Cambridge University Press

978-0-521-88675-8 - Parallel Computer Organization and Design
Michel Dubois, Murali Annavaram and Per Stenstréom

Excerpt

More information

1 Introduction

For the past 20 years we have lived through the information revolution, powered by the explo-
sive growth of semiconductor integration and of the internet. The exponential performance
improvement of semiconductor devices was predicted by Moore’s law as early as the 1960s.
There are several formulations of Moore’s law. One of them is directed at the computing power
of microprocessors. Moore’s law predicts that the computing power of microprocessors will
double every 18-24 months at constant cost so that their cost-effectiveness (the ratio between
performance and cost) will grow at an exponential rate. It has been observed that the computing
power of entire systems also grows at the same pace. This law has endured the test of time
and still remains valid today. This law will be tested repeatedly, both now and in the future, as
many people see today strong evidence that the “end of the ride” is near, mostly because the
miniaturization of CMOS technology is fast reaching its limit, the so-called CMOS endpoint.

Besides semiconductor technology, improved chip designs have also fueled the phenomenal
performance growth of microprocessors over the years. Historically, with each new process
generation, the logic switching speed and the amount of on-chip logic have both increased
dramatically. Faster switching speeds lead to higher clock rates. Aggressive chip designs also
contribute to higher clock rates by improving the design of circuits or by pipelining the steps in
the execution of an instruction. With deeper pipelines, the function performed in each pipeline
stage takes fewer gate delays. More importantly, the dramatic increase in the amount of on-chip
resources over the years gives the chip architect new opportunities to deploy various techniques
to improve throughput, such as exploiting parallelism at all levels of the hardware/software
stack. How best to use the ever-increasing wealth of resources provided by technology falls into
the realm of computer architecture.

Computer architecture is a relatively young engineering discipline. The academic and
research field of computer architecture started in the early 1970s with the birth of the very
successful International Conference on Parallel Processing (ICPP) and International Sympo-
sium on Computer Architecture (ISCA). Obviously parallel processing was already a major
focus of computer architecture at that time. Actually in the 1980s and at the beginning of the
1990s parallel processing and parallel computer architecture were very popular topics among
researchers in the field. Academic researchers were promoting scalable parallel systems with
millions of slow, cheap processing elements. Then as now, the demise of systems based on a
single central processing unit was seen as inevitable and fast approaching. Eventually, indus-
try decided otherwise, and towards the middle of the 1990s parallel systems were eclipsed
by the so-called “killer-micro.” The years that followed saw an explosion in the speed and

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521886758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-88675-8 - Parallel Computer Organization and Design
Michel Dubois, Murali Annavaram and Per Stenstréom

Excerpt

More information

2 Introduction

capabilities of microprocessors built with a single CPU. With the unrelenting success of Moore’s
law, designers can exploit rapidly increasing transistor densities and clock frequencies. The
increased transistor count was in the past utilized to design complex single out-of-order pro-
cessors capable of processing hundreds of instructions in any given cycle. Rather than dealing
with the complexity of programming parallel systems, industry embraced complex out-of-order
processors with ever-increasing clock speeds because they provided the path of least resistance
to fulfill the ever-growing expectations of computer users. In the commercial arena, multipro-
cessors were merely seen as extensions to uniprocessor systems, offering a range of machines
with various cost/performance ratios.

This situation rapidly changed in the early years of the twenty-first century. Technological
trends shifted in favor of processors made of multiple CPUs or cores. Issues such as power,
complexity, and the growing performance gap between processors and main memory have
restored an acute interest in parallel processing and parallel architectures, both in industry
and in academia. Nowadays the consensus in the computer architecture community is that all
future microarchitectures will have to adopt some form of parallel execution. Generically, this
emerging form of microarchitecture is referred to as chip multiprocessors (or CMPs), and is
one of the major focal points of this book.

Conceiving the design of a microprocessor, a part of a microprocessor, or an entire computer
system is the role of the computer architect. Although Moore’s law applies to any device or
system, and although many techniques covered in this book are applicable to other types of
microchips such as ASICs, this book specifically focuses on instruction processing systems
and microprocessors in which the chip or system is designed to execute an instruction set as
effectively as possible.

