
Model-Based Software Testing and
Analysis with C#

This book teaches model-based analysis and model-based testing, important new ways
to write and analyze software specifications and designs, generate test cases, and check
the results of test runs. These methods increase the automation in each of these steps,
making them more timely, more thorough, and more effective.

Using a familiar programming language, testers and analysts will learn to write
models that describe how a program is supposed to behave. The authors work through
several realistic case studies in depth and detail, using a toolkit built on the C# language
and the .NET framework. Readers can also apply the methods in analyzing and testing
systems in many other languages and frameworks.

Intended for professional software developers, including testers, and for university
students, this book is suitable for courses on software engineering, testing, specification,
or applications of formal methods.

Jonathan Jacky is a Research Scientist at the University of Washington in Seattle. He
is experienced in embedded control systems, safety-critical systems, signal processing,
and scientific computing. He has taught at the Evergreen State College and has been a
Visiting Researcher at Microsoft Research. He is the author of The Way of Z: Practical
Programming with Formal Methods.

Margus Veanes is a Researcher in the Foundations of Software Engineering (FSE)
group at Microsoft Research. His research interests include model-based software de-
velopment, validation, and testing.

Colin Campbell has worked on model-based testing and analysis techniques for a
number of years in industry, for companies including Microsoft Research. He is a
Principal of the consulting firm Modeled Computation LLC in Seattle (www.modeled-
computation.com). His current interests include design analysis, the modeling of reactive
and distributed systems, and the integration of components in large systems.

Wolfram Schulte is a Research Area Manager at Microsoft Research, managing the
FSE group, the Programming Languages and Methods (PLM) group, and the Software
Design and Implementation (SDI) group.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88655-0 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Frontmatter
More information

http://www.cambridge.org/0521886554
http://www.cambridge.org
http://www.cambridge.org


Model-Based Software
Testing and Analysis
with C#

Jonathan Jacky
University of Washington, Seattle

Margus Veanes
Microsoft Research, Redmond, Washington

Colin Campbell
Modeled Computation LLC, Seattle, Washington

Wolfram Schulte
Microsoft Research, Redmond, Washington

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88655-0 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Frontmatter
More information

http://www.cambridge.org/0521886554
http://www.cambridge.org
http://www.cambridge.org


cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press
32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org
Information on this title: www.cambridge.org/9780521886550

C© Jonathan Jacky, Margus Veanes, Colin Campbell, and Wolfram Schulte 2008

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2008

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Model-based software testing and analysis with C# / Jonathan Jacky . . . [et al.].
p. cm.

Includes bibliographical references and index.
ISBN-13: 978-0-521-88655-0 (hardback)
ISBN-13: 978-0-521-68761-4 (pbk.)
ISBN-10: 0-521-68761-6 (pbk.)
1. Computer software – Testing. 2. Computer software – Quality control.
3. C# (Computer program language) I. Jacky, Jonathan. II. Title.
QA76.76.T48M59 2008
005.13′3–dc22 2007027740

ISBN 978-0-521-88655-0 hardback
ISBN 978-0-521-68761-4 paperback

Cambridge University Press has no responsibility for
the persistence or accuracy of URLs for external or
third-party Internet Web sites referred to in this publication
and does not guarantee that any content on such
Web sites is, or will remain, accurate or appropriate.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88655-0 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Frontmatter
More information

http://www.cambridge.org/0521886554
http://www.cambridge.org
http://www.cambridge.org


Contents

Preface xi

Acknowledgments xv

I Overview

1 Describe, Analyze, Test 3

1.1 Model programs 4

1.2 Model-based analysis 5

1.3 Model-based testing 7

1.4 Model programs in the software process 8

1.5 Syllabus 11

2 Why We Need Model-Based Testing 13

2.1 Client and server 13

2.2 Protocol 14

2.3 Sockets 15

2.4 Libraries 15

2.5 Applications 20

2.6 Unit testing 23

v

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88655-0 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Frontmatter
More information

http://www.cambridge.org/0521886554
http://www.cambridge.org
http://www.cambridge.org


vi Contents

2.7 Some simple scenarios 25

2.8 A more complex scenario 27

2.9 Failures in the field 28

2.10 Failures explained 29

2.11 Lessons learned 29

2.12 Model-based testing reveals the defect 30

2.13 Exercises 31

3 Why We Need Model-Based Analysis 32

3.1 Reactive system 32

3.2 Implementation 34

3.3 Unit testing 41

3.4 Failures in simulation 44

3.5 Design defects 46

3.6 Reviews and inspections, static analysis 47

3.7 Model-based analysis reveals the design errors 47

3.8 Exercises 52

4 Further Reading 53

II Systems with Finite Models

5 Model Programs 57

5.1 States, actions, and behavior 57

5.2 Case study: user interface 59

5.3 Preliminary analysis 61

5.4 Coding the model program 64

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88655-0 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Frontmatter
More information

http://www.cambridge.org/0521886554
http://www.cambridge.org
http://www.cambridge.org


