The behavior of systems occurring in real life is often modeled by partial differential equations. This book investigates how a user or observer can influence the behavior of such systems mathematically and computationally. A thorough mathematical analysis of controllability problems is combined with a detailed investigation of methods used to solve them numerically, these methods being validated by the results of numerical experiments. In Part I of the book, the authors discuss the mathematics and numerics relating to the controllability of systems modeled by linear and nonlinear diffusion equations; Part II is dedicated to the controllability of vibrating systems, typical ones being those modeled by linear wave equations; finally, Part III covers flow control for systems governed by the Navier–Stokes equations modeling incompressible viscous flow. The book is accessible to graduate students in applied and computational mathematics, engineering, and physics; it will also be of use to more advanced practitioners.
All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit http://www.cambridge.org/uk/series/sSeries.asp?ccode=EOM

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>62. Infinite Dimensional Optimization and Control Theory</td>
<td>H. O. Fattorini</td>
</tr>
<tr>
<td>63. Minkowski Geometry</td>
<td>A. C. Thompson</td>
</tr>
<tr>
<td>64. Nonnegative Matrices with Applications</td>
<td>R. B. Bapat and T. E. S. Raghavan</td>
</tr>
<tr>
<td>65. Sperner Theory</td>
<td>K. Engel</td>
</tr>
<tr>
<td>66. Eigenspaces of Graphs</td>
<td>D. Cvetkovic, P. Rowlinson, and S. Simic</td>
</tr>
<tr>
<td>67. Combinational Species and Tree-Like Structures</td>
<td>F. Bergeron, G. Labelle, and P. Leroux</td>
</tr>
<tr>
<td>68. Representations and Invariants of the Classical Groups</td>
<td>R. Goodman and N. Wallach</td>
</tr>
<tr>
<td>69. Design Theory I, 2nd edn</td>
<td>T. Beth, D. Jungnickel, and H. Lenz</td>
</tr>
<tr>
<td>70. Orthonormal Systems for Banach Space Geometry</td>
<td>A. Pietsch and J. Wenzel</td>
</tr>
<tr>
<td>72. Quantum Field Theory for Mathematicians</td>
<td>R. Ticciati</td>
</tr>
<tr>
<td>73. Semimodular Lattices</td>
<td>M. Stern</td>
</tr>
<tr>
<td>74. Control Theory for Partial Differential Equations I</td>
<td>L. Lasiecka and R. Triggiani</td>
</tr>
<tr>
<td>75. Control Theory for Partial Differential Equations II</td>
<td>L. Lasiecka and R. Triggiani</td>
</tr>
<tr>
<td>76. Geometry of Sporadic Groups I</td>
<td>A. A. Ivanov</td>
</tr>
<tr>
<td>77. Polynomials with Special Regard to Reducibility</td>
<td>A. Schinzel</td>
</tr>
<tr>
<td>78. Banach Algebras and the General Theory of ∗-Algebras II</td>
<td>T. Palmer</td>
</tr>
<tr>
<td>79. Lie's Structural Approach to PDE Systems</td>
<td>O. Stormark</td>
</tr>
<tr>
<td>80. Orthogonal Polynomials of Several Variables</td>
<td>C. F. Dunkl and Y. Xu</td>
</tr>
<tr>
<td>81. The Foundations of Mathematics in the Theory of Sets</td>
<td>J. P. Mayberry</td>
</tr>
<tr>
<td>82. Manley, R. Rosa, and R. Temam</td>
<td>C. Foias, O. Manley</td>
