Contents

<table>
<thead>
<tr>
<th>Contributors</th>
<th>page xv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xix</td>
</tr>
</tbody>
</table>

SECTION I: TRANSLATIONAL MEDICINE: HISTORY, PRINCIPLES, AND APPLICATION IN DRUG DEVELOPMENT

1. TRANSLATIONAL MEDICINE: DEFINITION, HISTORY, AND STRATEGIES
 Bruce H. Littman
 3

1.1. Biomarkers in Drug Development: A Common Understanding
 5

1.2. Pharmacology: Testing the Target (POM)
 7

1.3. Study Design Considerations for POM
 13
 1.3.1. Population
 13
 1.3.2. Risk
 14
 1.3.3. Feasibility
 14
 1.3.4. Endpoints
 15
 1.3.5. PK–PD and PD–PD Models
 16

1.4. Confirming the Hypothesis That a Drug Target (Mechanism of Action) Will Be Efficacious (POC)
 17

1.5. Study Design Considerations for POC
 17
 1.5.1. Population
 17
 1.5.2. Efficacy Endpoints
 19
 1.5.3. Dose Selection
 20
 1.5.4. Cost, Speed, and Risk
 20
 1.5.5. Multiple Indications (Serial or Parallel)
 21
1.6. Human Indications Screening 23
 1.6.1. Expl-IND Application 24
 1.6.2. Low Cost Attrition and Portfolio Economics 26

1.7. Commercial Profile and Translational Medicine 27
 1.7.1. Impact on Survival 27
 1.7.2. Impact on Decision Making 29
 1.7.3. Translational Medicine and the Personalized Medicine Option 31

1.8. Conclusion 32

1.9. References 32

2. TRANSLATIONAL MEDICINE AND ITS IMPACT ON DIABETES
 DRUG DEVELOPMENT Roberto A. Calle and Ann E. Taylor 35
 2.1. Introduction 35
 2.2. Primary Challenges 37
 2.2.1. Efficacy 37
 2.2.2. Safety 46
 2.3. Case Studies 49
 2.3.1. Case Study #1: Development of DPP-4i 49
 2.3.2. Case Study #2: Development of 11-β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors 50
 2.3.3. Case Study #3: Effect of Weight Loss on HbA1c 54
 2.4. Conclusions 56
 2.5. Acknowledgments 56
 2.6. References 56

3. CHALLENGES IN Atherosclerosis John S. Millar 62
 3.1. Introduction 62
 3.2. Prevailing Hypotheses of Atherosclerosis Development 62
 3.2.1. The Lipid Hypothesis 62
 3.2.2. The Response-to-Injury Hypothesis 63
 3.2.3. The Response-to-Inflammation Hypothesis 64
 3.2.4. The Response-to-Retention Hypothesis 64
 3.3. Clinical Trials Supporting the Lipid Hypothesis 65
 3.4. Where We Stand Today 65
3.5. Atherosclerosis and Drug Discovery and Development 67
 3.5.1. Lipoprotein Metabolism 67
 3.5.2. Antidyslipidemics 69
3.6. The Future Generation of LDL-Lowering Drugs 73
 3.6.1. Thyroid Receptor-β Agonism 73
 3.6.2. Lipoprotein-Associated-Phospholipase A2 Inhibitors 73
 3.6.3. Secretory Phospholipase A2 Inhibitors 74
 3.6.4. Microsomal Triglyceride Transfer Protein Inhibitors 74
 3.6.5. Antisense/RNA Interference of apoB mRNA 75
3.7. Therapies to Increase HDL Cholesterol Levels and Improve HDL Function 75
 3.7.1. CETP Inhibitors 76
 3.7.2. PPAR-α Agonists 76
 3.7.3. Reconstituted and Recombinant HDL/apoA-I Mimetic Peptides 77
3.8. Biomarkers Linked to Clinical Outcomes 77
 3.8.1. Biomarkers 78
 3.8.2. Measures of Vascular Function and Atherosclerosis 78
3.9. Case Study: CETP Inhibition with Torcetrapib – Mechanism versus Molecule 80
3.10. Conclusion 82
3.11. References 82

