues, 10–11
 dynamic techniques, duality of, 140–1
 dynamic voltage frequency scaling
 (DVFS), 342, 457, 458, 510
 e-cube routing, 332
 ED (energy–delay) product, 54
etching, and light wavelength, 69–70
Euclidean distance, 513
evaluation stacks, 80–1
EX (execute), 92, 94, 96–7, 99, 100, 102–3
exceptions, 74, 84–6, 155–7
cache, 155
causes, 85
defered, 156
floating-point, 85
integer, 85
silent, 99
support for, 155–6
triggering, 82
types of, 85–6
see also precise exceptions
exclusion, cache hierarchies, 197
exclusive access, 322
execute (EX), 92, 94, 96–7, 99, 100, 102–3
execution
all-path, 117–18
beyond unresolved branches, 117–18
multi-path, 118
under speculative instruction scheduling, 133–5
under speculative Tomasulo algorithm, 127–8
under Tomasulo algorithm, 115–16
see also out-of-order (OoO) execution; speculative execution; speculative instruction execution
execution-driven simulations, 496
execution times
arithmetic means, 19
determination, 17
see also latency
explicitly parallel instruction computing (EPIC)
microarchitectures, 157–8, 437
explicit register renaming, 128–31
schematics, 129
explicit thread parallelization, 461–3
F&ADD (fetch_add), 395
F&OP (fetch_and_op), 395
failsafe, use of term, 28
failure mechanisms, 37
failure rate, 58–60
component, bathtub curves, 59
definition, 58
failures-in-time (FIT) rates
definition, 57
determination, 57–8
goals, 58
see also intrinsic failures-in-time (FIT) rates
false sharing misses, 271
definition, 273
fan-out-of-4s (FO4s)
definition, 44
schematics, 45
fat trees, 325–6
faults
in cache lines, containment, 56–7
categorization, 28, 55
effects of process variations on,
69–70
intermittent, 28, 64–9
permanent, 28, 69
vs. errors, 55–7
see also page faults; transient faults
F/E (full/empty) bit, 136
FeS2, 500
fetch_and_add (F&ADD), 395
fetch_and_op (F&OP), 395
FETs see field effect transistors (FETs)
field effect transistors (FETs)
definition, 39
see also metal oxide silicon field effect transistors (MOSFETs)
FIFO instructions see first in first out (FIFO) instructions
fine-grain multi-threading see interleaved multi-threading
finite state machines (FSMs), 219
first in first out (FIFO) instructions, 112–13, 124, 203, 265–6
buffer overflows, 269
circular buffers, 125
inbound/outbound buffers, 269
order, 413
queues, 214
first-touch page placement, 292
FIT rates see failures-in-time (FIT) rates
FLAG, 398, 406, 408
flash memories, 9
flat cache-only memory architecture, 296–7
hardware structures, 297
organization, 297
flexible routing algorithms, 338
flits (flow-control units), 321
floating-point data types, 87
floating-point exceptions, 85
floating-point operands, 87
double-precision, 87
floating-point units (FPUs), 458–9, 481
flow control, 314
link-level, 338–9
flow-control time, 318
flow-control units (flits), 321
flux, definition, 61
FO4s see fan-out-of-4s (FO4s)
Fortran, 3, 76, 233
forwarding, store-to-load relaxation
with, 402–4
forwarding store buffers, plain coherence in, 366–9
FP (floating-point) instructions, 78, 100, 102
FPUs (floating-point units), 458–9, 481
free space, permittivity of, 39
front-end, 112–13
for CISC ISAs, 139
front-end register alias tables, 128–30, 137–8
FSMs (finite state machines), 219
FU (functional unit), 136
full/empty (F/E) bit, 136
full-system simulators, 494
vs. user-level simulators, 490–1
fully associative caches, 201
fully connected networks, 310
functional-first integrating simulators, 489–9
fully connected interconnection networks, 310
functional-first simulation, definition, 498–9
functional simulators, vs.
cycle-accurate simulators, 491–4
functional unit (FU), 136
function-first integrating simulators, 489, 498–9
function-level parallelism, 235
function pipelines, 235
gate delays, 44–5
gate dielectrics
materials, 51
permittivity, 51
gate leakage, 51
gate length, processing issues, 69–70
gather operations, 164
GCTs (group completion tables), 445
Index

GEMS (General Execution-driven Multiprocessor Simulator), 500, 502
General Execution-driven Multiprocessor Simulator (GEMS), 500, 502

general-purpose registers (GPRs), 445
geometric means

advantages, 20
speedups, 20
global branch history register, 121
global coherents, 403
global instruction scheduling, 107–10
globally performed, 408

global scheduling, 140, 143
global time, simulation threads, 507
global wires, 29
GPRs (general-purpose registers), 445
granularity, parallelism, 236
group completion tables (GCTs), 445
gshare, 121
guardian, 154

Gustafson’s law, 25–6
and Amdahl’s law compared, 26

H (home node), 357
hafnium dioxide, 51
half-words, 87
handshake signals, 256
hard disk drives (HDDs), memory storage, 9
hard errors, 313
hardware alarms, 86
hardware-based synchronization, 392–3

hardware components, 346–50
hardware failures, 86
hardware layers, and instruction sets, 445
hardware multi-threading (HMT) applications, 437
principles, 437
hardware performance, and software requirements, 4
hardware prefetching, 209–11
and speculative execution, 210–11
hardware substrates, 4
hardware thread contexts, 6, 431
hardware transactional memory (HTM), 467

hardwired branch prediction, 104
harmonic means, speedups, 20
hazard detection units (HDUs), 97, 100–1
hazard function, 58
see also failure rate hazards
control, 102
structural, 99, 101–2
see also data hazards; read after write (RAW) hazards; write after read (WAR) hazards; write after write (WAW) hazards
Hazucha–Svenson model, 61
HDDs (hard disk drives), memory storage, 9
HDUs (hazard detection units), 97
head-of-line (HOL) blocking, 338
helper threads, 478–80
synonyms, 478
HEP (Heterogeneous Element Processor), 441–2
Heterogeneous Element Processor (HEP), 441–2
HHLs see high-level languages (HHLs)

hierarchical multiprocessor systems, 287–9
organization, 287
hierarchical page tables, 216–18
structure, 217
three-level, 216–17
high-end servers, 388
high-k materials, 51
high-level languages (HHLs), 3, 76 and binary code, 4
statements, 84
hi (variable), 237
HMT see hardware multi-threading (HMT)
HOL (head-of-line) blocking, 338
home node (H), 357
home nodes, 280–1
homonyms, 214
Horizon, 442
horizontal microcodes, 90
HotLeakage, 510
hot sets, 200
HotSpot, 510
hotspots, 49–50
HT (Hyper Transport), 455
HTM (hardware transactional memory), 467