</tr>
<tr>
<td>83. Navier–Stokes Equations and Turbulence</td>
<td>C. Foias, O. Manley</td>
</tr>
<tr>
<td>84. Continuous Lattices and Domains</td>
<td>G. Gierz et al.</td>
</tr>
<tr>
<td>85. Asymptotics and Mellin–Barnes Integrals</td>
<td>R. B. Paris and D. Kaminski</td>
</tr>
<tr>
<td>86. The Theory of Information and Coding, 2nd ed</td>
<td>T. McEliece</td>
</tr>
<tr>
<td>87. Algebraic Introduction to K-Theory</td>
<td>B. Magurn</td>
</tr>
<tr>
<td>88. Solving Polynomial Equation Systems I</td>
<td>T. Mora</td>
</tr>
<tr>
<td>89. Stochastic Integration with Jumps</td>
<td>K. Bichteler</td>
</tr>
<tr>
<td>90. Algebraic Combinatorics on Words</td>
<td>M. Lothaire</td>
</tr>
<tr>
<td>91. Geometry of Sporadic Groups II</td>
<td>A. A. Ivanov</td>
</tr>
<tr>
<td>92. Abstract Regular Polytopes</td>
<td>P. McMullen and E. Schulte</td>
</tr>
<tr>
<td>93. Continuous Lattices and Domains</td>
<td>G. Gierz et al.</td>
</tr>
<tr>
<td>94. Mathematical Constants</td>
<td>S. Finch</td>
</tr>
<tr>
<td>95. The Mountain Pass Theorem</td>
<td>Y. Jabri</td>
</tr>
<tr>
<td>96. Basic Hypergeometric Series, 2nd ed</td>
<td>G. Gasper and M. Rahman</td>
</tr>
<tr>
<td>97. Categorical Foundations</td>
<td>M. C. Pedicchio and W. Tholen (eds.)</td>
</tr>
<tr>
<td>98. Classical and Quantum Orthogonal Polynomials in One Variable</td>
<td>M. E. H. Ismail</td>
</tr>
<tr>
<td>99. Solving Polynomial Equation Systems II</td>
<td>T. Mora</td>
</tr>
<tr>
<td>100. Large Deviations and Metastability</td>
<td>E. Olivier and M. Euláliá</td>
</tr>
<tr>
<td>101. Contact Geometry and Geometry of Sporadic Groups II</td>
<td>A. Kushmer, V. Lychagin, and V. Rubtsov</td>
</tr>
<tr>
<td>102. Contact Geometry and Nonlinear Differential Equations</td>
<td>G. Gierz et al.</td>
</tr>
<tr>
<td>103. Topics in Algebraic Graph Theory</td>
<td>L. W. Beineke, R. J. Wilson, and P. J. Cameron (eds.)</td>
</tr>
<tr>
<td>104. Well-Posed Linear Systems</td>
<td>O. Staffans</td>
</tr>
<tr>
<td>105. Applied Combinatorics on Words</td>
<td>J. M. Lewis, S. Lakshmivaraiah, and S. Dhall</td>
</tr>
<tr>
<td>106. Applied Combinatorics on Words</td>
<td>M. Lothaire</td>
</tr>
<tr>
<td>107. Analytic Tomography</td>
<td>A. Markoe</td>
</tr>
<tr>
<td>108. Multiple Scattering</td>
<td>P. A. Martin</td>
</tr>
<tr>
<td>109. Combinatorial Matrix Classes</td>
<td>R. A. Bruaadi</td>
</tr>
<tr>
<td>110. Spline Functions on Triangulations</td>
<td>M.-J. Lai and L. L. Schumaker</td>
</tr>
<tr>
<td>111. Symmetric Generation of Groups</td>
<td>R. T. Curtis</td>
</tr>
<tr>
<td>113. Stochastic Partial Differential Equations with Lévy Noise</td>
<td>S. Peszat and J. Zabczyk</td>
</tr>
<tr>
<td>114. Combinatorial Games</td>
<td>J. Beck</td>
</tr>
<tr>
<td>115. Nonuniform Hyperbolicity</td>
<td>L. Barreira and Y. Pesin</td>
</tr>
<tr>
<td>117. Exact and Approximate Controllability for Distributed Parameters</td>
<td>R. Glowinski, J.-L. Lions, and J. He</td>
</tr>
</tbody>
</table>
Exact and Approximate Controllability for
Distributed Parameter Systems
A Numerical Approach

