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Calendar Basics

A learned man once asked me regarding the eras used by different nations, and
regarding the difference of their roots, that is, the epochs where they begin, and of

their branches, that is, the months and years, on which they are based; further
regarding the causes which led to such difference, and the famous festivals and

commemoration-days for certain times and events, and regarding whatever else one
nation practices differently from another. He urged me to give an explanation, the

clearest possible, of all this, so as to be easily intelligible to the mind of the reader,
and to free him from the necessity of wading through widely scattered books, and
of consulting their authors. Now I was quite aware that this was a task difficult to

handle, an object not easily to be attained or managed by anyone, who wants to
treat it as a matter of logical sequence, regarding which the mind of the student

is not agitated by doubt.
—Abū-Raih. ān Muh. ammad ibn ’Ah. mad al-Bı̄rūnı̄:

Al-Āthār al-Bāqiyah ‘an al-Qurūn al-Khāliyah (1000)

Calendrical calculations are ubiquitous. Banks need to calculate interest on a
daily basis. Corporations issue paychecks on weekly, biweekly, or monthly sched-
ules. Bills and statements must be generated periodically. Computer operating sys-
tems need to switch to and from daylight saving time. Dates of secular and religious
holidays must be computed for consideration in planning events. Most of these cal-
culations are not difficult because the rules of our civil calendar (the Gregorian
calendar) are straightforward.

Complications begin when we need to know the day of the week on which a
given date falls or when various religious holidays based on other calendars occur.
These complications lead to difficult programming tasks—not often difficult in an
algorithmic sense but difficult because it can be extremely tedious to delve, for
example, into the complexities of the Hebrew calendar and its relation to the civil
calendar.

The purpose of this book is to present, in a unified, completely algorithmic
form, a description of thirty calendars and how they relate to one another: the
present civil calendar (Gregorian); the recent ISO commercial calendar; the old
civil calendar (Julian); the ancient Egyptian calendar (and its Armenian equivalent);
the Coptic and the (virtually identical) Ethiopic calendars; the Islamic (Moslem)
calendar (both the arithmetical version and one based on calculated observability);
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2 1 Calendar Basics

the (modern) Persian calendar (both astronomical and arithmetic forms); the Bahá’í
calendar (both present Western and future forms); the Hebrew (Jewish) calendar,
both its present arithmetical form and a speculative observational form; the three
Mayan calendars and two (virtually identical) Aztec calendars; the Pawukon calen-
dar from Bali; the French Revolutionary calendar (both astronomical and arithmetic
forms); the Chinese calendar and (virtually identical) Japanese, Korean, and Viet-
namese calendars; both the old (mean) and new (true) Hindu (Indian) solar and
lunisolar calendars; and the Tibetan calendar. Information that is sufficiently de-
tailed to allow computer implementation is difficult to find for most of these calen-
dars because the published material is often inaccessible, ecclesiastically oriented,
incomplete, inaccurate, based on extensive tables, overburdened with extraneous ma-
terial, focused on shortcuts for hand calculation to avoid complicated arithmetic or
to check results, or difficult to find in English. Most existing computer programs are
proprietary, incomplete, or inaccurate.

The need for such a secular, widely available presentation was made clear to
us when we (primarily E.M.R., with contributions by N.D.), in implementing a
calendar/diary feature for GNU Emacs [29], found difficulty in gathering and in-
terpreting appropriate source materials that describe the interrelationships among
the various calendars and the determination of the dates of holidays. Some of the
calendars (Chinese, Japanese, Korean, Vietnamese, Hindu, and Tibetan) never had
full algorithmic descriptions published in English.

The calendar algorithms in this book are presented as mathematical function def-
initions in standard mathematical format; Appendix A gives the types (ranges and
domains) of all functions and constants we use. To ensure correctness, all calen-
dar functions were automatically typeset1 directly from the working Common Lisp
[31] functions listed in Appendix B.2 In Appendix C we tabulate results of the cal-
endar calculations for 33 sample dates; this will aid those who develop their own
implemenations of our calendar functions.

We chose mathematical notation as the vehicle for presentation because of its
universality and easy convertibility to any programming language. We have endeav-
ored to simplify the calculations as much as possible without obscuring the intuition.
Many of the algorithms we provide are considerably more concise than previously
published ones; this is particularly true of the arithmetic Persian, Hebrew, and old
Hindu calendars.