HTT (Hyper Threading Technologies), 445

Hyper Threading Technologies (HTT), 445
Hyper Transport (HT), 455
IBM see International Business Machines Corporation (IBM)
IC (instruction count), 17–18
I-caches, 139
blocks, fetching across, 138
ICPP (International Conference on Parallel Processing), 1
ID (I-decode), 92, 93, 96, 98, 99, 100–1, 111, 113, 198
ideal replacement policy (OPT), 202, 206
ideal speedup, 24
I-decode (ID), 92, 93, 96, 98, 99, 100–1, 111, 113, 198
IF (I-fetch), 92, 93, 98, 118–19, 139, 140, 443
I-fetch (IF), 92, 93, 98, 118–19, 139, 140, 443
IFQ see instruction fetch queue (IFQ)
if-then-else statements, 151, 152
ILP see instruction-level parallelism (ILP)
immediate operands, 81
impedance, 38
implicit, use of term, 344
inbound message management, 370–85
inclusion, cache hierarchies, 197
indirect interconnection networks, 322–6
disadvantages, 326
indirect jumps, 79, 98–9
indirect memory overhead, 296
in-flight instructions, in pipelines, 427
information revolution, 1
in-order (IO) processors, 347
input operands, 77
input/output (I/O) coherence issues, 351
events, 351
input/output (I/O) buses, 5
input/output (I/O) device interrupts, 85
input/output (I/O) devices, 5
input/output (I/O) interconnects, 13
INs see interconnection networks (INs)
instruction count (IC), 17–18
instruction fetch queue (IFQ), 112–13, 440, 445, 481
filling, issues, 138
instruction flushing, thread-aware, 443
Index

instruction-level parallelism (ILP), 8, 14–15, 48, 426–7, 461
and dynamically scheduled pipelines, 111
and loop-carried dependencies, 148
instruction mixes, 79–80
definition, 79
static, 79
see also dynamic instruction mixes
instruction operands, 80–4
addressing modes, 82–3
inside the CPU, 80–1
instruction per clock (IPC), 18
instruction renaming, 137
instructions
arithmetic, 77
arithmetic/logic vector, 159–60
classification, 77–9
floating-point, 78, 100, 102
formats, 87, 89
in-flight, 427
issue, register fetch after, 130–2
jump-and-link, 79
logic, 77
memory-access, 78
memory vector, 160–1
pipelining, 1, 91
activities, 92
predicated, 153–4
re-coded, 93
throughput improvement, 8
types of, 87
undefined, 86
see also first in first out (FIFO) instructions; read-modify-write (RMW) instructions
instruction scheduling
cyclic, 107
global, 107–10
local, 105–7
non-cyclic, 107
static, 105–10
thread-aware, 443
see also speculative instruction scheduling
instruction set architectures (ISAs), 75–91, 492–4
complexity, 87–9
implementation, 3, 76, 90, 91
legacy, 87
memory models and, 342–3
register-based, 83–4
roles, 4
use of term, 2
see also CISC ISAs; core ISA;
load–store instruction set architectures; RISC ISAs
instruction sets, 74
and hardware layers, 4
and software layers, 4
instruction trace caches, 138
instruction tracing, 85
insulators, 38
integer exceptions, 85
integer operands, 87
integrating simulators, 498–500
approaches, 489
function-first, 489
timing-first, 489
Intel Corporation
Core i7, 455, 458
Hyper Threading Technologies, 445
i486, 427
IA-64, 154, 437–8, 494, 497–8
iAPX432 ISA, 89
materials, 51
microprocessors
clock rates, 7
feature size scaling, 8–9
and Microsoft, 4
Montecito processor, 437–8
Quick Path Interconnect, 455
simultaneous multi-threading, 444–5
Turbo Boost, 458
x86, 74, 82, 87, 90, 138, 494, 497–8, 500
see also Pentium processors
inter-cluster interconnection networks, 287
interconnection network functions, basic, 312–14
interconnection networks (INs), 12–13, 309–41
aggregate bandwidth, 319
design concepts, 311–14
design space, 311–19
direct, 322, 326–30
fully connected, 310
importance of, 309
indirect, 322–6
inter-cluster, 287
intra-cluster, 287
mesh, 311
multiprocessor systems, 309–10
processor nodes, 5
roles, 309, 311
routing techniques, 330–7
switch architecture, 337–9
switching strategies, 319–22
topologies, 322–30
see also multistage interconnection networks (MINs)
interconnects, 12–13
crossbar, 450
input/output, 13
inter-system, 13
intra-system, 13
on-chip, 12, 13
on-die, 425
point-to-point, 349–50
system, 12, 13, 348–50
see also vias
interleaved memory organization, 160–1
interleaved multi-threading, 438–42
in 5-stage pipelines, 438–9
examples, 439–40
intermittent faults, 28, 64–9
International Business Machines Corporation (IBM)
3033 model, 112, 158
addressing conventions, 82
Cell, 457–8
development, 4, 76–7
iSeries SStar processor, 437
pSeries Power 4 processor, 445, 446
pSeries Power 5 processor, 445–6
pSeries Power 7 processor, 446
reliability goals, 58
simultaneous multi-threading, 444–5
see also System/360 (S/360); System/370 (S/370); System/390 (S/390)
International Conference on Parallel Processing (ICPP), 1
International Symposium on Computer Architecture (ISCA), 1
International Technology Roadmap for Semiconductors (ITRS)
leakage current predictions, 45
projections, 30
Internet, 13
growth, 1
interrupts, 84–6
inter-system interconnects, 13
inter-thread synchronization, 343
Index