1.1 WHAT IS COMPUTER ARCHITECTURE?

Computer architecture is an engineering or applied science discipline whose focus is the design
of better computers, given technology constraints and software demands. In the past, computer
architecture was synonymous with the design of instruction sets. However, over time, the
term has evolved to encompass the hardware organization of a computer, and the design of
a microprocessor or of an entire system down to the hardware component level. In this book
we adopt by default the modern definition of “computer architecture” to mean the “hardware
organization and design of computers.” Whenever we refer to the instruction set we will
explicitly use the term “instruction set architecture” or ISA. The design of instruction sets is, at
this point of history, quite settled, and only a few instruction sets are still supported by industry.
Although there may be additions to current ISAs from time to time, it is extremely unlikely
that new instruction sets will again be created from scratch because the cost of developing a
brand new instruction set and its implementations is astronomical. In this book, we cover ISAs
rather cursorily since our primary target is not ISAs but rather parallel computer architectures
that implement an ISA fast and correctly, within cost and technological constraints.

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521886758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-88675-8 - Parallel Computer Organization and Design
Michel Dubois, Murali Annavaram and Per Stenstréom

Excerpt

More information

1.1 What is computer architecture? 3

Figure 1.1. Layered view of

Application
computer systems.

Compiler/libraries of macros and procedures Software

Operating system

Instruction set (ISA) Computer

architecture

Computer system organization

Circuits (implementation of hardware functions)

Hardware

Semiconductor physics

The design of computer systems is very complex and involves competence in many different
engineering and scientific fields. The only way to manage this complexity is to split the design in
several layers, so that engineers and scientists in different fields can each focus their competence
into a particular layer. Figure 1.1 illustrates the layered view of modern computer systems. Each
layer relies on the layer(s) below it. An expert in a particular application field writes application
programs in a high-level language such as Fortran, C+4-, or Java using calls to libraries
for complex and common functions at the user level and to the operating system for system
functions such as I/O (input/output) and memory management. The compiler compiles the
source code to a level that is understandable by the machine (i.e., object or machine code) and
the operating system (through operating system calls). Compiler designers just have to focus
on parsing high-level language statements, on optimizing the code, and on translating it into
assembly or machine code. Object code is linked with software libraries implementing a set of
common software functions. The operating system extends the functionality of the hardware
by handling complex functions in software and orchestrates the sharing of machine resources
among multiple users in a way that is efficient, safe, and transparent to each user. This is the
domain of kernel developers. Underneath these complex software layers lies the instruction set
architecture, or ISA.

The ISA is a particularly important interface. It separates software from hardware, computer
scientists from computer/electrical engineers. The implementation of the ISA is independent
of all the software layers above it. The goal of the computer architect is to design a hardware
device to implement the instruction set as efficiently as possible, given technological constraints.
The computer architect designs at the boundary between hardware and software and must
be knowledgeable in both. The computer architect must understand compilers and operating
systems and at the same time must be aware of technological constraints and circuit design
techniques.

System functions may be implemented in hardware or in software. For example, some types
of exceptions, such as translation lookaside buffer misses in virtual memory systems, may be
implemented in hardware or in kernel software. Some components of cache coherence may
also be implemented in hardware or in software. Using software to implement system functions
is a flexible approach to simplifying hardware. On the other hand, software implementations
of system functions are usually slower than hardware implementations. Once the hardware

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521886758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-88675-8 - Parallel Computer Organization and Design
Michel Dubois, Murali Annavaram and Per Stenstréom

Excerpt

More information

4 Introduction

Performance requirements Figure 1.2. Synergy between

application growth and hardware
Applications Hardware
> systems

performance.

Performance opportunities

architecture has been specified, its actual implementation is left to circuit engineers, although
iterations are possible. Finally the hardware substrate is conceived and developed by process
and manufacturing engineers and by material scientists.