We chose Lisp as the vehicle for implementation because it encourages func-
tional programming and has a trivial syntax, nearly self-evident semantics, histor-
ical durability, and wide distribution; moreover, Lisp was amenable to translation
into ordinary mathematical notation. Except for a few short macros, the code uses

1 This has meant some sacrifice in the typography of the book; we hope readers sympathize with our
decision.

2 We provide these Lisp functions through a Cambridge University Press web site
http://www.cambridge.org/us/9780521702386 under the terms of the License Agree-
ments and Limited Warranty on page xxviii. Any errata are available over the World Wide Web at
http://www.calendarists.com

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88540-9 - Calendrical Calculations, Third Edition
Nachum Dershowitz and Edward M. Reingold
Excerpt
More information

http://www.cambridge.org/052188540X
http://www.cambridge.org
http://www.cambridge.org


1 Calendar Basics 3

only a very simple, side-effect-free subset of Lisp. We emphasize that our choice
of Lisp should be considered irrelevant to readers, whom we expect to follow the
mathematical notation used in the text, not to delve into Appendix B.

It is not the purpose of this book to give a detailed historical treatment of the ma-
terial, nor, for that matter, a mathematical one; our goal is to give a logical, thorough
computational treatment. Thus, although we give much historical, religious, mathe-
matical, and astronomical data to leaven the discussion, the focus of the presentation
is algorithmic. Full historical/religious details and mathematical/astronomical un-
derpinnings of the calendars can be pursued in the references.

In the remainder of this chapter, we describe the underlying unifying theme of
all the calculations along with some useful mathematical facts. The details of spe-
cific calendars are presented in subsequent chapters. Historically, the oldest of the
calendars that we consider is the Egyptian (more than 3000 years old). The Chinese
and Mayan calendars also derive from millennia-old calendars. Next are the classical
(observation-based) Hebrew, the Julian (the roots of which date back to the ancient
Roman empire), the Coptic and Ethiopic (third century), the current Hebrew (fourth
century) and the old Hindu (fifth century), followed by the Islamic calendar (seventh
century), the newer Hindu calendars (tenth century), the Persian and Tibetan calen-
dars (eleventh century), the Gregorian modification to the Julian calendar (sixteenth
century), the French Revolutionary calendar (eighteenth century), and the Bahá’í
calendar (nineteenth century). Finally, the International Organization for Standard-
ization’s ISO calendar and the arithmetic Persian calendar are of twentieth-century
origin.

For expository purposes, however, we present the Gregorian calendar first, in
Part I, because it is the most popular calendar currently in use. Because the Julian
calendar is so close in substance to the Gregorian, we present it next, followed by the
very similar Coptic and Ethiopic calendars. Then we give the ISO calendar, which is
trivial to implement and depends wholly on the Gregorian. The arithmetic Islamic
calendar, which because of its simplicity is easy to implement, follows. Next, we
present the Hebrew calendar, one of the more complicated and difficult calendars
to implement, followed by a chapter on the computation of Easter, which is luniso-
lar like the Hebrew calendar. The ancient Hindu solar and lunisolar calendars are
described next; these are simple versions of the modern Hindu solar and lunisolar
calendars described in Part II. Next, the Mayan (and similar Aztec) calendars of
historical interest, have several unique computational aspects, followed by the Bali-
nese Pawukon calendar. All of the calendars described in Part I are “arithmetical”
in that they operate by straightforward integer-based rules. We conclude Part I with
a chapter describing generic arithmetic calendar schemata that apply to many of the
calendars in this part.

In Part II we present calendars that are controlled by irregular astronomical events
(or close approximations to them), although these calendars may have an arithmeti-
cal component as well. Because the calendars in Part II require some understanding
of astronomical events such as solstices and new moons, we begin Part II with a
chapter introducing the needed topics and algorithms. We then give the modern
Persian calendar in its astronomical and arithmetic forms followed by the Bahá’í

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88540-9 - Calendrical Calculations, Third Edition
Nachum Dershowitz and Edward M. Reingold
Excerpt
More information

http://www.cambridge.org/052188540X
http://www.cambridge.org
http://www.cambridge.org


4 1 Calendar Basics

calendar, also in two versions: the Western, which depends wholly on the Grego-
rian, and the future version, which is astronomical. Next we describe the original
(astronomical) and modified (arithmetic) forms of the French Revolutionary calen-
dar. All of these calendars are computationally simple, provided certain astronomical
values are available. Next is the Chinese lunisolar calendar and its Japanese, Korean,
and Vietnamese versions. Then we describe the modern Hindu calendars, which are
by far the most complicated of the calendars in this book. The Tibetan calendars are
presented next. We conclude with some astronomical calendars based on the moon:
the observational Islamic calendar, the classical Hebrew calendar, and the proposed
astronomical calculation of Easter.