intra-cluster interconnection networks, 287
intra-system interconnects, 13
intrinsic failures-in-time (FIT) rates definition, 62
limitations, 62–3
invalidation-based cache protocols bandwidth, 264
optimizations, 260–2
invalidation request (InvRq), 280–1
Invalid blocks, 469
inversion layers, 40
inverted page tables, 218
invRq (invalidation request), 280–1
I/O see input/output (I/O)
IO (in-order) processors, 347
I/O (input/output) buses, 5
I/O (input/output) device interrupts, 85
I/O (input/output) devices, 5
IPC (instruction per clock), 18
ISAs see instruction set architectures (ISAs)
ISCA (International Symposium on Computer Architecture), 1
isolation, transactions, 465
iterations Jacobi, 345–6
loop-carried dependencies, 149, 150
loops, 109–10, 461
ITRS see International Technology Roadmap for Semiconductors (ITRS)
Jacobi iterations, shared-memory programs, 345–6
JAL (jump-and-link) instructions, 79
Java, 3
JIT (just-in-time) compilation, 498
jump-and-link (JAL) instructions, 79
jumps, 78–9
direct, 79
indirect, 79, 98–9
see also branches
just-in-time (JIT) compilation, 498
k-ary n-cubes, 328–30
kernels, development, 3
killer-micro, use of term, 1
k-means clustering, 513–14
L1 cache bit cells, analysis, architectural vulnerability factors, 63–4
L1 caches, 447–55, 493
L1-map directory, 452
L2 caches, 447–55, 493
LANs see local area networks (LANs)
latency, 193
cache lines, 62
components, 315–16
critical, 506
disks, 11
memory-access, 309
models, 314–17
of operations, 101
unloaded, 205
see also end-to-end packet latency; execution times
leakage current, 27, 70
gate, 69
per transistor, 510
predictions, 45
sources, 50
subthreshold, 50
leakage power see static power
least recently used (LRU) replacement policies, 202–3
least significant byte (LSB), 82
legacy instruction set architectures, 87
libraries, 76
lifetime, 273
definition, 352–3
light wavelength, etching and, 69–70
limited-pointer directory protocols, 284, 285
linear arrays, 326–7
link bandwidth, 315
link-level flow control, 338–9
links, 311, 312
asynchronous information transfer, 312
synchronous information transfer, 312
Little Endian addressing, vs. Big Endian addressing, 82
livelocks, 336
LIW (long instruction word) machines, 442
LL (load locked), 395–6
loaded latency, 205
load–load, 400
load–store, 400
load–store instruction set architectures, 84, 87
load–store order, 413
load–store queue, 113–14
load–store relaxation, and store forwarding, 403–4
local area networks (LANs), 13, 310
routing algorithms, 330
local caches, 250
local instruction scheduling, 105–7
locality property, 196
local time, simulation threads, 507
local wires, 29
lock, 393, 395
lock bits, 281
lock-free data structures, 465
locking problem, basic, 389–91
locks, dynamic data structure sharing with, 464
lookup-free caches, 347–8, 369, 380
schematics, 347
see also non-blocking caches
logic instructions, 77
long instruction word (LIW) machines, 442
lookahead, 504
loop-carried dependencies, 149–8
iterations, 149, 150
loop parallelization, 474–5
loops, 106–7
with conditional statements, 163
iterations, 109–10, 461
speculative parallelization of, 476
loop unrolling, 107
applications, 140
disadvantages, 107–8
superscalar processors, 108
in very long instruction word programs, 143, 144
low (variable), 237
low-power design, techniques, 46–9
LRQ (load request queue), 445–6
LRU (least recently used) replacement policies, 202–3
pseudo-, 202–3
LSB (least significant byte), 82
M5, 502
machine cycle time (Tc), 17–18
mainframe computers, multiple users, 388
main memory, 2, 5, 9, 10–11
access time, vs. processor cycle time, 10, 11
backup storage, 194
and disk memory, speed gaps, 193–4
speed, 10
structure, 194
use of term, 212
Manhattan distance, 513
manufacturing imprecisions, and reliability, 37
master pointers, 297
matrices
access types, 160
sparse, 164
matrix multiplication, parallel implementation, 290–1
MCs (memory controllers), 161
ME see memory (ME)
mean time to failure (MTTF), 58
definition, 57
determination, 57
MediaBench suite, 19
MEMBARs, 404–5, 406, 408, 414
memories, 9–12
access times, 9, 10–11
cost, 9
size, 9
see also disk memory; main memory;
random-access memory (RAM);
transactional memory (TM);
virtual memory
memory (ME), 92, 94, 102
stages, 347
memory-access atomicity, sufficient conditions for, 361–5
memory-access control, 215–16
memory accesses
atomic, 360–1
performing, 361–2
faster, 384–5
schedules, 353
memory-access instructions, 78
memory-access latency, 309
memory-access locality, 196
memory bandwidth, 276
chip multiprocessors, 453–5
sufficiency, 309
memory blocks, 193
memory cells, transient faults, 60
memory-centric directory protocols, 278
memory consistency, 342–424
relaxed models, 398–410
memory-consistency models, 86
adherence to, 400
orders, 399–400
relaxation of, 193
see also relaxed memory-consistency models
memory controllers (MCs), 161
memory disambiguation
definition, 114
dynamic, 126–8
see also speculative memory disambiguation
memory events, 351–2
memory hazards, in parallel loop codes, 475–6
memory hierarchies, 193–231
goals, 9
pyramid of memory levels, 194–5
schematics, 194
see also cache hierarchies
memory hierarchy coherence, 196–7
definition, 197
memory inclusion, 197
memory interleaving, and store atomicity, 373–4
memory latency, 276
memory levels, pyramid of, 194–8
memory management units (MMUs), 219, 223
memory models, 342
generic depiction of, 399
and instruction set architectures, 342–3
need for, 350
memory operands, 81–2
hazards on, 114
number of, 83–4
memory orders, speculative violations of, 411–15
memory organization, interleaved, 160–1
memory overheads, 295–6
direct, 296
indirect, 296
total, 296
memory pressure, 296
memory protection violation, 85
memory space, automatic management of, advantages, 212
memory speculation techniques, 193
memory systems
components, 9
design criteria, 9
design improvements, 8
physical constraints, 9
memory vector instructions, 160–1
memory wall
definition, 10, 193
over time, 10
meshes, 327–8, 349–50
mesh interconnection networks, 311
MESI protocol, 260, 262
message management, inbound, 379–85
message-passing asynchronous, 242
synchronous, 240–1
message-passing interface (MPI), 233
message-passing multiprocessor systems, 232, 239–46
message-passing primitives, 240–3
blocking, 242–3
non-blocking, 242–3
see also synchronous
message-passing primitives
message-passing protocols, 243–4
hardware support for, 244–6
message processors (MPs), 245, 246
message transfers, between nodes, 313
metal oxide silicon field effect transistors (MOSFETs)
control, 40
definition, 39
operating regions, 42
principles, 39–43
structure, 40
see also nMOS transistors; pMOS transistors
MiBench suite, 19
microarchitectures
development, 2
evolution, 4–5
explicitly parallel instruction computing, 157–8, 437
micro-core, 7
Pentium processors, 7–8
simulation, sampling, 511–13
see also processor microarchitecture microcodes
compiling, 90
horizontal, 90
implementation, 89–90
limitations, 90
use of term, 89
vertical, 90
microops, 138–9
use of term, 138

microprocessors
clock rates, 7
design complexity, 488
metal layers, 29
single-chip, power consumption limitations, 8
see also multi-core microprocessors
microprocessor without interlocked pipeline stages instruction set architecture see MIPS ISA
Microsoft, and Intel Corporation, 4
microwords, 90
migratory blocks, 262
Migratory-Clean state, 262
Migratory-Dirty state, 262
MIMD (multiple instruction multiple data) systems, 15
miniaturization, limits, 30
MINs see multistage interconnection networks (MINs)
MINT, 491, 502
MIPS ISA
advantages, 74
applications, 86–7
jump-and-link instructions, 79
ops, 141
misaligned memory access, 85
miss latencies, 205
5-stage pipelines, 431–2
miss penalties, 205
miss rates, 204
miss status handling registers (MSHRs), 207, 209
MSI-invalidate, 354, 356–7, 363, 381–2, 467–8, 477
strict coherence in, 360–1
MSI protocol, 257, 258, 270, 279, 358
behavior, 254–5
definition, 254
hardware structures, 255–7
transient states in, 266–7
MSI-update, 354, 356–7, 382–4
MTCMOS see multi-threshold complementary metal oxide silicon (MTCMOS)
MTTF see mean time to failure (MTTF)
MULT, 77
multicast requests, 312
multi-core microprocessors, 6
development, 7
see also chip multiprocessors (CMPs)
Multifacet, 502
multi-path execution, 118
multi-phase snoopy cache protocols, design issues, 265
multiple branch handling, 138
multiple clusters, cache coherence, 288
multiple cores, 6
multiple instruction multiple data (MIMD) systems, 15
multiple instructions per clock, 137–8
multiple users, mainframe computers, 388
multiprocessor cache organizations, 246–9
multiprocessors
on chips, 9
coherence in, issues, 351–4
synchronization, 15
use of term, 6
see also chip multiprocessors (CMPs); symmetric multiprocessors (SMPs)
multiprocessor simulators, 500–8
parallel, 503–8
sequential, 501–2
multiprocessor systems, 232–308
design principles, 232
historical background, 232
interconnection networks, 309–10
inter-thread synchronization, 343
message-passing, 232, 239–46
see also shared-memory multiprocessor systems
multistage interconnection networks (MINs), 324–5
definition, 324
routing algorithms, 330–1
multi-threaded cores, 6, 429
multi-threading software, 388
see also block multi-threading; core multi-threading; hardware multi-threading; hardware multi-threading (HMT); interleaved multi-threading; simultaneous multi-threading (SMT)
multi-threshold complementary metal oxide silicon (MTCMOS) circuits, 47–8
dynamic, 52
MULTU, 77
MUX, 96–7
myN rows, 238–9
mysum (variable), 237, 239
NAND, 77
narrow caches, 198–9
NBTI see negative bias temperature instability (NBTI)
n-by-n switches, 312, 338
negative bias temperature instability (NBTI), 37, 66–8
partial recovery, 68
recovery phase, 67
stress phase, 67
NetBurst, 445
network contention, 318
network diameter, concept of, 317
network interfaces (NIs), 5, 287
functions, 13
networks
adaptive, 350
omega, 324, 330
on-chip, 310, 312
see also butterfly networks; interconnection networks (INs); local area networks (LANs); system area networks (SANs); tree networks; wide area networks (WANs)