4. OBESITY: NEW MECHANISMS AND TRANSLATIONAL PARADIGMS Gregory Gaich and David E. Moller 89
4.1. Introduction 89
 4.1.1. Medical Need and History of Failure 89
 4.1.2. Pathophysiology and Principles of Energy Balance 90
4.2. Molecular Pathways and Associated Drug Targets 90
 4.2.1. Central Regulation of Satiety–Thermogenesis 92
 4.2.2. Modulating the Actions of Gut-Derived Peptide Hormones 96
 4.2.3. Targeting Other Peripheral Pathways 98
4.3. Clinical Paradigm and Recent Clinical Experience 100
4.4. Translational Approaches 102
 4.4.1. Target Engagement 103
 4.4.2. Drug Pharmacology or Mechanism Biomarkers 104
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.3. Disease Process or Outcome Biomarkers and Mechanism Biomarkers.Linked to Efficacy Outcomes</td>
<td>105</td>
</tr>
<tr>
<td>4.4.4. Subject Selection</td>
<td>106</td>
</tr>
<tr>
<td>4.4.5. Combination Therapy</td>
<td>107</td>
</tr>
<tr>
<td>4.5. Concluding Comments</td>
<td>107</td>
</tr>
<tr>
<td>4.6. References</td>
<td>108</td>
</tr>
<tr>
<td>5. BONE DISORDERS: TRANSLATIONAL MEDICINE CASE STUDIES S. Aubrey Stoch</td>
<td>115</td>
</tr>
<tr>
<td>5.1. Introduction</td>
<td>115</td>
</tr>
<tr>
<td>5.2. Challenges in Translational Research</td>
<td>116</td>
</tr>
<tr>
<td>5.3. Osteoporosis: Biomarker Considerations</td>
<td>116</td>
</tr>
<tr>
<td>5.3.1. Biochemical Biomarkers of Bone Turnover</td>
<td>116</td>
</tr>
<tr>
<td>5.3.2. Imaging Biomarkers (BMD)</td>
<td>118</td>
</tr>
<tr>
<td>5.3.3. Preclinical Models</td>
<td>119</td>
</tr>
<tr>
<td>5.4. Antiresorptives</td>
<td>121</td>
</tr>
<tr>
<td>5.4.1. Cat K Inhibitors</td>
<td>122</td>
</tr>
<tr>
<td>5.4.2. $\alpha_v\beta_3$ Integrin Antagonists</td>
<td>127</td>
</tr>
<tr>
<td>5.5. Osteoanabolics</td>
<td>130</td>
</tr>
<tr>
<td>5.5.1. Selective Androgen Receptor Modulators</td>
<td>131</td>
</tr>
<tr>
<td>5.5.2. Calcium Receptor Antagonants (Calcilytics)</td>
<td>136</td>
</tr>
<tr>
<td>5.5.3. Dickkopf-1 (DKK-1) Inhibitors</td>
<td>144</td>
</tr>
<tr>
<td>5.5.4. Sclerostin Inhibitors</td>
<td>149</td>
</tr>
<tr>
<td>5.6. Conclusions</td>
<td>155</td>
</tr>
<tr>
<td>5.7. References</td>
<td>158</td>
</tr>
<tr>
<td>6. CASE STUDIES IN NEUROSCIENCE: UNIQUE CHALLENGES AND EXAMPLES Gerard J. Marek</td>
<td>168</td>
</tr>
<tr>
<td>6.2. Why Have New Mechanisms Failed?</td>
<td>169</td>
</tr>
<tr>
<td>6.3. Can We Predict Efficacy in Short-Term Studies?</td>
<td>173</td>
</tr>
<tr>
<td>6.4. What Is the Role for Cognitive Biomarkers?</td>
<td>174</td>
</tr>
<tr>
<td>6.5. What Translational Medicine Approaches Will Drive Innovation in Neuroscience Drug Development?</td>
<td>175</td>
</tr>
<tr>
<td>6.6. References</td>
<td>177</td>
</tr>
</tbody>
</table>
7. TRANSLATIONAL MEDICINE IN ONCOLOGY Dominic G. Spinella 180