ROLAND GLOWINSKI
University of Houston

JACQUES-LOUIS LIONS
College de France, Paris

JIWEN HE
University of Houston
To Andrée, Angela, and April, and to Dorian Lions
LENS LARQUE-homonyms, with definitions.

1. Lencilorqua: a village of 657 inhabitants on Vasselona Continent, Reis, sixth planet to Gamma Eridani.
3. Laenzle arc: the locus of a point generated by the seventh theorem of triskoïd dynamics, as defined by the mathematician Palo Laenzle (907–1070).

The most challenging course I took in high school was calculus.

The real trick to writing a book is writing. Until you have a book.

Contents

Preface xi

Introduction 1
I.1 What it is all about? 1
I.2 Motivation 2
I.3 Topologies and numerical methods 3
I.4 Choice of the control 4
I.5 Relaxation of the controllability notion 4
I.6 Various remarks 5

Part I Diffusion Models 9

1 Distributed and pointwise control for linear diffusion equations 9
 1.1 First example 9
 1.2 Approximate controllability 12
 1.3 Formulation of the approximate controllability problem 14
 1.4 Dual problem 15
 1.5 Direct solution to the dual problem 17
 1.6 Penalty arguments 19
 1.7 L^∞ cost functions and bang-bang controls 22
 1.8 Numerical methods 28
 1.9 Relaxation of controllability 57
 1.10 Pointwise control 62
 1.11 Further remarks (I): Additional constraints on the state function 96
 1.12 Further remarks (II): A bisection based memory saving method for the solution of time dependent control problems by adjoint equation based methodologies 112
 1.13 Further remarks (III): A brief introduction to Riccati equations based control methods 117
Contents

2 Boundary control

2.1 Dirichlet control (I): Formulation of the control problem 124
2.2 Dirichlet control (II): Optimal conditions and dual formulations 126
2.3 Dirichlet control (III): Iterative solution of the control problems 128
2.4 Dirichlet control (IV): Approximation of the control problems 133
2.5 Dirichlet control (V): Iterative solution of the fully discrete dual problem (2.124) 143
2.6 Dirichlet control (VI): Numerical experiments 146
2.7 Neumann control (I): Formulation of the control problems and synopsis 155
2.8 Neumann control (II): Optimal conditions and dual formulations 163
2.9 Neumann control (III): Conjugate gradient solution of the dual problem (2.192) 176
2.10 Neumann control (IV): Iterative solution of the dual problem (2.208), (2.209) 178
2.11 Neumann control of unstable parabolic systems: a numerical approach 178
2.12 Closed-loop Neumann control of unstable parabolic systems via the Riccati equation approach 223

3 Control of the Stokes system

3.1 Generalities. Synopsis 231
3.2 Formulation of the Stokes system. A fundamental controllability result 231
3.3 Two approximate controllability problems 234
3.4 Optimal conditions and dual problems 234
3.5 Iterative solution of the control problem (3.19) 236
3.6 Time discretization of the control problem (3.19) 238
3.7 Numerical experiments 239

4 Control of nonlinear diffusion systems

4.1 Generalities. Synopsis 243
4.2 Example of a noncontrollable nonlinear system 243
4.3 Pointwise control of the viscous Burgers equation 245
4.4 On the controllability and the stabilization of the Kuramoto-Sivashinsky equation in one space dimension 259

5 Dynamic programming for linear diffusion equations

5.1 Introduction. Synopsis 277
5.2 Derivation of the Hamilton–Jacobi–Bellman equation 278
5.3 Some remarks 279
Part II Wave Models

6 Wave equations

- 6.1 Wave equations: Dirichlet boundary control
- 6.2 Approximate controllability
- 6.3 Formulation of the approximate controllability problem
- 6.4 Dual problems
- 6.5 Direct solution of the dual problem
- 6.6 Exact controllability and new functional spaces
- 6.7 On the structure of space \(E \)
- 6.8 Numerical methods for the Dirichlet boundary controllability of the wave equation
- 6.9 Experimental validation of the filtering procedure of Section 6.8.7 via the solution of the test problem of Section 6.8.5
- 6.10 Some references on alternative approximation methods
- 6.11 Other boundary controls
- 6.12 Distributed controls for wave equations
- 6.13 Dynamic programming

7 On the application of controllability methods to the solution of the Helmholtz equation at large wave numbers

- 7.1 Introduction
- 7.2 The Helmholtz equation and its equivalent wave problem
- 7.3 Exact controllability methods for the calculation of time-periodic solutions to the wave equation
- 7.4 Least-squares formulation of the problem (7.8)–(7.11)
- 7.5 Calculation of \(J' \)
- 7.6 Conjugate gradient solution of the least-squares problem (7.14)
- 7.7 A finite element–finite difference implementation
- 7.8 Numerical experiments
- 7.9 Further comments. Description of a mixed formulation based variant of the controllability method
- 7.10 A final comment

8 Other wave and vibration problems. Coupled systems

- 8.1 Generalities and further references
- 8.2 Coupled Systems (I): a problem from thermo-elasticity
- 8.3 Coupled systems (II): Other systems
Contents