networks on a chip (NoCs), 310
network topology, 314, 317, 325
neutron flux metrics, 60
neutron strikes, 60
NIs see network interfaces (NIs)
nMOS transistors
applications, 42–3
control, 40–1
negative bias temperature instability, 66–7
principles, 40–3
structure, 41
N/nproc rows, 236–7, 238–9
NoCs (networks on a chip), 310
nodes, 276–7, 322
home, 280–1
message transfers between, 313
processor, 5
routes between, 350
shared, 357
technology, 6
non-atomic cache states, 266–7
non-blocking caches, 193, 207–9
and blocking caches compared, 208–9
controllers, 207
definition, 207
in out-of-order processors, 208, 209
see also lockup-free caches
non-blocking message-passing primitives, 242–3
non-cyclic instruction scheduling, 107
non-cyclic very long instruction word scheduling, 151–3
non-essential misses, 271
non-pipelined buses, 323
non-uniform cache access (NUCA), 277
non-uniform memory architectures (NUMAs), 296
see also cache-coherent non-uniform memory architectures (cc-NUMAS)
non-volatile memory, constraints, 9
NOOps, 143
NOR, 77, 256
Normal Bridge chip, 5
notifications, 345, 384
nproc threads, 236–7
NUCA (non-uniform cache access), 277
NUMAs see non-uniform memory architectures (NUMAs)
numerical programs, computer simulations, 232
object code, 3
object-oriented programming, 89
OCNs (on-chip networks), 310, 312
off-chip bandwidth, 453–4
Ohm’s law, 38
omega networks, 324, 330
on-chip caches
sleepy vs. non-sleepy mode, 52–3
static power, 52–3
on-chip interconnects, 12, 13
on-chip networks (OCNs), 310, 312
on-chip transistors, applications, 29
on-die interconnects, topologies, 425
on-die parallelism, 425
OoO (out-of-order) instruction completion, 100–3
OoO cores see out-of-order (OoO) cores
OoO processors see out-of-order (OoO) processors
Opal, 500, 502
opcodes, 77–9
OpenMP, 461–2, 463, 473
automatic parallelization with, 462–3
operand forwarding, 96–7
operands
alignment, 81–2
immediate, 81
input, 77
integer, 87
output, 77
register, 100
types of, 87
see also floating-point operands; instruction operands; memory operands
operating system (OS), functions, 3, 76
operating system calls, 85
operations, latency of, 101
ops, 143
use of term, 141
see also microops
op slot conflicts, 147–8
Op–Sync order, 409
OPT (optimum replacement policy), 202, 206
optimization algorithms, 25
and speedups, 23
optimum replacement policy (OPT), 202, 206
OR, 77
orders
in release consistency, 409
sequential, 400–1
in weak ordering, 408
OS (operating system), functions, 3, 76
out-of-order (OoO) architectures
dynamic, 140
limitations, 132
out-of-order (OoO) cores, block multi-threading in, 434–7
out-of-order (OoO) execution completion, 100–3
dynamic scheduling, 111, 112
and Tomasulo algorithm, 112
out-of-order (OoO) processors conservative memory model enforcement in, 411–12
dynamically scheduled, 193
instruction-level parallelism, 75
miss penalties, 205
non-blocking caches, 208, 209
performance costs, 219
plain coherence violations, 371
simultaneous multi-threading in, 442–6
speculative, 411
value prediction, with speculative scheduling, 137
output operands, 77
overlays, 212
ownership, concept of, 259
packet envelopes, 313
packets, 246
anatomy of, 313
routing, 313
packet switching, 314
under cut-through switching, 320–1
under store-and-forward switching, 320–1
page coloring, 223
page-fault handlers, 214
page faults, 85, 194, 214, 274, 275
page hits, 194
page-migration schemes, 289–93
Index

