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Review of basic magnetostatics

Mention magnetics and an image arises of musty physics labs peopled
by old codgers with iron filings under their fingernails.

John Simonds, Magnetoelectronics today and tomorrow,
Physics Today, April 1995

Before we can begin our discussion of magnetic materials we need to understand
some of the basic concepts of magnetism, such as what causes magnetic fields, and
what effects magnetic fields have on their surroundings. These fundamental issues
are the subject of this first chapter. Unfortunately, we are going to immediately run
into a complication. There are two complementary ways of developing the theory
and definitions of magnetism. The “physicist’s way” is in terms of circulating
currents, and the “engineer’s way” is in terms of magnetic poles (such as we find
at the ends of a bar magnet). The two developments lead to different views of
which interactions are more fundamental, to slightly different-looking equations,
and (to really confuse things) to two different sets of units. Most books that you’ll
read choose one convention or the other and stick with it. Instead, throughout this
book we are going to follow what happens in “real life” (or at least at scientific
conferences on magnetism) and use whichever convention is most appropriate to the
particular problem. We’ll see that it makes most sense to use Système International
d’Unités (SI) units when we talk in terms of circulating currents, and centimeter–
gram–second (cgs) units for describing interactions between magnetic poles.

To avoid total confusion later, we will give our definitions in this chapter and the
next from both viewpoints, and provide a conversion chart for units and equations at
the end of Chapter 2. Reference [1] provides an excellent light-hearted discussion
of the unit systems used in describing magnetism.
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4 Review of basic magnetostatics

1.1 Magnetic field

1.1.1 Magnetic poles

So let’s begin by defining the magnetic field, H, in terms of magnetic poles.
This is the order in which things happened historically – the law of interaction
between magnetic poles was discovered by Michell in England in 1750, and by
Coulomb in France in 1785, a few decades before magnetism was linked to the
flow of electric current. These gentlemen found empirically that the force between
two magnetic poles is proportional to the product of their pole strengths, p, and
inversely proportional to the square of the distance between them,

F ∝ p1p2

r2
. (1.1)

This is analogous to Coulomb’s law for electric charges, with one important differ-
ence – scientists believe that single magnetic poles (magnetic monopoles) do not
exist. They can, however, be approximated by one end of a very long bar magnet,
which is how the experiments were carried out. By convention, the end of a freely
suspended bar magnet which points towards magnetic north is called the north
pole, and the opposite end is called the south pole.1 In cgs units, the constant of
proportionality is unity, so

F = p1p2

r2
(cgs), (1.2)

where r is in centimeters and F is in dynes. Turning Eq. (1.2) around gives us the
definition of pole strength:

A pole of unit strength is one which exerts a force of 1 dyne on another unit pole
located at a distance of 1 centimeter.

The unit of pole strength does not have a name in the cgs system.
In SI units, the constant of proportionality in Eq. (1.1) is µ0/4π , so

F = µ0

4π

p1p2

r2
(SI), (1.3)

where µ0 is called the permeability of free space, and has the value 4π × 10−7

weber/(ampere meter) (Wb/(Am)). In SI, the pole strength is measured in ampere
meters (A m), the unit of force is of course the newton (N), and 1 newton = 105

dyne (dyn).

1 Note, however, that if we think of the earth’s magnetic field as originating from a bar magnet, then the south
pole of the earth’s “bar magnet” is actually at the magnetic north pole!
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1.1 Magnetic field 5

SN

Figure 1.1 Field lines around a bar magnet. By convention, the lines originate at
the north pole and end at the south pole.

To understand what causes the force, we can think of the first pole generating a
magnetic field, H, which in turn exerts a force on the second pole. So

F =
(p1

r2

)
p2 = Hp2, (1.4)

giving, by definition,

H = p1

r2
. (1.5)

So:

A field of unit strength is one which exerts a force of 1 dyne on a unit pole.

By convention, the north pole is the source of the magnetic field, and the south
pole is the sink, so we can sketch the magnetic field lines around a bar magnet as
shown in Fig. 1.1.

The units of magnetic field are oersteds (Oe) in cgs units, so a field of unit
strength has an intensity of 1 oersted. In the SI system, the analogous equation for
the force one pole exerts on another is

F = µ0

4π

(p1

r2

)
p2 = µ0

H
p2, (1.6)

yielding the expression for H = 1
4π

p1

r2 in units of amperes per meter (A/m);
1 Oe = (1000/4π) A/m.