Contents vii

5.5 Simulation 70

5.6 Case study: client/server 72

5.7 Case study: reactive program 82

5.8 Other languages and tools 92

5.9 Exercises 93

6 Exploring and Analyzing Finite Model
Programs 94

6.1 Finite state machines 94

6.2 Exploration 99

6.3 Analysis 106

6.4 Exercise 114

7 Structuring Model Programs with Features and
Composition 115

7.1 Scenario control 115

7.2 Features 117

7.3 Composition 121

7.4 Choosing among options for scenario control 129

7.5 Composition for analysis 131

7.6 Exercises 136

8 Testing Closed Systems 137

8.1 Offline test generation 137

8.2 Traces and terms 139

8.3 Test harness 142

8.4 Test execution 146

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88655-0 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Frontmatter
More information

http://www.cambridge.org/0521886554
http://www.cambridge.org
http://www.cambridge.org


viii Contents

8.5 Limitations of offline testing 147

8.6 Exercises 148

9 Further Reading 150

III Systems with Complex State

10 Modeling Systems with Structured State 155

10.1 “Infinite” model programs 155

10.2 Types for model programs 157

10.3 Compound values 157

10.4 Case study: revision control system 169

10.5 Exercises 181

11 Analyzing Systems with Complex State 183

11.1 Explorable model programs 183

11.2 Pruning techniques 186

11.3 Sampling 190

11.4 Exercises 190

12 Testing Systems with Complex State 191

12.1 On-the-fly testing 192

12.2 Implementation, model and stepper 194

12.3 Strategies 199

12.4 Coverage-directed strategies 203

12.5 Advanced on-the-fly settings 210

12.6 Exercises 218

13 Further Reading 219

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88655-0 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Frontmatter
More information

http://www.cambridge.org/0521886554
http://www.cambridge.org
http://www.cambridge.org


Contents ix

IV Advanced Topics

14 Compositional Modeling 223

14.1 Modeling protocol features 223

14.2 Motivating example: a client/server protocol 224

14.3 Properties of model program composition 241

14.4 Modeling techniques using composition and
features 245

14.5 Exercises 246

15 Modeling Objects 247

15.1 Instance variables as field maps 247

15.2 Creating instances 249

15.3 Object IDs and composition 253

15.4 Harnessing considerations for objects 254

15.5 Abstract values and isomorphic states 256

15.6 Exercises 257

16 Reactive Systems 259

16.1 Observable actions 259

16.2 Nondeterminism 261

16.3 Asynchronous stepping 264

16.4 Partial explorability 265

16.5 Adaptive on-the-fly testing 268

16.6 Partially ordered runs 272

16.7 Exercises 274

17 Further Reading 275

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88655-0 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Frontmatter
More information

http://www.cambridge.org/0521886554
http://www.cambridge.org
http://www.cambridge.org


x Contents

V Appendices

A Modeling Library Reference 281

A.1 Attributes 282

A.2 Data types 292

A.3 Action terms 306

B Command Reference 308

B.1 Model program viewer, mpv 308

B.2 Offline test generator, otg 311

B.3 Conformance tester, ct 312

C Glossary 315

Bibliography 333

Index 341

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88655-0 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Frontmatter
More information

http://www.cambridge.org/0521886554
http://www.cambridge.org
http://www.cambridge.org


Preface

This book teaches new methods for specifying, analyzing, and testing software. They
are examples of model-based analysis and model-based testing, which use a model
that describes how the program is supposed to behave. The methods provide novel
solutions to the problems of expressing and analyzing specifications and designs,
generating test cases, and checking the results of test runs. The methods increase the
automation in each of these activities, so they can be more timely, more thorough,
and (we expect) more effective. The methods integrate concepts that have been
investigated in academic and industrial research laboratories for many years and
apply them on an industrial scale to commercial software development. Particular
attention has been devoted to making these methods acceptable to working software
developers. They are based on a familiar programming language, are supported by
a well-engineered technology, and have a gentle learning curve.

These methods provide more test automation than do most currently popular
testing tools, which only automate test execution and reporting, but still require
the tester to code every test case and also to code an oracle to check the results of
every test case. Moreover, our methods can sometimes achieve better coverage in
less testing time than do hand-coded tests.