534

page placement
dynamic, 289–90
first-touch, 292
round-robin, 291
static, 289–90, 291–2
page-replication schemes, 289–93
pages, 194
superpages, 217
virtual, 274
page-table base addresses (PTBAs),
215, 216
page-table entries (PTEs), 215, 275–6
structure, 274–5
page-table fragmentation problem, 216
page tables, 215, 274
inverted, 218
see also hierarchical page tables
paired eviction, 223
Palo Alto Research Center (PARC), 262
parallel algorithms, 237–9
parallel computer architecture
components, 5–13
generic, 5, 6
motivations for, 232
parallel computers
historical background, 1–2
overview, 1–35
technological issues, 26–30
parallel discrete-event simulations
(PDESs), 504
parallelism, 7–8, 234
in architecture, 13–17
function-level, 235
granularity, 236
on-die, 425
single-program-multiple-date, 234
task-level, 235
in very long instruction word architectures, 153
see also instruction-level parallelism
(ILP); thread-level parallelism (TLP)
parallelization, 504
automatic, 462–3
loop, 474–5
speculative, of loops, 476
parallelizing compilers
definition, 15
limitations, 15
parallel loop codes, memory hazards in,
475–6
parallel multiprocessor simulators,
503–8
parallel processing
and chip multiprocessors, 425
dynamic power reduction, 49
parallel programming, development, 4–5
parallel-programming models
abstractions, 233–9
definition, 233
parallel simulations, 501
parallel software, development, 4–5
parallel speedups, 24–5
PARC (Palo Alto Research Center), 262
parity, area overhead, 62
partial store order (PSO), 404
partitioning, 234
PAs (physical addresses), 215, 222, 223
PCI (peripheral component interconnect), 5
PC (program counter), 78, 93
PCs see personal computers (PCs)
PDESs (parallel discrete-event simulations), 504
Pentium processors
microarchitectures, 7–8
Pentium 3, 138
Pentium 4, 138, 427–8
NetBurst, 445
Pentium-Pro, 427
perfect-shuffle exchanges, 324
performance, 17–26
hardware, 4
improved, 232
measures, 17
scalar, 427–8
technological impacts, 36
see also cache hierarchy performance
performance bottlenecks, 514–15
performing memory accesses, 361–2
faster, 384–5
performing a store, faster, 384–5
peripheral component interconnect
(PCI), 5
permanent faults, 28, 69
permittivity
of free space, 39
gate dielectrics, 51
personal computers (PCs)
arithmetic, 5
schematics, 5
PEIs (processing elements), multiple, 16
Peterson’s algorithm see Dekker’s algorithm
PFEs (prefetch engines), 210
PFV see presence-flag vectors (PFVs)
PHARMSim, 494
phits (physical transfer units), 315
physical addresses (PAs), 215, 222, 223
physical bits, 220
physical buffers, 334
physical memory, 274
physical page frames, 194
physical tags, virtual-address caches
with, 221–3
physical transfer units (phits), 315
PIDs (process IDs), 214, 219, 237
PIN, 497–8
pipelined buses, 323
pipeline depth, and clock rates, 6–7
pipeline registers, 93
pipelines
deep, 7–8
deeper, 1, 29, 427
elaborated, 139–40
freezing, 155
function, 235
in-flight instructions, 427
limitations, 8
statistically scheduled, 91–111
store, 369–70, 399
see also 5-stage pipelines;
dynamically scheduled pipelines; dynamic pipelines;
static pipelines; transmission pipelines
pipeline stage flushing, 74
pipelining
applications, 91
dynamic power reduction, 49
instructions, 1, 91
activities, 92
reduced instruction set computer,
91–111
wire delays, 29
see also software pipelining
plain coherence, 365–73
advantages, 371–2, 375
definition, 366
execution, 373
in forwarding store buffers, 366–9
generalizations, 369–70
importance of, 370–2
issues, 372–3
use of term, 365
pMOS transistors
applications, 42–3
characteristics, 42
Index

