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Introduction

1.1 The subject matter: definition, history, study methods

Gravity-driven regional groundwater flow is induced by elevation differences in the
water table and its pattern is self-organized into hierarchical sets of flow systems.
Tóth (1963, p. 4806) defined a groundwater flow system as ‘a set of flow lines in
which any two flow lines adjacent at one point of the flow region remain adjacent
through the whole region; they can be intercepted anywhere by an uninterrupted
surface across which flow takes place in one direction only.’While flow is generated
by the relief of the water table, its patterns are modified by heterogeneities in the
rock framework’s permeability.

Topographic effects are ubiquitous and may cause water to move at depths of
several kilometres beneath the Earth’s terrestrial areas. Most of people’s needs for
subsurface water are met with water obtained from this depth range. However,
in addition to satisfying this need, gravity-driven groundwater also generates and
affects a wide variety of economically important natural processes at or below the
land surface. It is of both economic and environmental importance, therefore, to
understand the properties, controlling factors, effects and manifestations of this
type of flow, as well as to develop methods and techniques for its study and pos-
sible modification. Furthermore, because of the relatively easily accessible depths,
known and measurable controlling factors, observable natural effects and manifes-
tations, in short, unique tractability, the study of gravity-driven groundwater flow is
instructive and useful in the understanding and exploitation of groundwater motion
generated by other sources of driving forces, such as differences in dissolved salt
contents, thermal convection, sedimentary compaction and tectonic compression.

Owing to their practical relevance and scientific nature, the questions of driving
forces, spatial patterns and controlling factors of natural groundwater flow have
long interested hydrologists, hydrogeologists and, more recently, Earth scientists
in general. Munn’s hydraulic theory of oil and gas migration is one of the many
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Fig. 1.1 Groundwater flow and hydrocarbon accumulation conceptualized by
Munn (1909; modified from Fig. 77, p. 526).

possible examples that illustrate the point. Munn (1909) envisaged meteoric water
to descend from the land surface across beds of sandstone and shale and, driven
by capillary forces, to push ahead particles of oil and gas dispersed in these beds
(Fig. 1.1).

Permeability differences in the rock would cause different parts of the fluid front
to advance at different rates ‘which would finally result in zones of conflicting
currents of water between which the bodies of oil and gas would be trapped and held’
(Munn, 1909, Figs. 77–79; p. 525). The idea of conflicting currents of groundwater
appears to be a realistic mechanism for entrapment (its application to petroleum
exploration based on the theory of gravity-driven flow systems will be shown in
Section 5.5). However, sites where such conditions might occur cannot be identified
in practice from Munn’s concept because the relations between flow directions and
the factors controlling them are not specified.

Perhaps the earliest published conceptualization of hierarchically distributed
groundwater flow systems is reproduced by Fourmarier in his ‘Hydrogéologie’
(1939, Fig. 43, p. 87, from D’Andrimont, 1906). Figure 1.2 shows a major water
divide with a sub-basin to the left from its crest. From both sides, the sub-basin
attracts two, what we call today local, groundwater flow-systems. The local sys-
tems are superimposed on a larger system that originates on the principal divide
and moves towards the main valley of the watershed. A similar notion seems to be
reflected by two tiny flow systems leading to a saline ‘Discharge area in sidehill
valley’ on the right-hand side flank of Meyboom’s (1962, Fig. 2, not reproduced
here) ‘Prairie Profile’. But the minuteness of the feature suggests a lack of
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Fig. 1.2 ‘Allure complex des filets liquids dans une nappe libre’: Complex pattern
of fluid flow in an unconfined aquifer (Fourmarier, 1939, Figure 43, p. 87: after
D’Andrimont, 1906).

conviction by the author concerning its existence or importance in nature. Both of
these diagrams are perceptive generalizations of possible patterns of gravity-flow in
complex drainage basins. However, they are only the mental images of individuals
without the accompanying mathematical descriptions that would enable others to
reproduce and further develop them.