Testing (i.e., executing code) is not the only assurance method. Some software
failures are caused by deep errors that originate in specifications or designs. Model
programs can represent specifications and designs, and our methods can expose
problems in them. They can help you visualize aspects of system behavior. They
can perform a safety analysis that checks whether the system can reach forbidden
states, and a liveness analysis that identifies dead states from which goals cannot
be reached, including deadlocks (where the program seems to stop) and livelocks
(where the program cycles endlessly without making progress). Analysis uses the
same model programs and much of the same technology as testing.

This book is intended for professional software developers, including testers,
and for university students in computer science. It can serve as a textbook or
supplementary reading in undergraduate courses on software engineering, testing,

xi

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88655-0 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Frontmatter
More information

http://www.cambridge.org/0521886554
http://www.cambridge.org
http://www.cambridge.org


xii Preface

specification, or applications of formal methods. The style is accessible and the
emphasis is practical, yet there is enough information here to make this book a
useful introduction to the underlying theory. The methods and technology were
developed at Microsoft Research and are used by Microsoft product groups, but this
book emphasizes principles that are independent of the particular technology and
vendor.

The methods are based on executable specifications that we call model programs.
To use the methods taught here, you write a model program that represents the
pertinent behaviors of the implementation you wish to specify, analyze, or test. You
write the model program in C#, augmented by a library of data types and custom
attributes. Executing the model program is a simulation of the implementation
(sometimes called an animation). You can perform more thorough analyses by
using a technique called exploration, which achieves the effect of many simulation
runs. Exploration is similar to model checking and can check for safety, liveness,
and other properties. You can visualize the results of exploration as state transition
diagrams. You can use the model program to generate test cases automatically.
When you run the tests, the model can serve as the oracle (standard of correctness)
that automatically checks that the program under test behaved as intended. You can
generate test cases in advance and then run tests later in the usual way. Alternatively,
when you need long-running tests, or you must test a reactive program that responds
to events in its environment, you may do on-the-fly testing, in which the test cases
are generated in response to events as the test run executes. You can use model
composition to build up complex model programs by combining simpler ones, or to
focus exploration and testing on interesting scenarios.

In this book, we demonstrate the methods using a framework called NModel that
is built on the C# language and .NET (the implementations that are modeled and
tested do not have to be written in C# and do not need to run in .NET). The NModel
framework includes a library for writing model programs in C#, a visualization and
analysis tool mpv (Model Program Viewer), a test generation tool otg (Offline Test
Generator), and a test runner tool ct (Conformance Tester). The library also exposes
the functionality of mpv, otg, ct, and more, so you may write your own tools that
are more closely adapted to your environment, or that provide other capabilities.

To use this technology, you must write your own model program in C# that
references the NModel library. Then you can use the mpv tool to visualize and
analyze the behavior of your model program, in order to confirm that it behaves as
you intend, and to check it for design errors. To execute tests using the test runner
ct, you must write a test harness in C# that couples your implementation to the
tool. You can use the test generator otg to create tests from your model program
in advance, or let ct generate the test on the fly from your model program as the
test run executes. If you wish, you can write a custom strategy in C# that ct uses to
maximize coverage according to criteria you define.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88655-0 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Frontmatter
More information

http://www.cambridge.org/0521886554
http://www.cambridge.org
http://www.cambridge.org


xiii

To use the NModel library and tools, the only additional software you need is
the .NET Framework Redistributable Package (and any Windows operating system
capable of running it). The NModel framework, as well as .NET, are available for
download at no cost.

This book is not a comprehensive survey or comparison of the model-based
testing and analysis tools developed at Microsoft Research (or elsewhere). Instead,
we focus on selected concepts and techniques that we believe are the most important
for beginners in this field to learn, and that make a persuasive (and reasonably short)
introduction. We created the NModel library and tools to support this book (and
further research). We believe that the simplicity, versatility, and transparency of this
technology makes it a good platform for learning the methods and experimenting
with their possibilities. However, this book is also for readers who use other tools,
including Spec Explorer, which is also from Microsoft Research and is also in active
development. Other tools support many of the same methods we describe here, and
some that we do not discuss. This book complements the other tools’ documentation
by explaining the concepts and methods common to all, by providing case studies
with thorough explanations, and by showing one way (of many possible ways) that
a modeling and testing framework can support the techniques that we have selected
to teach here.

This book is a self-contained introduction to modeling, specifications, analysis,
and testing. Readers need not have any previous exposure to these topics. Read-
ers should have some familiarity with an object-oriented programming language
such as Java, C++, or C#, as could be gained in a year of introductory computer
science courses. Student readers need not have taken courses on data structures
and algorithms, computing theory, programming language semantics, or software
engineering. This book touches on those topics, but provides self-contained expla-
nations. It also explains the C# language features that it uses that are not found in
other popular languages, such as attributes and events.