control, 42
negative bias temperature instability, 66–8
pointer overflow problem, 284–5
pointer overflows, 284–5
point-to-point communication, 375
point-to-point interconnects, 349–50
point-to-point synchronization, 392
Poisson processes, 59
POP, 81
power, 45–54
definition, 38
growth, containment, 36
metrics, 53–4
and scalar performance, 427–8
subthreshold leakage, 50
technological impacts, 36
on scaling, 45
technological issues, 27–8
types of, 45
see also dynamic power; static power
power consumption, limitations, 8, 310
power dissipation, 53–4
power failures, 86
power gating, 47, 51
PowerPC, 158
architecture, 218
PowerPC processing elements (PPEs), 457–8
power simulations, 508–10
tools, 508
PPEs (PowerPC processing elements), 457–8
precise exceptions, 86, 102–3, 110–11
dealing with, 99
predicated instructions, 153–4
predicators, 119–20
combining, 122
see also 1-bit predictors; 2-bit predictors; branch predictors; two-level predictors
PREF, 211
prefetch degree, 209
prefetch engines (PFEs), 210
prefetching
5-stage pipelines, 211
data, 454, 478–9
sequential, 209
software, 211
use of term, 209
see also cache prefetching; hardware prefetching
preloading
processor write (PrWr), 253
process throughput, 17
process variations
effects on faults, 69–70
see also die-to-die variations;
w ithin-die variations
producer/consumer synchronization, 392
productivity, factors affecting, 488
program counter (PC), 78, 93
programming
parallel, 4–5
with transactions, 465–6
programming models
chip multiprocessors, 459–82
independent processes, 460
see also parallel-programming models
programs
definition, 6
multi-threaded, 14, 15
numerical, 232
set of, reporting performance for, 19
single-threaded, 14, 15
use of term, 74
very long instruction word, 143, 144
see also shared-memory programs
propagation delays, 28
protection levels, selection criteria, 62
protocols
MESI, 260, 262
MOSI, 297
presence-flag vector, 278–9
see also cache protocols; directory protocols; message-passing protocols; MOESI protocol; MSI protocol
PrRd (processor read), 252–3
PrWr (processor write), 253
pseudo-least recently used replacement policies, 202–3
PSO (partial store order), 404
PTBAs (page-table base addresses), 215, 216
PTEs (page-table entries), 215
Pthreads, 461, 463, 473
p-type bodies, 66–7
PUSH, 80
p-wells, 66–7
pyramid of memory levels, 194–8
QPI (Quick Path Interconnect), 455
quanta, 505
quantitative evaluations, 488–520
quantum simulations, 505–7
Quick Path Interconnect (QPI), 455
quicksort, 25
R (requester node), 357
race conditions, 465
random-access memory (RAM) and content-addressable memory compared, 201
see also dynamic random-access memories (DRAMs); static random-access memories (SRAMs)
random replacement policies, 202
random sampling, 512
random within-die variations, 70
RATs see register alias tables (RATs)
RAW hazards see read after write (RAW) hazards
R-bit (reference bit), 216
read after write (RAW) hazards, 95, 96, 97, 112, 154, 475–7
checking, 126–7
definition, 94
loop-carried dependencies, 148–9
on memory operands, 114
solving, 141
stalling, 101
read misses, 262
read-miss request, 250–1
read–modify–write (RMW) instructions, 395, 408
accesses, 412, 414–15
speculative execution of, 414
atomicity, 391, 393–4
definition, 393
global access, 408
primitives, 396
read–write–execute (RWX) bits, 215–16, 224
real store buffers, 399
receiver overhead, 316
re-coded instructions, 93
recoverable errors (REs), definition, 55
RECV, 239, 240, 243–4
reduced instruction set computer (RISC)
definition, 87
and hardware, 90
microcodes, 90
pipelining, 91–111
vs. complex instruction set computer, 87–91
see also RISC ISAs
redundant execution, to improve reliability, 480–2
reference bit (R-bit), 216
register alias tables (RATs), 124–6, 445
front-end, 128–30, 137–8
retirement, 128–30
use of term, 128
register-based instruction set architectures, 83–4
register fetch, after instruction issue, 130–2
register files, 87
structural hazards, 102
register fills, 81
register forwarding, 95
register operands, forwarding paths, 100
register renaming in Tomasulo algorithm, 114–15
see also explicit register renaming
registers, 81, 87
addressable, 81
general-purpose, 445
miss status handling, 207, 209
pipeline, 93
poisoned, 156
vector length, 159
see also rotating registers
register spills, 81
register tags
invalid, 113
not ready, 113
ready, 113
register transfer language (RTL), 29
relative addresses, 331
relaxed memory-consistency models, 398–410
not relying on synchronization, 398–405
relying on synchronization, 405–10
relaxed memory order (RMO), Sun Microsystems, 404–5
release consistency, 409–10
orders in, 409
speculative violations of, 415
reliability, 54–70
component, 58
improvement, redundant execution, 480–2
manufacturing issues, 37
metrics, 57–8
processor, 36
system, criticality, 56
technological impacts, 36
technological issues, 28
RemAck, 283
remote caches, 250
remote-read request (RemRd), 280, 282, 283
RemRd (remote-read request), 280, 282, 283
re-order buffers (ROBs), 124–6, 411, 445
and dynamic memory disambiguation, 126–8
organization, 125
and register renaming, 128
repeaters, 29
replacement misses, 270, 271
replacement policies, 201–3, 206
definition, 202
least recently used, 202–3
most recently used, 202
 optimum, 201, 206
pseudo-least recently used, 202–3
random, 202
replay queues, 136
requester node (R), 357
request phases, 265–6, 267–8
request tables, 268
request to send, 244
resistance, 38
wires, 28
resistivity, 38
resistors, 38
response phases, 265–6, 267–8
response times see execution times
REs (recoverable errors), definition, 55
retirement register alias tables, 128–30
Rice Parallel Processing Testbed (RPPT), 502
rings, 326–7, 349–50
RISC see reduced instruction set computer (RISC)
RISC ISAs, 138–9
definition, 87
and hardware, 90
RMO (relaxed memory order), Sun Microsystems, 404–5
RMW instructions see read–modify–write (RMW) instructions
ROBs see re-order buffers (ROBs)
rotating register base (RRB) register, 146
rotating registers, 149
solving write after read hazards with, 146–7
round-robin page placement, 291
routes, between nodes, 350
routing algorithms, 314, 330–2
deterministic, 336
flexible, 338
simple, 330
west-first, 335
routing distance, 317
average, 317
routing restrictions, relaxing, 334–5, 336–7
routing techniques, interconnection networks, 330–7
routing time, 315
determination, 320
RPPT (Rice Parallel Processing Testbed), 502
RRB (rotating register base) register, 146
RSIM, 491, 502
RTL (register transfer language), 29
Ruby, 500, 502
running processes, 430
running threads, 431
RWX (read–write–execute) bits, 215–16, 224
S/360 see System/360 (S/360)
S/370 see System/370 (S/370)
S/390 see System/390 (S/390)
S (shared nodes), 357
SA (speculation active) bit, 476–7
sampling techniques, 489
workload, 510–14
see also random sampling
sampling microarchitecture simulations (SMARTS), 511–13
SANs see system area networks (SANs)
saturating counters, 120
SC (store conditional), 395–6
scalable coherent interface (SCI), 286, 287
scalable processor architecture see SPARC
scalable shared-memory multiprocessor systems, 276–93
scalar performance, power and, 427–8
scalar processors, 13–14
scaled setups, 515–16
scaling advantages, 36–7
technology, 43–5
voltage, 47
see also dynamic voltage frequency scaling (DVFS)
scatter operations, 164
scheduling, 140
cyclic, 140, 151
global, 140, 143
see also instruction scheduling; speculative scheduling; trace scheduling
SCI (scalable coherent interface), 286, 287
SDC errors see silent data corruption (SDC) errors
SECDED code see single error correcting and double error detecting (SECDED) code
secondary misses, 207–8
seek times, disks, 11
semaphores, 396–7
semiconductor devices, performance improvements, 1
semiconductor integration, growth, 1
semiconductors, 38
SEND, 239, 240, 243–4
sender overhead, 315
sentinels, use of term, 157
sequential algorithms, 235
sequential consistency, 375–88, 398, 400–1
access ordering rules for, 378–9
definition, 375–7
difference with, 401–2
formal model, 376–8
speculative violations of, 413
sufficient conditions for, 378
violations, 377–8
sequential multiprocessor simulators, 501–2
sequential orders, 400–1
sequential prefetching, 209
sequential semantics, 234
sequential simulations, 501
serialization points, stores, 370
SERs see single event upset rates (SERs)
servers, high-end, 388
SESC, 502
set-associative caches, 200
N-way, 200
three-way, 200
SEUs see single event upsets (SEUs)
SF (speculation fail) bit, 476–7
SGI Challenge, 268, 269
SGI Origin 2000, 287–8
Shade, 491
Shared, 259, 264, 281, 381, 472
shared cache organizations, 246–8
cooperative sharing, 454
destructive interference, 454
shared-memory address spaces, 276
shared-memory communication, 344
models, 344–6
shared-memory multiprocessor systems, 232, 235–8, 342
bus-based, 246–76
cache-only, 293–7
and chip multiprocessors compared, 425, 428–9
scalable, 276–93
shared-memory multi-threaded programs, correctness issues, 342
shared-memory programs, 236
Jacobi iterations, 345–6
shared nodes (S), 357
shared resources, contention, 193
short misses, 222
silent data corruption (SDC) errors, 56
definition, 55
detection, 62
goals, 58
sim-cache, 494
SIMD processors see single instruction multiple data (SIMD) processors
sim-fast, 494
Simics, 494, 499, 500
SimOS, 494
sim-outorder, 493–4
SimpleMP, 494
SimplePower, 491
SimpleScalar, 491, 492–4, 499
simple snoopy cache protocols, 249–53
behavior, 250–2
hardware structures for, 250
SimPoint, 513–14
Simpoints, 19
simulations accelerating, 488
cache, 206
simulations (cont.)
 in computer architecture, 488
direct-execution, 496–8
discrete-event, 504
event-driven, 496
functional-first, 489–9
microarchitectures, sampling, 511–13
motivations, 489
parallel, 501
power, 508–10
quantum, 505–7
sequential, 501
slack, 507–8
thermal, 508–10
timing-first, 499
see also cycle-by-cycle (CC)
simulations; trace-driven simulations
simulation slowdown, 488, 489
simulation threads
global time, 507
local time, 507
simulators
functional vs. cycle-accurate, 491–4
hybrid, 500–8
multi-threaded, 489
single-threaded, 489
taxonomy, 489, 490–8
user-level vs. full-system, 490–1
see also full-system simulators; integrating simulators
simultaneous multi-threading (SMT), 502
definition, 442–3
in out-of-order processors, 442–6
with spatial redundancy, 481
speculative scheduling with, 444
SimWatch, 499
defined, 442–3
execution under, 123–6
in out-of-order processors, 442–6
with spatial redundancy, 481
speculative scheduling with, 444
single dies, thread-level parallelism, 425
single event upset rates (SERs)
definition, 61
determination, 61
single event upsets (SEUs)
definition, 60
impacts, 62–3
mechanisms, 60–1
source code, 3
South Bridge chip, 5
SPARC, 82, 494
core, 459
instruction set architectures, 90, 403, 500
interleaved multi-threading, 439, 440
Niagara, 289, 446
speculation, 446
sensitive matrices, 164
spatial locality, 196
spatial redundancy, simultaneous multi-threading with, 481
SPEC (Standard Performance Evaluation Corporation), benchmarks, 18, 516
speculation, adding to Tomasulo algorithm, 123–6
speculation active (SA) bit, 476–7
speculation fail (SF) bit, 476–7
speculative broadcast schedulers, 135
speculative execution and hardware prefetching, 210–11
of read-modify-write instructions, 414
speculative instruction execution, 117–18
as tree of basic blocks, 117–18
use of term, 117
speculative instruction scheduling, 133–6
execution under, 133–5
in out-of-order processors, 137
speculative memory data management mechanisms, 466
speculative memory disambiguation, 154
with guardian, 154
speculative schedulers, 136
speculative scheduling
with block multi-threading, 436–7
with simultaneous multi-threading, 444
speculative Tomasulo algorithm, 131–2
execution under, 127–8
speculative violations of memory orders, 411–15
of release consistency, 415
of sequential consistency, 413
of total store order, 413–14
of weak ordering, 414–15
speedups
Amdahl’s law, 22–6
arithmetic means, 20
averaging, 20–1
definition, 19–20
issues, 25
determination, 22
geometric means, 20
harmonic means, 20
ideal, 24
limitations, 22
and optimization, 23
parallel, 24–5
reporting, 19–22
superlinear, 25

