Contents

Preface xiii
To the Student xv
Acknowledgments xix
Instructors’ and Readers’ Guide xxı

PART I

1 Introduction ... 3

REFERENCES 19

2 Chemical Reactor Analysis 20

2.1 The Batch Reactor 21
 2.1.1 Chemical Equilibrium 25

2.2 Reaction Rate and Determination by Experiment 26
 2.2.1 Rate Expression 26
 2.2.2 Approach to Equilibrium 32

2.3 Tank-Type Reactors 33
 2.3.1 Batch Reactors 34
 2.3.2 Semibatch Reactors 34
 2.3.3 Continuous Flow 37

2.4 Tubular Reactors 42

2.5 Reactor Energy Balance 47

REFERENCES 51
PROBLEMS 51

3 Heat Exchanger Analysis 55

3.1 Batch Heat Exchangers 56
 3.1.1 Level I Analysis 57
 3.1.2 Level II Thermal Equilibrium 58

3.2 Rate of Heat Transfer and Determination by Experiment 60
 3.2.1 Rate Expression 61
 3.2.2 Approach to Equilibrium 65
PART II

5 Conduction and Diffusion ... 187

5.1 Rate of Thermal Conduction 187
 5.1.1 Experimental Determination of Thermal Conductivity \(k \) and Verification of Fourier’s Constitutive Equation 187
 5.1.2 Definition of the Biot Number for Heat Transfer 195
 5.1.3 Definition of the Nusselt Number 199

5.2 Rate of Molecular Diffusion 201
 5.2.1 Experimental Determination of Binary Diffusivities \(D_{AB} \) and Verification of Fick’s Constitutive Equation 201
 5.2.2 Definition of the Biot Number for Mass Transfer 206
 5.2.3 Definition of the Sherwood Number 208

5.3 Geometric Effects on Steady Heat Conduction and Diffusion in Solids and Quiescent Fluids 209
 5.3.1 One-Dimensional Heat Conduction in Nonplanar Geometries 209
 5.3.2 One-Dimensional Diffusion in a Conical Geometry 211

5.4 Conduction and Diffusion Through Composite Layered Materials in Series 212
 5.4.1 Overall Heat Transfer Coefficient for Composite Walls: Resistance Formulation 212
 5.4.2 Overall Heat Transfer Coefficient for a Tubular Exchanger 217
 5.4.3 Overall Mass Transfer Coefficient for Diffusion Through a Composite Wall 220

5.5 Molecular Conduction and Diffusion with Generation 222
 5.5.1 Radial Heat Conduction with Generation 222
 5.5.2 Diffusion with Chemical Reaction 224

5.6 Diffusion-Induced Convection: The Arnold Cell 225

5.7 Basics of Membrane Diffusion: The Sorption–Diffusion Model 230

5.8 Transient Conduction and Diffusion 231
 5.8.1 Short-Time Penetration Solution 233
 5.8.2 Small Biot Numbers—Lumped Analysis 235

NOMENCLATURE 236

IMPORTANT DIMENSIONLESS GROUPS 238

REFERENCES 239

PROBLEMS 240

6 Convective Heat and Mass Transfer 246

6.1 The Differential Transport Equations for Fluids with Constant Physical Properties in a Laminar Boundary Layer 247
 6.1.1 Mass Conservation—Continuity Equation 248
 6.1.2 Momentum Transport—Navier–Stokes Equation 249
 6.1.3 Energy Conservation 250
 6.1.4 Species Mass Conservation 252

6.2 Boundary-Layer Analysis and Transport Analogies 254
Contents

6.2.1 Laminar Boundary Layer 254
6.2.2 Reynolds Transport Analogy 257
6.2.3 Effects of Material Properties: The Chilton–Colburn Analogy 260
6.2.4 Turbulent Boundary Layers 263
6.3 Transport Correlations for Specific Geometries 264
 6.4.1 Film Theory 273
 6.4.2 Penetration Theory 273
 6.4.3 Surface Renewal Theory 278
 6.4.4 Interphase Mass Transfer 279
6.5 Summary of Convective Transport Coefficient Estimations 281
 6.5.1 Heat Exchangers 281
 6.5.2 Mass Contactors 284

NOMENCLATURE 286
REFERENCES 287
PROBLEMS 287
APPENDIX A. Derivation of the Transport Equations 293
APPENDIX B. Vector Notation 299

7 Estimation of the Mass Transfer Coefficient and Interfacial Area in Fluid–Fluid Mass Contactors 301
 7.1 Estimation of Bubble and Drop Size 304
 7.2 Tank-Type Mass Contactors 307
 7.2.1 Mixed–Mixed Interfacial Area Estimation 307
 7.2.2 Mixed–Mixed K_m Estimation 309
 7.2.3 Mixed–Plug Area Estimation 309
 7.2.4 Mixed–Plug K_m Estimation 313
 7.3 Tubular Contactors 316
 7.3.1 Cocurrent Area Estimation 316
 7.3.2 Cocurrent K_m Estimation 318
 7.3.3 Countercurrent Area Estimation 318
 7.3.4 Countercurrent K_m Estimation 320

NOMENCLATURE 320
REFERENCES 321
PROBLEMS 322
APPENDIX. Bubble and Drop Breakage 323

8 Technically Feasible Design Case Studies 327
 8.1 Technically Feasible Design of a Heat Exchanger 328
 8.2 Technically Feasible Design of a Countercurrent Mass Contactor 335
 8.3 Analysis of a Pilot-Scale Bioreactor 345

NOMENCLATURE 353
REFERENCES 354
PROBLEMS 354

Index 363