Although this book is accessible to students, it will also be informative to expe-
rienced professionals and researchers. It applies some familiar ideas in novel ways,
and describes new techniques that are not yet widely used, such as on-the-fly testing
and model composition.

When used with the NModel framework, C# can express the same kind of state-
based models as many formal specification languages, including Alloy, ASMs, B,
Promela, TLA, Unity, VDM, and Z, and also some diagramming notations, including
Statecharts and the state diagrams of UML. Exploration is similar to the analysis
performed by model checkers such as Spin and SMV. We have experience with
several of these notations and tools, and we believe that modeling and analysis do
not have to be esoteric topics. We find that expressing the models in a familiar
programming language brings them within reach of most people involved in the
technical aspects of software production. We also find that focusing on testing as

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88655-0 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Frontmatter
More information

http://www.cambridge.org/0521886554
http://www.cambridge.org
http://www.cambridge.org


xiv Preface

one of the main purposes of modeling provides motivation, direction, and a practical
emphasis that developers and testers appreciate.

This book is divided into four parts. The end of each part is an exit point; a
reader who stops there will have understanding and tools for modeling, analysis,
and testing up to that level of complexity. Presentation is sequential through Part III,
each chapter and part is a prerequisite for all the following chapters and parts.
Chapters in Part IV are independent; readers can read one, some, or all in any order.

This book provides numerous practical examples, case studies, and exercises and
contains an extensive bibliography, including citations to relevant research papers
and reports.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88655-0 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Frontmatter
More information

http://www.cambridge.org/0521886554
http://www.cambridge.org
http://www.cambridge.org


Acknowledgments

Parts of this book were written at Microsoft Research. The NModel framework was
designed and implemented at Microsoft Research by Colin Campbell and Margus
Veanes with graph viewing functionality by Lev Nachmanson.

The ideas in this book were developed and made practical at Microsoft Re-
search from 1999 through 2007 in the Foundations of Software Engineering group.
Contributors included Mike Barnett, Nikolaj Bjorner, Colin Campbell, Wolfgang
Grieskamp, Yuri Gurevich, Lev Nachmanson, Wolfram Schulte, Nikolai Tillman,
Margus Veanes, as well as many interns, in particular Juhan Ernits, visitors, uni-
versity collaborators, and colleagues from the Microsoft product groups. Specific
contributions are cited in the “Further readings” chapters at the end of each part.

Jonathan Jacky especially thanks Colin Campbell, who introduced him to the
group; Yuri Gurevich, who invited him to be a visiting researcher at Microsoft; and
Wolfram Schulte, who arranged for support and resources while writing this book.
Jonathan also thanks John Sidles and Joseph Garbini at the University of Washington,
who granted him permission to go on leave to Microsoft Research. Jonathan thanks
his wife, Noreen, for her understanding and encouragement through this project.
Jonathan’s greatest thanks go to his coauthors Colin, Margus, and Wolfram, not
only for these pages but also for the years of preparatory work and thought. Each
made unique and absolutely essential individual contributions, without which this
book would not exist.

Margus Veanes thanks the members of the Foundations of Software Engineering
group, in particular Yuri Gurevich, for laying a mathematical foundation upon which
much of his work has been based, and Colin Campbell, for being a great research
partner. Finally, Margus thanks his wife, Katrine, and his sons, Margus and Jaan,
for their love and support.

Colin Campbell would like to thank Jim Kajiya for his technical vision and
steadfast support of this project over almost a decade. Colin also acknowledges a
profound debt to Yuri Gurevich for teaching him how to understand discrete systems

xv

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88655-0 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Frontmatter
More information

http://www.cambridge.org/0521886554
http://www.cambridge.org
http://www.cambridge.org


xvi Acknowledgments

as evolving algebras and to Roberta Leibovitz, whose extraordinarily keen insight
was welcome at all hours of the day and night.

Wolfram Schulte thanks Wolfgang Grieskamp and Nikolai Tillmann, who de-
signed and implemented the Abstract State Machine Language and substantial parts
of Spec Explorer 2004; both tools are predecessors of the work described here. He
also wants to express his gratitude, to many testers, developers, and architects in
Microsoft. Without their willingness to try new research ideas, their passion to push
the limits of model-based testing and analysis, and their undaunted trust in his and
his coauthors’ capabilities, this book would not exist – thank you.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88655-0 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Frontmatter
More information

http://www.cambridge.org/0521886554
http://www.cambridge.org
http://www.cambridge.org