SPEs (synergistic processing elements),
457–8
split-transaction buses, 323
cache protocols on, design issues,
267–9
SPMD (single-program-multiple-data)
parallelism, definition, 234
Squash, 477
SRAMs see static random-access
memories (SRAMs)
SRQ (store request queue), 445–6
SSDs (solid-state disks), memory
storage, 9
stage flushing, 439
thread-aware, 443
stale data, 271
stalling, 74
Standard Performance Evaluation
Corporation (SPEC),
benchmarks, 18, 516
Stanford DASH system, 282
Star machines, 158
state bits, 215–16, 250
state E, 259–60
state-transition diagrams
as behavioral specifications, 252–3
MOESI protocol, 259
update-based cache protocols, 263
static branch prediction, 104
static instruction mixes, definition, 79
static instruction scheduling, 105–10
static machines, compilers, 140
static page placement, 289–90, 291–2
static pipelines
advantages, 110–11
characteristics, 74
compilers, 110
disadvantages, 110–11
efficiency, 74–5
use of term, 105
static power, 27–8, 45, 50–3
definition, 37
modeling, 510
on-chip caches, 52–3
reduction, 51–2
static random-access memories
(SRAMs), 455, 508–9
emigration, 65–6
error correction, 28
single event upsets, 62–3
transient faults, 61
static techniques, duality of, 140–1
statistically scheduled pipelines see
static pipelines
STM (software transactional memory),
467
storage structures, 29
store-and-forward switching, 315–16
packet switching under, 320–1
store atomicity, 357–65
advantages, 375
in bus-based systems, 359–61
in cache-coherent non-uniform
memory architectures, 363–5
coherence and, 350–74
definition, 359
and memory interleaving, 373–4
necessary conditions for, 386
and store synchronization compared,
387–8
sufficient conditions for, 362, 386
use of term, 365
store atomic systems, 362
store buffers, real, 399
store conditional (SC), 395–6
store forwarding, and load–store
relaxation, 403–4
store–load, 400
store–load order, 413
store pipelines, 369–70, 399
store request queue (SRQ), 445–6
stores, serialization points, 370
store–store, 400
store–store order, 413
store synchronization, 385–8
definition, 385–6
and store atomicity compared,
387–8
store-to-load relaxation
with forwarding, 402–4
without forwarding, 401–2
strict coherence, 365
definition, 358
enforcement, 358–9
in MSI-invalidate, 360–1
strong ordering, 407
structural hazards, 99, 101–2
S/U (supervisor/user) bits, 216
SUB, 77
subordinate threads see helper threads
subroutines, 79
subthreshold leakage, 50
SUBU, 77
sun (variable), 237
Sun Microsystems, 82, 403
relaxed memory order, 404–5
WildFire, 287–8
see also SPARC
supercomputers, use of term, 158
superlinear speedups, 25
supercycles, 217
superclocked processors, 74,
103–4
superscalar processors, 103–4
loop unrolling, 108
superset bits, 222
supersets, 222
supervisor/user (S/U) bits, 216
supply voltages
and dynamic power, 37
lower limits, 36
reductions, 427
swap, 395
switch architecture, interconnection
networks, 337–9
switch degree, 312
switches, 311
4-by-4, 337
context, 430
crossbar, 323–4
n-by-n, 312, 338
switching
circuit, 313–14, 319–20
cutthrough, 316
thread, 437
virtual cut-through, 321–2
wormhole, 322, 334
see also cut-through switching;
packet switching;
store-and-forward switching;
switching elements, 312
switching strategies, 313
interconnection networks, 319–22
switching time, 315–16
symmetric multiprocessors (SMPs)
buses, 362
correctness issues, 342
synchronization, 234, 388–98
barrier, 237, 504–5, 507

basic primitives, 392–94
critical section, 359
events, components, 397–8
hardware-based, 392–3
inter-thread, 343
multiprocessors, 15
point-to-point, 392
processes, 388
producer/consumer, 392
in relaxed memory-consistency
models, 405–10
software-based, 393–8
threads, 388