The door to the transition from the age of speculative and qualitative conceptual-
izations of regional groundwater flow to rigorous mathematical analyses was opened
by Hubbert’s (1940) paper, ‘The Theory of Ground-Water Motion’. In this classic
treatise, Hubbert derived the concept of fluid potential, �, from first principles. He
also showed that, for subsurface liquids in general, � comprises two terms: one
related to pore pressure, p, the other to topographic elevation, z, (because of low
velocities the inertia-dependent kinetic energy associated with the fluid’s motion
can be neglected) and that the impelling force acting upon a unit mass of fluid is the
negative first derivative of the fluid potential. Consequently, the force field can be
calculated, or modelled, for any given flow domain along the boundaries for which
� or its first derivatives can be stated. In turn, the flow field can be determined by
combining theforcefieldwith therock’shydraulicproperties (porosity,permeability,
storativity). Basinal-scale groundwater flow patterns could thus now be produced
mathematically as solutions to formal boundary value problems. However, another
twenty years went by before this gift to hydrogeology was exploited.

In the course of my regular duties as a hydrogeologist in CentralAlberta, Canada,
I noticed a discrepancy between what I expected on the basis of Hubbert’s (1940)
Figure 45, on the one hand (Fig. 1.3), and what I saw in the field, on the other.

Hubbert’s figure showed all infiltrating water resurfacing in the thalweg of the
valley, as though the watercourse were a drainage ditch. In reality, the beds of the
numerous creeks in my area were dry in many places and whatever water they had
was frozen to the bottom in the winter. Based on ‘Figure 45’, and considering the
steep topographic slopes, shallow water tables (<3 m deep) and permeable rock,
together providing sufficient supplies of water to the area’s farms and towns, I
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4 Introduction

Water table

Fig. 1.3 ‘Approximate flow pattern in uniformly permeable material between the
sources distributed over the air–water interface and the valley sinks’ (Hubbert,
1940, Fig. 45, p. 930).

would have expected healthy runoffs in the creeks. A possible solution to the riddle
occurred to me one day when I realized that the convergence of the flow lines in the
figure was a postulate, not a result; Hubbert made the flow lines converge on the
thalweg! I decided to find out where the water wants to go by itself, and solved the
Laplace equation for a drainage basin of simple geometry (Fig. 1.4, App. A; Tóth,
1962a, Fig. 3, p. 4380).

The results were revealing: they showed that instead of the ‘sinks’ being ‘limited
to the bottoms of valleys containing streams’(Hubbert, 1940, p. 928), ‘groundwater
discharge is not concentrated in the valley bottom’ (Tóth, 1962a, p. 4386). Thus
the entire lower half of the basin was revealed to be a ‘discharge area’. This simple
discovery has triggered a number of follow-up studies in rapid succession.

During the preparation of the above, my first, paper (Tóth, 1962a), I already
knew that assuming a linearly sloping valley flank was an oversimplification. I
solved the Laplace equation again, now for a drainage basin with a sinusoidal
surface superimposed on a linear regional slope (Fig. 1.4c; App. B; Tóth, 1962b,
1963 Fig. 3, p. 4807, reprinted in 1983). The analysis resulted in the groundwater
flow-pattern for composite basins with homogeneous and isotropic rock framework.
It was aptly called the ‘ hierarchically nested flow systems’ by Engelen (Engelen
and Jones, 1986, p. 9).

By fortunate coincidence, at the time when numerical methods just started to gain
popularity R. Allan Freeze was looking for a Ph.D. thesis topic at the University
of California, Berkeley. Advised by P. Witherspoon, he intended to show the value
of the method to groundwater-related problems. Freeze took off from my solution
to the composite-basin problem and produced a trail-blazing series of three papers
from his thesis showing that quantitative flow-nets can be calculated by numerical,
as opposed to analytical, methods for gravity-driven groundwater flow in drainage
basins of arbitrary topography and heterogeneous and anisotropic rock framework
(Freeze and Witherspoon, 1966, 1967, 1968).
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Fig. 1.4 Groundwater flow in a simple drainage basin: (a) the concept-inspiring
topography, Central Alberta, Canada (photo by J. Tóth); (b) two-dimensional the-
oretical fluid-potential distributions and flow patterns for different depths to the
horizontal impermeable boundary in a drainage basin with linearly sloping water
table (Tóth, 1962a, Fig. 3, p. 4380). (c) Hierarchically nestled gravity-flow systems
of groundwater in drainage basin with complex topography (Tóth, 1963, Fig. 3,
p. 4807).
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1.1 The subject matter: definition, history, study methods 7