By separating hardware layers from software layers, the ISA has historically played a critical
role in the dramatic success of the computer industry since its inception. In the 1950s and early
1960s, every new computer was designed with a different instruction set. In fact, the instruction
set was the defining hallmark of every computer design. The downside of this strategy was
that software was not portable from one machine to the next. At that time compilers did not
exist, and all programs were written in assembly code. In 1964 IBM transformed itself into
the behemoth computer company we know it to be today by introducing its System/360 ISA.
From then on, IBM guaranteed that all its future computers would be capable of running
all software written for System/360 because they would support all System/360 instructions
forever. This guarantee called backward compatibility ensured that all binary codes written or
compiled for the IBM System/360 ISA would run on any IBM/360 system forever and software
would never again become obsolete. The IBM 360 instruction set might expand in the future —
and it did — but it would never drop instructions nor change the semantic or side effects of
any instruction. This strategy has endured the test of time, even if most programs today are
written in high-level languages and compiled into binaries, because the source code of binaries
may be lost and, moreover, software vendors often deliver object code only. Over the years, as
it expanded, System/360 was renamed System/370, then System/390, and today is known as
System z.

Because instruction sets do not change much over time, the function of the computer architect
is to build the best hardware architecture to meet the ever-growing demands of software sys-
tems. Figure 1.2 illustrates the synergy between growing software requirements and hardware
performance. Users always want more from the hardware (e.g., processing speed, amount of
memory, or I/O bandwidth) as their applications grow. On the other hand, as hardware evolves,
it exposes new opportunities to software developers, who rapidly take advantage of them. This
synergy has worked wonders for Intel and Microsoft over the years.

We are at an important juncture in this self-perpetuating cycle. The current evolution of
microarchitectures dictates that software must become more parallel in order to take advan-
tage of new hardware opportunities offered by multi-core microprocessors. Today’s tech-
nology dictates that the path to higher performance must be through chip multiprocessors
(CMPs). The development of effective parallel software is probably the biggest challenge facing
future computing systems today, even more so than all the technological challenges. Software
must adapt to take advantage of multiprocessor architectures. Parallel programming and the

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521886758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-88675-8 - Parallel Computer Organization and Design
Michel Dubois, Murali Annavaram and Per Stenstréom

Excerpt

More information

1.2 Components of a parallel architecture 5

Multi-core microprocessor g kside Figure 1.3. Basic PC

Core0 Coret || bus architecture.
|_| 4 0 Off-chip
| Shared cache | cache

t Frontside bus

North ‘ ’ Main memory
Bridge (DRAM)

Graphics
processor

interface

0]

South
Bridge

$
Slow 1/0O
devices

compiling of sequential code into parallel code have been attempted time and again in the past.
Unless software can harness and unleash the power of multi-core, multi-threaded systems, the
information revolution may come to an end.

Because of technological constraints, hardware cannot sustain the exponential growth of
single-threaded performance at the rate envisioned by Moore’s law. Future microprocessors will
have multiple cores running multiple threads in parallel. In future, single-thread performance
will, on average, grow at a more modest pace, and Moore’s law as applied to computing power
will be met by running more and more threads in parallel in every processor node.

1.2 COMPONENTS OF A PARALLEL ARCHITECTURE

The architecture of a basic personal computer (PC), one of the simplest parallel computers,
is shown in Figure 1.3. The North Bridge chip acts as a system bus connecting a (multi-
core) processor, main memory, and I/O (input/output) devices. The PCI (Peripheral Component
Interconnect) bus is the I/O bus connecting high-speed I/O interfaces to disk, network, and slow
I/O devices (such as keyboard, printer, and mouse) to the North Bridge. The South Bridge acts
as a bus for low-bandwidth peripheral devices such as printers or keyboards.

A generic high-end parallel architecture is shown in Figure 1.4. Several processor nodes
are connected through an interconnection network, which enables the nodes to transmit data
between themselves. Each node has a (possibly multi-core) processor (P), a share of the main
memory (M), and a cache hierarchy (C). The processor nodes are connected to the global
interconnection — a bus or a point-to-point network — through a network interface (NI). Another
important component of a computer system is I/O; I/O devices (such as disks) are often
connected to an I/O bus, which is interfaced to the memory in each processor node through the
interconnect. Processor, memory hierarchy, and interconnection are critical components of a
parallel system.