The earth’s magnetic field has an intensity of around one-tenth of an oer-
sted, and the field at the end of a typical kindergarten toy bar magnet is around
5000 Oe.
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6 Review of basic magnetostatics

1.1.2 Magnetic flux

It’s appropriate next to introduce another rather abstract concept, that of magnetic
flux, �. The idea behind the term “flux” is that the field of a magnetic pole is
conveyed to a distant place by something which we call a flux. Rigorously the flux
is defined as the surface integral of the normal component of the magnetic field.
This means that the amount of flux passing through unit area perpendicular to the
field is equal to the field strength. So the field strength is equal to the amount of
flux per unit area, and the flux is the field strength times the area,

� = HA. (1.7)

The unit of flux in cgs units, the oersted cm2, is called the maxwell (Mx). In SI
units the expression for flux is

� = µ0HA (1.8)

and the unit of flux is called the weber.
Magnetic flux is important because a changing flux generates an electric current

in any circuit which it intersects. In fact we define an “electromotive force” ε, equal
to the rate of change of the flux linked with the circuit:

ε = −d�

dt
. (1.9)

Equation (1.9) is Faraday’s law of electromagnetic induction. The electromotive
force provides the potential difference which drives electric current around the
circuit. The minus sign in Eq. (1.9) shows us that the current sets up a magnetic
field which acts in the opposite direction to the magnetic flux. (This is known as
Lenz’s law.)2

The phenomenon of electromagnetic induction leads us to an alternative defini-
tion of flux, which is (in SI units):

A flux of 1 weber, when reduced to zero in 1 second, produces an electromotive force
of 1 volt in a one-turn coil through which it passes.

1.1.3 Circulating currents

The next development in the history of magnetism took place in Denmark in
1820 when Oersted discovered that a magnetic compass needle is deflected in the
neighborhood of an electric current. This was really a huge breakthrough because
it unified two sciences. The new science of electromagnetism, which dealt with

2 We won’t cover electromagnetic induction in much detail in this book. A good introductory text is [2].
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1.1 Magnetic field 7

Figure 1.2 Relationship between direction of current flow and magnetic pole type.

forces between moving charges and magnets, encompassed both electricity, which
described the forces between charges, and magnetism, which described the forces
between magnets.

Then Ampère discovered (again experimentally) that the magnetic field of a
small current loop is identical to that of a small magnet. (By small we mean small
with respect to the distance at which the magnetic field is observed.) The north pole
of a bar magnet corresponds to current circulating in a counter-clockwise direction,
whereas clockwise current is equivalent to the south pole, as shown in Fig. 1.2. In
addition, Ampère hypothesized that all magnetic effects are due to current loops,
and that the magnetic effects in magnetic materials such as iron are due to so-called
“molecular currents.” This was remarkably insightful, considering that the electron
would not be discovered for another 100 years! Today it’s believed that magnetic
effects are caused by the orbital and spin angular momenta of electrons.

This leads us to an alternative definition of the magnetic field, in terms of current
flow:

A current of 1 ampere passing through an infinitely long straight wire generates a
field of strength 1/2π amperes per meter at a radial distance of 1 meter.

Of course the next obvious question to ask is what happens if the wire is not straight.
What magnetic field does a general circuit produce? Ampère solved this one too.

1.1.4 Ampère’s circuital law

Ampère observed that the magnetic field generated by an electrical circuit depends
on both the shape of the circuit and the amount of current being carried. In fact the
total current, I, is equal to the line integral of the magnetic field around a closed
path containing the current. In SI units,

∮
H · d l = I. (1.10)
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8 Review of basic magnetostatics
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Figure 1.3 Calculation of the field from a current flowing in a long straight wire,
using Ampère’s circuital law.

This expression is called Ampère’s circuital law, and it can be used to calculate
the field produced by a current-carrying conductor. We will look at some examples
later.

1.1.5 Biot–Savart law

An equivalent statement to Ampère’s circuital law (which is sometimes easier to
use for particular symmetries) is given by the Biot–Savart law. The Biot–Savart
law gives the field contribution, δH, generated by a current flowing in an elemental
length δl, of a conductor:

δH = 1

4πr2
Iδ l × û, (1.11)

where r is the radial distance from the conductor, and û is a unit vector along the
radial direction.

1.1.6 Field from a straight wire

To show that these laws are equivalent, let’s use them both to calculate the magnetic
field generated by a current flowing in a straight wire.