see also store synchronization
synchronization variables, 409
synchronous message-passing, 240–1
synchronous message-passing
primitives, 240–1
advantages, 241
disadvantages, 241
synchronous RECV primitives, 241–2
synchronous snooping, 256
Sync–Op order, 409
Sync–Sync order, 409
synergistic processing elements (SPEs),
457–8
synonym problem, 215
synonyms, 214–15, 222
detection, 223
synthetic benchmarks, 515
System/360 (S/360), 22
backward compatibility, 4, 76–7
development, 4, 90
System/360 (S/360), 4
addressing conventions, 82
development, 90
instruction set architecture, 87
System/360 (S/360), 4
development, 90
system area networks (SANs), 13, 312
use of term, 310
systematic random sampling, 512
systematic within-die variations, 70
system buses, structure, 349
system functions
implementation, 3–4
on-chip, 6
system interconnects, 12, 13, 348–50
system reliability, criticality, 56
system throughput, definition, 17
System z, 4
development, 90
T&S (test_and_set), 393–4
tables
group completion, 445
request, 268
see also page tables; register alias
tables (RATs)
tag checking, 199
task-level parallelism, 235
TBegin, 467
TBs see translation lookaside buffers
(TLBs)
\(T \) (machine cycle time), 17–18
TDDBB see time-dependent dielectric
breakdown (TDDB)
technological impacts, computer
arithmetic, 36–73
technological issues, parallel
computers, 26–30
technology nodes, and clock rates, 6
technology scaling, 43–5
TEMPEST, 491
temporal locality, 196
TEnd, 467
TERA, 442
test_and_set (T&S), 393–4
then clause, 163
thermal simulations, 508–10
thread communication overheads,
impacts, 460
thread context ID (TID), 439
thread-level parallelism (TLP), 15, 428,
461
single dies, 425
sources of, 473
thread-level speculation (TLS), 426,
473–8
hardware for, 476–7
optimizations, 477–8
threads, 369
blocked, 431
definition, 6
nproc, 236–7
routing, 431
synchronization, 388
use of term, 74, 234
see also helper threads; processes;
simulation threads
thread selection algorithms, 439
thread sequence numbers, 476
thread switching, 437
threshold voltages, 40, 52
TID (thread context ID), 439
time-dependent dielectric breakdown
(TDDBB), 37, 68–9
degradation, 68, 69
time of flight, 315
time quanta, 430
timing-first integrating simulators, 489,
499–500
timing-first simulations, 499
TLBs see translation lookaside buffers
(TLBs)
TLP see thread-level parallelism (TLP)
TLS (thread-level speculation), 426,
473–8
TM see transactional memory (TM)
Tomasulo algorithm, 112–16, 126, 140
adding speculation to, 123–6
adventages, 116
execution under, 115–16
hardware for, 112
register renaming in, 114–15
see also speculative Tomasulo
algorithm
topologies, interconnection networks,
322–30
tori, 327–8
total memory overhead, 296
total store order (TSO), 403
speculative violations of, 413–14
TPC (Transactional Processing
Council), benchmarks, 19
TPC-C, 515, 516
trace-driven simulations, 494–6
adventages, 495
disadvantages, 495
variations, 496
trace scheduling, 107, 151–2
applications, 140
limitations, 153
use of term, 151
transactional block, 468–9
transactional cache states, 467
transactional conflict detection
mechanisms, 466
transactional memory (TM), 425–6,
463–73
abort, 469–73
commit, 469–73
hardware systems for, 467–9
mechanisms, 466–7
Transactional Processing Council (TPC), benchmarks, 19
transactional caches, 469–73
transactions
atomic protocol, 360–1, 364–5, 367
coherence, 265–6, 357
dynamic data structure sharing with, 466
isolation, 465
programming with, 465–6
transfer times, disks, 11
transient cache states, 266–7
transient faults, 27, 28, 60–4
in caches, 62
causes, 60
electrical noise and, 61
probabilities, 62
single event upsets, 60–1
transistor susceptibility to, 36
transistor densities, increased, 2, 8–9
transistors
on-chip, 29
principles, 36
transient faults, 36
see also field effect transistors (FETs); nMOS transistors;
pMOS transistors
translation buffers (TBs) see translation lookaside buffers (TLBs)
translation lookaside buffers (TLBs), 218–21, 223, 445
5-stage pipelines, 220
consistency, 274–6
consistency problem, 275
definition, 218, 274–5
faults, 275
misses, 514
organization, 218–19
parallel access to, 220
shutdown, 276
transmission pipelines, 317
average length of, 317
transmission time, 315
TRAP, 85
traps, 84–6
tree networks, 325–6
schematics, 325
tree sharing misses, 271
definition, 273
TSO (total store order), 403
turn model, 334–5
two-level predictors
classification, 121–2
concept of, 121
UMA (uniform memory access), 450
unconditional branches see jumps
undefined instructions, 86
unicast requests, 312
uniform memory access (UMA), 450
unloaded end-to-end packet latency, 315
unloaded latency, 205
update-based cache protocols
bandwidth, 264
optimizations, 262–4
state-transition diagrams, 263
UpgrAck, 280, 281, 282, 283
upgrade complete (UpgrCompl), 283
UpgrCompl (upgrade complete), 283
user-level simulators, vs. full-system simulators, 490–1
valid bit (V-bit), 216, 251, 252, 254, 453
value communication, 375
value predictions, 136–7
in out-of-order processors, 137
VAs see virtual addresses (VAs)
V-bit (valid bit), 216, 251, 252, 254, 453
VDD, 256
vectorization, 163
vector length (VL) registers, 159
vector masks (VMs), 163
vector microarchitectures, 158–64
vector processors, 15–17
characteristics, 75
definition, 158
vector protocols, presence-flag, 278–9
vectors
addition, 14, 16, 105–6, 107–10, 159–60
basic block, 513–14
similarity between, 512–13
see also presence-flag vectors (PFVs)
vector strip mining, 161–3
verification
costs, 29
see also design verification
version management, 466
vertical microcodes, 90
very large scale integration (VLSI), 11
design quality, 53
dynamic power in, 39
resistors, 38
very long instruction word (VLIW)
architectures, 141–3
advantages, 155
kernels, 143–4, 145, 146–51
size factors, 148
limitations, 155
parallelism in, 153
schematics, 142
use of term, 141
very long instruction word (VLIW)
microarchitectures, 140–57
very long instruction word (VLIW)
processors, hardware and, 75
very long instruction word (VLIW)
programs, loop unrolling, 143, 144
very long instruction word (VLIW)
scheduling, non-cyclic, 151–3
vias
definition, 29
electromigration, 65
see also interconnects
virtual-address caches
with physical tags, 221–3
with virtual tags, 223–4
virtual addresses (VAs), 212, 222, 274
space layout, 213
virtual address translation, 215
virtual channels, 334–5
virtual cut-through switching, 321–2
virtual memory, 196, 212–24
management, 194
motivations for, 212
operating system’s view of, 213–15
organization, 213–14
system space, 194
virtual memory hierarchy, 193
virtual memory systems, 274
virtual page numbers (VPNs), 215, 217, 219
virtual pages, 274
virtual space, of processes, 213
virtual tags, virtual-address caches with, 223–4
VL (vector length) registers, 159
VLIW architectures see very long instruction word (VLIW)
architectures
VLIW (very long instruction word)
microarchitectures, 140–57
VLIW (very long instruction word)
processors, hardware and, 75
Index

VLIW (very long instruction word) scheduling, non-cyclic, 151–3
VMs (vector masks), 163
voltage, definition, 38
voltage scaling, 47
see also dynamic voltage frequency scaling (DVFS)
vols, 38
VPNs (virtual page numbers), 215, 217, 219
VSLI see very large scale integration (VSLI)
VTune, 515

waiting, methods, 397
WANs see wide area networks (WANs)
WAR hazards see write after read (WAR) hazards
warmup, concept of, 512–13
Watch, 499, 508
schematics, 508
watts, 38
WAW hazards see write after write (WAW) hazards
WB (write back), 92, 94, 96–7, 102–3
weak ordering, 407–9
orders in, 408
speculative violations of, 414–15
wearout, 64
rapid, 37
west-first routing algorithm, 335
wide area networks (WANs), 13, 310
routing algorithms, 330
wide caches, 198–9
WildFire, 287–8
wire delays, 8
impacts, 29
linear, 29
pipelining, 29
technological issues, 28–9
wires
characteristics, 44
global, 29
local, 29
resistance, 28
Wisconsin Wind Tunnel II, 507
within-die variations, 70
random, 70
systematic, 70
words, 87
working sets, 196, 214
workload behavior, projecting, 515–16
workload characterization, 514–16
workload sampling, 510–14
work partitioning, 234
wormhole switching, 322, 334
write after read (WAR) hazards, 106, 107–8, 111–12, 126, 475–7
definition, 95
on memory operands, 114
solving, 141
with rotating registers, 146–7
write after write (WAW) hazards, 107–8, 112, 126, 475–7
definition, 95
on memory operands, 114
solving, 141
write-allocate, 249
policies, 271
write-back caches, 204, 254
architecture, 203
write back (WB), 92, 94, 96–7, 102–3
write hits, 251, 262
write misses, 251
write policies, 203–4
write register (WR), 94, 96–7
write-run, definition, 263
write-run length (WRL), 264
write-run model, 263
write-through caches, 203–4
architecture, 203
WRL (write-run length), 264
WR (write register), 94, 96–7
XactActive bit, 472–3
XactMod bit, 472–3
XactRead bit, 472–3
XBusy, 473
Xerox, 262
XOR, 331
Zesto, 491, 502