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521886758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-88675-8 - Parallel Computer Organization and Design
Michel Dubois, Murali Annavaram and Per Stenstréom

Excerpt

More information

6 Introduction

I Interconnection | Figure 1.4. Generic
/0 bus multiprocessor system
—> Nl NT] NI with distributed
memory.
C

D 4 > 4 >Sys’tem busses
= E]

® ® (®)
1.2.1 Processors

First, in this era of chip multiprocessors and multi-threaded cores, a few basic definitions are in
order.

A program (sometimes referred to as code, code fragment, or code segment) is a static set of
statements written by the programmer to perform the computational steps of an algorithm. A
process or thread is an abstraction which embeds the execution of these computational steps.
In some sense, to use a culinary analogy, a program is to a process what a recipe is to cooking.
At times the words process and thread are used interchangeably, but usually the management of
threads is lighter (has less overhead) than the management of processes. In this book, we will
mostly use the word thread.

Threads run on cores or CPUs (central processing units). A core or CPU is a hardware
entity capable of sequencing and executing the instructions of a thread. Some cores are multi-
threaded and can execute more than one thread at the same time. In this case, each thread runs
in a hardware thread context in the core. Microprocessors or processors are made of one or
multiple cores. A multi-core microprocessor is also sometimes called a chip multiprocessor
or CMP. A multiprocessor is a set of processors connected together to execute a common
workload.

Nowadays, processors are mass-produced, off-the-shelf microprocessors comprising one
or several cores and several levels of caches. Moreover, various system functions, such
as memory controllers, external cache directory, and network interfaces, may be migrated
on-chip in order to facilitate the integration of entire systems with a minimum number of
chips.

Several factors affect core performance. The major factor is the clock frequency. Because
cores are pipelined, the clock frequency dictates the rate at which instructions are fetched and
executed. In the past the performance of microprocessors was mostly dictated by their clock
rates. The possible clock rate of a processor is determined by three main factors:

e The technology node. With every new process generation, the switching speed of every
transistor increases by 41%, as a direct result of process shrinkage. The impact of this
factor on the clock rate will be blunted in future by wire delays because the speed of signal
transmission on wires does not scale like transistor switching speed.

o The pipeline depth. With deeper pipelines (i.e., more pipeline stages) the number of gate
delays per stage decreases because the function implemented in each stage is less complex.
Historically the number of gate delays per pipeline stage has dropped by roughly 25% in

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521886758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-88675-8 - Parallel Computer Organization and Design
Michel Dubois, Murali Annavaram and Per Stenstréom

Excerpt

More information

1.2 Components of a parallel architecture 7

5 -
4.5 - —a— Clock rate I
4 - EXP 1.19 /

— — EXP1.49

Frequency (GHz)

O AN VO NAPNOCA DD ON
O D"V DD DD DO LTO
S F S L L S S

Year

Figure 1.5. Highest clock rate of Intel processors from 1990 to 2008.

every process generation. From now on it will be difficult to increase pipeline depth because
it is difficult to implement useful stage functions in fewer than ten gate delays.

e Circuit design. Better circuits are designed to improve the delay of gates and their
interconnection.

Figure 1.5 displays the highest clock rate of Intel processors since 1990. The curve for the
clock rate is compared to two exponentials, one increasing by 19% per year (doubling every 48
months) and one increasing by 49% per year (doubling every 21 months). The 19% curve shows
frequency increases resulting solely from technology scaling (41% per generation every two
years). This would be the rate of frequency improvement if the same hardware had been mapped
to each new technology over time. From 1990 to 2002, the clock rate grew at a much more
rapid rate, doubling in less than two years (the 49% curve). After 2002, clock rate increases
started to taper off, and the rates peaked in 2005. Before 2003, clock rates of 10 GHz seemed
to be around the corner. At that time some were predicting 10 GHz before 2010. Actually, if
the clock rate had stayed on the 49% curve, it would have been more than 30 GHz in 2008!
In November 2004 Intel canceled its announced 4 GHz Pentium 4 processor, which had been
marred by delays, and changed tack to multi-core microarchitectures. This announcement was
perceived as a major turning point in the microprocessor industry at large, a tectonic shift away
from muscled uniprocessor pipelined designs to multi-core microarchitectures.