Part III Flow Control

9 Optimal control of systems modelled by the Navier–Stokes equations:
Application to drag reduction 371
9.1 Introduction. Synopsis 371
9.2 Formulation of the control problem 373
9.3 Time discretization of the control problem 377
9.4 Full discretization of the control problem 379
9.5 Gradient calculation 384
9.6 A BFGS algorithm for solving the discrete control problem 388
9.7 Validation of the flow simulator 389
9.8 Active control by rotation 394
9.9 Active control by blowing and suction 408
9.10 Further comments on flow control and conclusion 419

Epilogue 426

Further Acknowledgements 429

References 430

Index of names 450

Index of subjects 454
Preface

During ICIAM 1995, in Hamburg, David Tranah approached Jacques-Louis Lions and myself and asked us if we were interested in publishing in book form our two-part article “Exact and approximate controllability for distributed parameter systems” which had appeared in Acta Numerica 1994 and 1995. The length of the article (almost 300 pages) was a justification, among several others, for such an initiative. While I was very enthusiastic about this project, J.L. Lions was more cautious, without being against it. Actually, his reservation concerning this book project was stemming from recent important developments on controllability related issues, justifying, in his opinion an in-depth revision of our article. Both of us being quite busy, the project was practically forgotten. As everyone knows in the Scientific Community, and elsewhere, Jacques-Lions passed away in June 2001, while still active scientifically. He largely contributed in making the Control of Distributed Parameter Systems a most important field where sophisticated mathematical and computational techniques meet with advanced applications. Therefore, when David Tranah renewed his 1995 suggestion during a conference of the European Mathematical Society held in Nice in February 2003, we thought that it would be a very nice way to pay to J.L. Lions the tribute he fully deserves. The idea was to respect as much as possible the original text, since it largely reflects J.L. Lions’ inspired scientific vision, and also its inimitable way at making simple complicated notions. On the other hand, it was also agreed that additional material should be included to make the text more up to date. Most of these additions are concerned with flow control; indeed, for J.L. Lions, the control of flow modeled by the Navier–Stokes equations was a kind of scientific Holy Grail and we are most happy that he could witness the first real mathematical and computational successes in that direction, all taking place in the late 1990s.

The present volume is structured as follows:

- Motivations and some broad generalities are given in the Introduction.
- Part I is dedicated to the control of linear and nonlinear diffusion models; it contains Sections 1–5 of the Acta Numerica article, with additional materials such as the Neumann control of unstable advection–reaction–diffusion models, and a discussion of computer memory saving methods for the solution of time-dependent control problems by adjoint-equation-based methods. A short introduction to Riccati-equation-based control methods is also provided.
Part II is concerned with the controllability of wave equation type models and of coupled systems. This material corresponds essentially to Sections 6 and 7 of the Acta Numerica article.

Part III is the main addition to the original text; it is dedicated to the boundary control, by either rotation or blowing and suction, of Newtonian incompressible viscous flow modeled by the Navier–Stokes equations.

Since most of the additional material follows from investigations conducted jointly with Professor Jiwen He, a former collaborator of J.L. Lions, all the parties involved found it quite natural to have him as a coauthor of this volume.

Acknowledgments and warmest thanks should go first to David Tranah, Ken Blake, and Cambridge University Press for encouraging the publication of this augmented version of the Acta Numerica article, and also to Mrs Andrée Lions and Professor Pierre-Louis Lions for their acceptance of this project. The invaluable help of Dr H.L. Juárez (UAM-Mexico City) and of his collaborators (Bety Arce, in particular) is also acknowledged; they converted large parts of a text initially written in Word© to a LATEX© file, a nontrivial task indeed considering the size of this volume.

Special thanks are due to S. Barck-Holst, M. Berggren, H.Q. Chen, J.M. Coron, J.I. Diaz, S. Gomez, M. Gorman, A.J. Kearsley, B. Mantel, R. Metcalfe, J. Périaux, T.-W. Pan, O. Pironneau, J.-P. Puel, A.M. Ramos, T. Rossi, D. Sorensen, J. Toivanen, and E. Zuazua for very helpful comments and suggestions concerning the additions to the original article (further acknowledgments may be found at the end of this volume; they concern the original Acta Numerica article).

We will conclude this preface with further thanks to Cambridge University Press for authorizing the reprinting of the above Acta Numerica article in Volume III of J.L. Lions, Oeuvres Choisies, SMAI / EDP Sciences, Paris, 2003, a three-volume testimony of the outstanding scientific contributions of Jacques-Louis Lions.

Guanajuato, Mexico

Roland Glowinski