Collectively, the above papers, published between 1962 and 1968, have funda-
mentally affected the direction, the scope and the rate of the subsequent evolution
of hydrogeology. In the search for and the development of groundwater resources,
basin-scale considerations have been added to aquifer- and well-hydraulics. The
scope of the field was broadened by dedicated field studies, recognizing mov-
ing groundwater as a geologic agent of diverse consequences and introducing
the flow-system concept into a wide variety of other disciplines such as soil sci-
ence, petroleum exploration, economic geology, geothermics, hydrogeochemistry,
soil mechanics, sedimentology, diagenesis and ecology. Hydrogeology has thus
been turned into both a basic and a specialty discipline of the earth and hydro-
logical sciences. In addition, the broadened scope of hydrogeologically-related
activities attracted talented new researchers and practitioners who accelerated the
rates of theoretical progress and methodological innovations. Some of the many
studies inspired by the flow-system concept and prompting further developments
include: Meyboom et al. (1966), Tóth (1966a, 1978, 1980), Fritz (1968), Mifflin
(1968), Williams (1968, 1970), Freeze (1969), Freeze and Harlan (1969), Kiraly
(1970), Deere and Patton (1971), Domenico and Palciauskas (1973), Schwartz and
Domenico (1973), Galloway (1978), Winter (1978), Garven and Freeze (1984),
Garven (1989) and so on.

Regional, or basinal, groundwater flow can be studied, characterized, and
evaluated by three different methods: (i) mathematical modelling; (ii) field mea-
surements of fluid-dynamic parameters; and (iii) mapping of flow-generated natural
field-phenomena.

(i) Mathematical models produce spatially and, in the case of Equation (1.1) also tem-
porally, distributed patterns of flow-related fluid-dynamic parameters. The patterns
can be obtained as solutions to the Diffusion Equation for transient, or non-steady-
state, flow:

∂2h

∂x2
+ ∂2h

∂y2
+ ∂2h

∂z2
= ∇2h = div grad h = S0

K

∂h

∂t
(1.1)

or as solutions to its particular case, the Laplace Equation, for steady-state flow (1.2):

∂2h

∂x2
+ ∂2h

∂y2
+ ∂2h

∂z2
= ∇2h = div grad h = 0. (1.2)

In these equations h is hydraulic head, t is time, K is hydraulic conductivity and S0 is
specific storage. The equations can be solved analytically, numerically or by analogue
modelling, using appropriate initial and boundary conditions.

(ii) Fluid-dynamic parameters [hydraulic heads, h; vertical gradients of pore pressure
or pressure vs. depth profiles, p(d); and dynamic pressure-increments, �p] can be
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8 Introduction

obtained or derived from field measurements of pore pressures and/or groundwater
levels, and interpreted as patterns of fluid potential and flow.

(iii) Many different processes and phenomena are in cause-and-effect relation to gravity-
driven groundwater in the realm of hydrology, ground- and/or surface-water chemistry,
plants and plant ecology, mineralogy, pedology, soil- and rock-mechanics, subsurface
transport of heat and mass, and so on. The manifestations of these natural conditions
can thus be interpreted in terms of direction and intensity of flow.

1.2 Portrayal of groundwater flow-systems

1.2.1 Darcy’s experiment and Law

The quantitative relation between the strength and sense of the fluid-driving force
and the rate and direction of the flow that it induces through permeable materials
was first stated, based on laboratory experiments, by the French engineer Henry
Darcy (1856). This empirical relation is the fluid-flow equivalent of Ohm’s Law for
electrical current or Fourier’s Law for heat flow. Because it encapsulates the main
aspects of the physics of flow, is stated in terms of basic fluid-dynamic parameters
and requires the use of essential terminology, Darcy’s Law is the natural introduction
to any discussion of subsurface fluid flow.

In Darcy’s experiments, water was passed through a vertical iron pipe filled with
sand and equipped with manometers along its side (Fig. 1.5).