Architecture played a critical role in the large frequency gains observed between 1990 and
2002. These frequency gains were to a large extent due to the advent of very deep pipelines in
the Pentium IIT and Pentium 4 microarchitectures. To sustain pipelines with 10 to 20 stages, vast
amounts of parallelism had to be extracted from the instruction stream. Architectural innovations
covered in this book, such as branch prediction, register renaming, re-order buffer, lock-up free
caches, and memory disambiguation, were key to efficient out-of-order, speculative execution,

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521886758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-88675-8 - Parallel Computer Organization and Design
Michel Dubois, Murali Annavaram and Per Stenstréom

Excerpt

More information

8 Introduction

1E+04 - 1E+08

+ 1E+07
1E+03 1E+06 §
= 4
£ L 1E+05 ¢
o =
N 3
» 1E+02 1E+04 S
[@,
5 £
- o
§ + 1E+03 i
o
o
1E+01 ™ k02 S

—a— Feature size
—a— No. of transistors - 1E+01
1E+00 - T T T T T T T T T — 1E+00
Q \2) N} \2) N\ 2] N\ H» Q » O
OIS R O R R I P
Year

Figure 1.6. Feature size scaling in Intel microprocessors.

and to the exploration of massive amounts of instruction-level parallelism (ILP). Without these
innovations, it would have been futile to pipeline the processor deeper.

There is a strong argument that the clock rate gains of the past cannot be sustained in the
future, for three reasons. First it will be difficult to build useful pipelines with fewer than ten
levels of logic in every stage, a limit we have already reached. Second, wire delays, not transistor
switching speeds, will dominate the clock cycle in future technologies. Third, circuits clocked
at higher rates consume more power, and we have reached the limits of power consumption
in single-chip microprocessors. Figure 1.5 empirically validates this argument: since 2002, the
clock rate improvements of microprocessors have mostly stalled.

The contributions of computer architecture go beyond simply sustaining clock rate improve-
ments. Instruction throughput can also be improved by better memory system designs, by
improving the efficiency of all parts of the processor, by fetching and decoding multiple
instructions per clock, by running multiple threads on the same core (a technique called core
multi-threading), or even by running threads on multiple cores at the same time. Besides higher
frequencies, each new process generation offers a bounty of new resources (transistors and pins)
which can be exploited by the computer architect to improve performance further. An obvious
and simple way to exploit this growing real estate is to add more cache space on chip. However,
this real estate can also be utilized for other purposes and offers the computer architect new
opportunities, a sandbox in which to play so to speak.

Figure 1.6 shows the evolution of feature sizes in Intel technologies from 1971 to 2008
extrapolated to 2020. For the past 20 years a new process generation has occurred every two
years, and the feature size has shrunk at the rate of 15% per year, i.e., it is reduced by 30%
every generation or halved every five years. Figure 1.6 also shows the maximum number of

© in this web service Cambridge University Press

www.cambridge.org

http://www.cambridge.org/9780521886758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-88675-8 - Parallel Computer Organization and Design
Michel Dubois, Murali Annavaram and Per Stenstréom

Excerpt

More information

1.2 Components of a parallel architecture 9

Table 1.1 Cost and size of memories in a basic PC (2008)

Memory Size Marginal cost Cost per MB Access time

L2 cache (on chip) 1 MB $20/MB $20 5ns
Main memory 1GB $50/GB 5c 200ns

Disk 500GB $100/500 GB 0.02¢ Sms

transistors in Intel microprocessor chips in each year from 1971. This number factors in the
increase in transistor density and in die area. The figure shows that the amount of on-chip real
estate has doubled every two years; in 2008, one billion transistors was reached. If the trend
continues, we will have 100 billion transistors on a chip by 2020. However, let’s remember that
trends only last until they end, and can only be established in the past, as the frequency trends
of the past demonstrate.