7.1. Pharmacodynamic Biomarkers 180
 7.1.1. Traditional Phase 1 Dose Selection versus the Paradigm for Targeted Agents 181

7.2. Outcome Biomarkers 183

7.3. Patient Selection Biomarkers 185

7.4. Putting It All Together: The Translational Approach 188
 7.4.1. Preclinical Work 188
 7.4.2. The Phase 1 Study 189
 7.4.3. The Phase 2 Study 190

7.5. Conclusions 190

7.6. References 191

SECTION II: BIOMARKERS AND PUBLIC–PRIVATE PARTNERSHIPS 193

8. BIOMARKER VALIDATION AND APPLICATION IN EARLY DRUG DEVELOPMENT: IDEA TO PROOF OF CONCEPT Pfizer Global Research and Development 2004 195

8.1. Definitions and Summary of Overarching Principles 195

8.2. Biomarker Validation Terminology 197

8.3. Stages of Biomarker Lifecycle 198

8.4. Why Biomarkers? 200

8.5. Biomarker Validation 202
 8.5.1. Define the Specific Purpose(s) of the Biomarker 202
 8.5.2. Examine the Business Impact of Making a Wrong Decision 203
 8.5.3. Select Appropriate Technical Validation Attributes 205
 8.5.4. Create the Biomarker MAC and Appropriate Decision Criteria 209
 8.5.5. Summary 214

8.6. When and How to Apply Biomarkers in Drug Development: Biomarker Development Is Described for Each Stage of Drug Development 215
 8.6.1. Biomarker Development Must Occur So That Biomarkers Are Validated for Their Purpose Prior to Application for Drug Development Decisions 215
8.6.2. Biomarker Selection and Development between “Target Idea” and Decision on Drug Candidate Selection
8.6.3. Biomarker Best Practice between Drug Candidate Selection and First In-Human (FIH) Study
8.6.4. Biomarker Best Practice between FIH and Phase 2 Start

9. IMAGING BIOMARKERS IN DRUG DEVELOPMENT:
CASE STUDIES Johannes T. Tauscher and Adam J. Schwarz

9.1. Introduction
9.2. Molecular Imaging: PET “Receptor Occupancy” as a Marker for Target Engagement
 9.2.1. A Brief History of Dopamine Receptor Occupancy with Antipsychotics
 9.2.2. Serotonin Transporter Occupancy with Antidepressants
 9.2.3. Case Study of a Translational PET Imaging Biomarker Strategy
9.3. Functional Imaging: fMRI as a Probe of Drug Effects in the CNS
 9.3.1. fMRI Biomarkers and Mechanistic Models in Early Drug Development
 9.3.2. Normalization of Brain Function: fMRI Studies in Patient Populations
 9.3.3. Validation and Standardization of fMRI for Drug Development Applications
9.4. Imaging as a Biomarker to Enrich Study Populations
9.5. Oncology
 9.5.1. Anatomical Imaging in Cancer Drug Development
 9.5.2. Functional Imaging in Cancer Drug Development
 9.5.3. Imaging the Tumor Vasculature
 9.5.4. Imaging of Cellular Proliferation
 9.5.5. Tumor Receptor Imaging
 9.5.6. Imaging Apoptosis
9.6. Imaging Cardiovascular Disease
 9.6.1. Clinical Trials in Atherosclerosis Using Imaging Endpoints
 9.6.2. Practicality of Cardiovascular Imaging Trials and Application to Drug Development
10. EUROPEAN NEW SAFE AND INNOVATIVE MEDICINES INITIATIVES: HISTORY AND PROGRESS (THROUGH DECEMBER 2009) Ole J. Bjerrum and Hans H. Linden 265