First let us use Ampère’s law. The geometry of the problem is shown in Fig. 1.3.
If we assume that the field lines go around the wire in closed circles (by symmetry
this is a fairly safe assumption) then the field, H, has the same value at all points
on a circle concentric with the wire. This makes the line integral of Eq. (1.10)
straightforward. It’s just

∮
H · d l = 2πaH = I by Ampère’s law, (1.12)

and so the field, H, at a distance a from the wire is

H = I

2πa
. (1.13)
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1.1 Magnetic field 9
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Figure 1.4 Calculation of the field from a current flowing in a long straight wire,
using the Biot–Savart law.

For this particular problem, the Biot–Savart law is somewhat less straightforward
to apply. The geometry for calculating the field at a point P at a distance a from the
wire is shown in Fig. 1.4. Now

δH = 1

4πr2
Iδ l × û

= 1

4πr2
I |δl||û| sin θ, (1.14)

where θ is the angle between δl and û, which is equal to (90◦ + α). So

δH = I

4πr2
δl sin(90◦ + α)

= I

4πr2

rδα

cos α
sin(90◦ + α), (1.15)

since δl = rδα/cos α.
But sin(90◦ + α) = cos α, and r = a/cos α. So

δH = I

4π

cos2α

a2

aδα

cos2α
cos α

= I cos α δα

4πa
(1.16)

and

H = I

4πa

∫ π/2

−π/2
cos α dα

= I

4πa
[sin α]π/2

−π/2

= I

2πa
. (1.17)
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10 Review of basic magnetostatics
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Figure 1.5 Calculation of the moment exerted on a bar magnet in a magnetic field.

The same result as that obtained using Ampère’s law! Clearly Ampère’s law was a
better choice for this particular problem.

Unfortunately, analytic expressions for the field produced by a current can only
be obtained for conductors with rather simple geometries. For more complicated
shapes the field must be calculated numerically. Numerical calculation of magnetic
fields is an active research area, and is tremendously important in the design of
electromagnetic devices. A review is given in [3].

1.2 Magnetic moment

Next we need to introduce the concept of magnetic moment, which is the moment
of the couple exerted on either a bar magnet or a current loop when it is in an
applied field. Again we can define the magnetic moment either in terms of poles or
in terms of currents.

Imagine a bar magnet is at an angle θ to a magnetic field, H, as shown in Fig. 1.5.
We showed in Section 1.1.1 that the force on each pole, F = pH. So the torque
acting on the magnet, which is just the force times the perpendicular distance from
the center of mass, is

pH sin θ
l

2
+ pH sin θ

l

2
= pHl sin θ = mH sin θ, (1.18)

where m = pl, the product of the pole strength and the length of the magnet, is
the magnetic moment. (Our notation here is to represent vector quantities by bold
italic type, and their magnitudes by regular italic type.) This gives a definition:

The magnetic moment is the moment of the couple exerted on a magnet when it is
perpendicular to a uniform field of 1 oersted.

Alternatively, if a current loop has area A and carries a current I , then its magnetic
moment is defined as

m = IA. (1.19)
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1.3 Definitions 11
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Figure 1.6 Field lines around a magnetic dipole.

The cgs unit of magnetic moment is the emu. In SI units, magnetic moment is
measured in A m2.

1.2.1 Magnetic dipole

A magnetic dipole is defined as either the magnetic moment, m, of a bar magnet
in the limit of small length but finite moment, or the magnetic moment, m, of a
current loop in the limit of small area but finite moment. The field lines around a
magnetic dipole are shown in Fig. 1.6. The energy of a magnetic dipole is defined
as zero when the dipole is perpendicular to a magnetic field. So the work done
(in ergs) in turning through an angle dθ against the field is

dE = 2(pH sin θ )
l

2
dθ

= mH sin θ dθ, (1.20)

and the energy of a dipole at an angle θ to a magnetic field is

E =
∫ θ

π/2
mH sin θ dθ

= −mH cos θ

= −m · H. (1.21)

This expression for the energy of a magnetic dipole in a magnetic field is in cgs
units. In SI units the energy is E = −µ0m · H. We will be using the concept of
magnetic dipole, and this expression for its energy in a magnetic field, extensively
throughout this book.

1.3 Definitions

Finally for this chapter, let’s review the definitions which we’ve introduced so far.
Here we give all the definitions in cgs units.
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