Finding ways to exploit 100 billion transistors in the best way possible is one of the biggest
challenges of the computer architecture research field in the next ten years. The most probable
and promising direction is to implement multiprocessors on a chip, possibly large-scale ones,
with hundreds or even thousands of cores.

1.2.2 Memory

The memory system comprises caches, main (primary) memory, and disk (secondary) memory.
Any data or instruction directly accessible by the processor must be present in main memory.
Perennial problems in computer systems are the speed gaps between main memory (access
times in the 100 nanosecond range) and processor (clocked at several gigahertz), and between
disk (access time in milliseconds) and processor.

The design of a memory system is dictated by its cost and by physical constraints. Physical
constraints are of two types. First, a computer system needs a very large non-volatile memory
to store permanent files. Most significant semiconductor memories such as main memory and
caches are volatile and their content is lost on power down. This functionality is commonly
fulfilled by hard disk drives (HDDs). Although more costly, solid-state disks (SSDs) such as
flash memories are often deployed as well in systems. Second, the access time of any type of
memory increases with its size. This will be particularly true in future technologies, because
access times to semiconductor memories are dominated by wire delays. With larger memories,
address decoding, address line (row) propagation, and bit line (column) propagation all take
more time. The cost and size of memories at different levels for a basic PC in 2008 are listed in
Table 1.1.

The goal of a memory hierarchy is to give the illusion to the processor of a monolithic
memory system that has an average memory access time similar to the processor cycle time
and, at the same time, has the size of the disk space and a cost per bit close to that of disk
memory.

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521886758
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-88675-8 - Parallel Computer Organization and Design
Michel Dubois, Murali Annavaram and Per Stenstréom

Excerpt

More information

10 Introduction

600 Figure 1.7. Memory
f wall (DRAM access
500 actual time/CPU clock time).
—%— model
—aA— DRAM
400
©
H
>
£ 300
£
[
=
200

Main memory

The speed gap between main memory (built with DRAMsS) is large enough that it can affect
processor performance. For example, if the processor is clocked at | GHz and the main memory
access time is 100 ns, more than 100 instructions could be executed while the processor is
waiting on an access. A processor, however complex it is and however fast it is clocked, cannot
execute instructions faster than the memory system can deliver instructions and data to it.

Historically, the gap between processor cycle time and main memory access time has been
growing at an alarming rate, a trend called the memory wall. Between higher clock rates
and computer architecture innovations, microprocessor speed has historically increased by
more than 50% per year. On the other hand, DRAM performance has increased at the much
lower rate of about 7% per year. Note that the access time to DRAM includes not only the
access time of the DRAM chips themselves, but also delays through the memory bus and
controllers.

Figure 1.7 illustrates the memory wall over time. Here the memory wall is defined as the ratio
of main memory access time and processor cycle time. In 1990, the Intel 486 was clocked at
25 MHz and access to DRAM was of the order of 150 ns, a factor of 4. Thus the “height” of the
memory wall was 4. If processor performance had kept improving at the rate of 49% every year
from 1990 on, then the height of the memory wall would have surged by a staggering factor
of 400, to 1600 by 2008. However, this obviously was not the case. Rather, processor clock
rates peaked while DRAM speed kept improving at a modest pace. Because of this, the actual
performance gap between memory and processors is only a factor of 40 larger in 2008 than it
was in 1990. Figure 1.7 shows that at around 2002 the memory wall departed from its historical
trends to peak and has even dropped since 2003.

Historically, the lackluster performance of DRAM memories has been offset by a cache
hierarchy between the processor and main memory and by mechanisms to tolerate large cache

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521886758
http://www.cambridge.org
http://www.cambridge.org

	http://www:
	cambridge:
	org:

	9780521886758:

