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Preface

This book teaches new methods for specifying, analyzing, and testing software. They
are examples of model-based analysis and model-based testing, which use a model
that describes how the program is supposed to behave. The methods provide novel
solutions to the problems of expressing and analyzing specifications and designs,
generating test cases, and checking the results of test runs. The methods increase the
automation in each of these activities, so they can be more timely, more thorough,
and (we expect) more effective. The methods integrate concepts that have been
investigated in academic and industrial research laboratories for many years and
apply them on an industrial scale to commercial software development. Particular
attention has been devoted to making these methods acceptable to working software
developers. They are based on a familiar programming language, are supported by
a well-engineered technology, and have a gentle learning curve.

These methods provide more test automation than do most currently popular
testing tools, which only automate test execution and reporting, but still require
the tester to code every test case and also to code an oracle to check the results of
every test case. Moreover, our methods can sometimes achieve better coverage in
less testing time than do hand-coded tests.

Testing (i.e., executing code) is not the only assurance method. Some software
failures are caused by deep errors that originate in specifications or designs. Model
programs can represent specifications and designs, and our methods can expose
problems in them. They can help you visualize aspects of system behavior. They
can perform a safety analysis that checks whether the system can reach forbidden
states, and a liveness analysis that identifies dead states from which goals cannot
be reached, including deadlocks (where the program seems to stop) and livelocks
(where the program cycles endlessly without making progress). Analysis uses the
same model programs and much of the same technology as testing.

This book is intended for professional software developers, including testers,
and for university students in computer science. It can serve as a textbook or
supplementary reading in undergraduate courses on software engineering, testing,

xi
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xii Preface

specification, or applications of formal methods. The style is accessible and the
emphasis is practical, yet there is enough information here to make this book a
useful introduction to the underlying theory. The methods and technology were
developed at Microsoft Research and are used by Microsoft product groups, but this
book emphasizes principles that are independent of the particular technology and
vendor.

The methods are based on executable specifications that we call model programs.
To use the methods taught here, you write a model program that represents the
pertinent behaviors of the implementation you wish to specify, analyze, or test. You
write the model program in C#, augmented by a library of data types and custom
attributes. Executing the model program is a simulation of the implementation
(sometimes called an animation). You can perform more thorough analyses by
using a technique called exploration, which achieves the effect of many simulation
runs. Exploration is similar to model checking and can check for safety, liveness,
and other properties. You can visualize the results of exploration as state transition
diagrams. You can use the model program to generate test cases automatically.
When you run the tests, the model can serve as the oracle (standard of correctness)
that automatically checks that the program under test behaved as intended. You can
generate test cases in advance and then run tests later in the usual way. Alternatively,
when you need long-running tests, or you must test a reactive program that responds
to events in its environment, you may do on-the-fly testing, in which the test cases
are generated in response to events as the test run executes. You can use model
composition to build up complex model programs by combining simpler ones, or to
focus exploration and testing on interesting scenarios.

In this book, we demonstrate the methods using a framework called NModel that
is built on the C# language and .NET (the implementations that are modeled and
tested do not have to be written in C# and do not need to run in .NET). The NModel
framework includes a library for writing model programs in C#, a visualization and
analysis tool mpv (Model Program Viewer), a test generation tool otg (Offline Test
Generator), and a test runner tool ct (Conformance Tester). The library also exposes
the functionality of mpv, otg, ct, and more, so you may write your own tools that
are more closely adapted to your environment, or that provide other capabilities.

To use this technology, you must write your own model program in C# that
references the NModel library. Then you can use the mpv tool to visualize and
analyze the behavior of your model program, in order to confirm that it behaves as
you intend, and to check it for design errors. To execute tests using the test runner
ct, you must write a test harness in C# that couples your implementation to the
tool. You can use the test generator otg to create tests from your model program
in advance, or let ct generate the test on the fly from your model program as the
test run executes. If you wish, you can write a custom strategy in C# that ct uses to
maximize coverage according to criteria you define.
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xiii

To use the NModel library and tools, the only additional software you need is
the .NET Framework Redistributable Package (and any Windows operating system
capable of running it). The NModel framework, as well as .NET, are available for
download at no cost.

This book is not a comprehensive survey or comparison of the model-based
testing and analysis tools developed at Microsoft Research (or elsewhere). Instead,
we focus on selected concepts and techniques that we believe are the most important
for beginners in this field to learn, and that make a persuasive (and reasonably short)
introduction. We created the NModel library and tools to support this book (and
further research). We believe that the simplicity, versatility, and transparency of this
technology makes it a good platform for learning the methods and experimenting
with their possibilities. However, this book is also for readers who use other tools,
including Spec Explorer, which is also from Microsoft Research and is also in active
development. Other tools support many of the same methods we describe here, and
some that we do not discuss. This book complements the other tools’ documentation
by explaining the concepts and methods common to all, by providing case studies
with thorough explanations, and by showing one way (of many possible ways) that
a modeling and testing framework can support the techniques that we have selected
to teach here.

This book is a self-contained introduction to modeling, specifications, analysis,
and testing. Readers need not have any previous exposure to these topics. Read-
ers should have some familiarity with an object-oriented programming language
such as Java, C++, or C#, as could be gained in a year of introductory computer
science courses. Student readers need not have taken courses on data structures
and algorithms, computing theory, programming language semantics, or software
engineering. This book touches on those topics, but provides self-contained expla-
nations. It also explains the C# language features that it uses that are not found in
other popular languages, such as attributes and events.

Although this book is accessible to students, it will also be informative to expe-
rienced professionals and researchers. It applies some familiar ideas in novel ways,
and describes new techniques that are not yet widely used, such as on-the-fly testing
and model composition.

When used with the NModel framework, C# can express the same kind of state-
based models as many formal specification languages, including Alloy, ASMs, B,
Promela, TLA, Unity, VDM, and Z, and also some diagramming notations, including
Statecharts and the state diagrams of UML. Exploration is similar to the analysis
performed by model checkers such as Spin and SMV. We have experience with
several of these notations and tools, and we believe that modeling and analysis do
not have to be esoteric topics. We find that expressing the models in a familiar
programming language brings them within reach of most people involved in the
technical aspects of software production. We also find that focusing on testing as
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xiv Preface

one of the main purposes of modeling provides motivation, direction, and a practical
emphasis that developers and testers appreciate.

This book is divided into four parts. The end of each part is an exit point; a
reader who stops there will have understanding and tools for modeling, analysis,
and testing up to that level of complexity. Presentation is sequential through Part III,
each chapter and part is a prerequisite for all the following chapters and parts.
Chapters in Part IV are independent; readers can read one, some, or all in any order.

This book provides numerous practical examples, case studies, and exercises and
contains an extensive bibliography, including citations to relevant research papers
and reports.
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