The size of the sand grains and the rate of water flow were varied in the different
experiments. The changes resulted in variation of the water levels in the manometer
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Fig. 1.5 Apparatus (with tilted pipe) to demonstrate Darcy’s Law and the meaning
of hydraulic (potentiometric) head.
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1.2 Portrayal of groundwater flow-systems 9

tubes as measured vertically above a horizontal datum plane. The summary con-
clusion that Darcy made from his observations, which is called ‘Darcy’s Law’ in
his honour, can be expressed mathematically in various forms, for instance:

Q = −KA
dh

dl
, (1.3a)

q = −K
dh

dl
. (1.3b)

The terms in Equations (1.3a) and (1.3b) are defined and named below (dimensions
are shown in brackets) and illustrated in Figure 1.5.

A[L2]: cross-sectional area of flow field normal to the direction of flow; Q[L3/T ]
total volume of fluid passing through A during a unit length of time t, or volume
discharge; q = Q/A[L3/T ]/[L2] = [L/T ]: volume of fluid passing through a unit
cross-sectional area of A during a unit length of time, specific volume discharge,
flux, Darcy velocity or flow strength; h[L]: height to which the fluid rises above
the datum plane of elevation z = 0, from an observation point P in the flow field,
i.e. from a manometer’s intake, hydraulic head; dl[L]: distance measured along
the flow path between points in which hydraulic head is determined, flow length;
dh: difference in hydraulic heads determined in different points separated by the
distance dl along the flow path; dh/ dl [L/]/[L] = [L0], change in hydraulic
head over a unit length of flow path, hydraulic gradient, taken positive in the
direction of increasing hydraulic head; K[L3/TL2][L/L] = [L/T ]: a constant of
proportionality found by Darcy to depend on the grain size of the sand, it represents
the volume discharge during a unit length of time through a unit cross-sectional
area normal to flow, under a unit change in hydraulic head over a unit length of
flow path, hydraulic conductivity; the negative sign in the equation is used by
convention, in order to obtain a positive value for the volume discharge in the
direction of decreasing hydraulic head, i.e. in the direction opposite to the hydraulic
gradient.

Darcy conducted his experiments with descending flow in vertically positioned
columns. Nevertheless, his conclusions as expressed by Equations (1.3a) and (1.3b)
are valid for any flow direction relative to vertical, including horizontal and uphill
flow. Some of the more important observations that can be made immediately from
these equations are:

(i) flow is always in the direction of decreasing hydraulic head;
(ii) the volume discharge Q is directly proportional to the flow-field’s cross-sectional area

A, the hydraulic conductivity K and the hydraulic gradient dh/ dl;
(iii) the flux q is directly and linearly proportional to both the hydraulic conductivity K and

the hydraulic gradient dh/ dl;
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10 Introduction

(iv) although the flux q has dimensions of velocity (hence the term: Darcy velocity) it
represents a volumetric discharge rate;

(v) similarly, the hydraulic conductivity K has dimensions of velocity but in reality it is
the specific flux that occurs under a unit hydraulic gradient;

(vi) since K is the flux normalized to a unit hydraulic gradient dh/ dl = 1, its magnitude
expresses the ease with which the fluid passes through the permeable medium.

1.2.2 Fluid-dynamic parameters

The fluid-dynamic parameters are variables with magnitudes and distribution in
space and time that define and characterize the fields of flow and driving force.
Consequently, they can be used graphically and/or numerically to map and analyse
the intensity and direction of groundwater flow.

1.2.2.1 Fluid potential, Φ, and hydraulic head, h

The fluid potential, �, and the hydraulic head, h, are fluid-dynamic parameters
whose physical meaning can be understood from Darcy’s Law. One of the funda-
mental conclusions drawn from Darcy’s experiments is that flow is not controlled
either by elevation or by pressure exclusively. Figure 1.6 shows fluid pressures p to
be proportional to the height of the water column ψ above measurement points P
of elevation z in manometers that are open at the top. Accordingly, flow takes place
from higher to lower elevation (from z1 to z2) but from lower to higher pressure
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p2 P2
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h1 h1h2 h2<
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Fig. 1.6 Illustration of hydraulic-head change as the unique control on the direction
of water flow: (a) flow from low to high pressure; (b) flow from low to high
elevation.
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