10.1. Introduction 265
 10.1.1. The EU Research Funding System 265
 10.1.2. Stakeholders 266

10.2. Toward the IMI 267
 10.2.1. First Round: Establishment of the NSMF Project 267
 10.2.2. Second Round: Incorporation of NSMF in FP 6 269
 10.2.3. Third Round: The Rise of the IMI 271

10.3. Organizational Structure of the IMI 272

10.4. How Does the SRA of the IMI Address Predictive Markers of Efficacy and Safety? 274
 10.4.1. Predictive Markers of Efficacy 274
 10.4.2. Predictive Markers of Safety 276

10.5. How Is Off-Target Toxicity Addressed in the SRA? 277

10.7. The Topic Proposals in the First Call of the IMI 280
 10.7.1. Predictive Safety 281
 10.7.2. Predictive Efficacy 282
 10.7.3. Knowledge Management 283
 10.7.4. Education and Training 283

10.8. The Call Procedures 285

10.9. Future Perspectives 285

10.10. Acknowledgments 287

10.11. References 287

11. CRITICAL PATH INSTITUTE AND THE PREDICTIVE SAFETY TESTING CONSORTIUM Elizabeth Gribble Walker 289

11.1. Introduction to the Critical Path in Medical Product Development 289
11.2. The Predictive Safety Testing Consortium 290
11.3. Regulatory and Public Health Impact of the PSTC 292
11.4. References 293

12. THE BIOMARKERS CONSORTIUM: FACILITATING THE
DEVELOPMENT AND QUALIFICATION OF NOVEL BIOMARKERS
THROUGH A PRECOMPETITIVE PUBLIC–PRIVATE PARTNERSHIP 295
David Wholley and David B. Lee

12.1. References 300

SECTION III: FUTURE DIRECTIONS 301

13. IMPROVING THE QUALITY AND PRODUCTIVITY OF
PHARMACOMETRIC MODELING AND SIMULATION ACTIVITIES:
THE FOUNDATION FOR MODEL-BASED DRUG DEVELOPMENT 303
Thaddeus H. Grasela, Jill Fiedler-Kelly, and Robert Slusser

13.1. Introduction 303
13.1.1. Chapter Overview 304

13.2. The Pharmacometric Analysis Process 304
13.2.1. The M&S Process in Pharmacometrics – Current
Practice 305
13.2.2. The M&S Process in Pharmacometrics – Future
Practice 306
13.2.3. The Central Role of the Franchise Disease–Drug
Model 307
13.2.4. Implications of the Future Scenario 310

13.3. Challenges in the Delivery of M&S Results 311
13.3.1. Systematic Needs 311
13.3.2. Informatics Needs 312
13.3.3. Process Needs 313

13.4. Next Steps 314
13.4.1. Strategies for Improving the Quality and
Productivity of the Pharmacometrics Process 315
13.4.2. Strategies for Improving the Quality and
Robustness of the Informatics Infrastructure for
Pharmacometrics 318
13.4.3. A Systematic Process for Assessing Franchise
Disease–Drug Model Feasibility 319
13.4.4. Systematizing the Requirements Definition
Management Process 322
Contents

13.5. Summary 324
13.6. References 325

14. EMBRACING CHANGE: A PHARMACEUTICAL INDUSTRY GUIDE TO THE 21ST CENTURY

Mervyn Turner 328

14.1. Introduction 328
14.1.1. Toward a New Paradigm of Drug Development 330
14.1.2. Embracing Democratization: Partner or Perish 331

14.2. Toward a New Paradigm of Drug Development: It’s a State of Mind 331

14.3. Fail Fast, Fail Cheap 332

14.4. Philosophy in Action: Merck’s Clinical Pharmacology and Experimental Medicine Strategies 334
14.4.1. Embrace Democratization – Partner or Perish 336
14.4.2. Adapt Culture to Recognize the Benefits and Necessities of Diversifying Pathways to Knowledge 337
14.4.3. Advance Experimental Medicine through Acquisition and Partnering 339

14.5. A Blueprint for Change 341

14.6. References 343

Index 345