As each calendar is discussed, we also provide algorithms for computing holidays
based on it. In this regard we take the ethnocentric view that our task is to compute
the dates of holidays in a given Gregorian year; there is clearly little difficulty in
finding the dates of, say, Islamic New Year in a given Islamic year! In general we
have tried to mention significant holidays on the calendars we cover, but have not
attempted to be exhaustive and include all variations. The interested reader can find
extensive holiday definitions in [12], [13], and [14].

The selection of calendars we present was chosen with two purposes: to include
all common modern calendars and to cover all calendrical techniques. We do not
give all variants of the calendars we discuss, but we have given enough details to
make any calendar easy to implement.

1.1 Calendar Units and Taxonomy

Teach us to number our days, that we may attain a wise heart.
—Psalms 90:12

The sun moves from east to west, and night follows day with predictable regular-
ity. This apparent motion of the sun as viewed by an earthbound observer provided
the earliest time-keeping standard for humankind. The day is, accordingly, the basic
unit of time underlying all calendars, but various calendars use different conventions
to structure days into larger units: weeks, months, years, and cycles of years. Differ-
ent calendars also begin their day at different times: the French Revolutionary day,
for example, begins at true (apparent) midnight; the Islamic, Bahá’í, and Hebrew
days begin at sunset; the Hindu day begins at sunrise. The various definitions of day
are surveyed in Section 13.3.

The purpose of a calendar is to give a name to each day. The mathemat-
ically simplest naming convention would be to assign an integer to each day;
fixing day 1 would determine the whole calendar. The Babylonians had such a
day count (in base 60). Such diurnal calendars are used by astronomers (see
Section 13.3) and by calendarists (see, for example, Section 9.1); we use a day
numbering in this book as an intermediate device for converting from one calen-
dar to another (see the following section). Day-numbering schemes can be com-
plicated by using a mixed-radix system in which the day number is given as a
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1.1 Calendar Units and Taxonomy 5

sequence of numbers or names. The Mayans, for example, utilized such a method
(see Section 10.1).3

Calendar day names are generally distinct, but this is not always the case. For
example, the day of the week is a calendar, in a trivial sense, with infinitely many
days having the same day name (see Section 1.10). A 7-day week is almost universal
today. In many cultures, the days of the week were named after the 7 “wandering
stars” (or after the gods associated with those heavenly bodies), namely, the Sun, the
Moon, and the five planets visible to the naked eye—Mercury, Venus, Mars, Jupiter,
and Saturn. In some languages—Arabic, Lithuanian, Portuguese, and Hebrew are
examples—some or all of the days of the week are numbered, not named. In the
Armenian calendar, for example, the days of the week are named as follows [12,
vol. 3, p. 70]:

Sunday Kiraki (or Miashabathi)
Monday Erkoushabathi
Tuesday Erekhshabathi
Wednesday Chorekhshabathi
Thursday Hingshabathi
Friday Urbath (or Vetsshabathi)
Saturday Shabath

“Shabath” means “day of rest” (from the Hebrew), “Miashabathi” means the first
day following the day of rest, “Erkoushabathi” is the second day following the day
of rest, and so on. The Armenian Christian church later renamed “Vetsshabathi” as
“Urbath,” meaning “to get ready for the day of rest.” Subsequently, they declared the
first day of the week as “Kiraki” or “the Lord’s day.”

Other cycles of days have also been used, including 4-day weeks (in the Congo),
5-day weeks (in Africa, in Bali, and in Russia in 1929), 6-day weeks (Japan), 8-day
weeks (in Africa and in the Roman Republic), and 10-day weeks (in ancient Egypt
and in France at the end of the eighteenth century; see page 240). The mathematics
of cycles of days are described in Section 1.10. Many calendars repeat after one or
more years. In one of the Mayan calendars (see Section 10.2), and in many preliterate
societies, day names are recycled every year. The Chinese calendar uses a repeating
60-name scheme for days and years, and at one time used it to name months.

An interesting variation in some calendars is the use of two or more cycles run-
ning simultaneously. For example, the Mayan tzolkin calendar (Section 10.2) com-
bines a cycle of 13 names with a cycle of 20 numbers. The Chinese cycle of 60 names
for years is actually composed of cycles of length 10 and 12 (see Section 17.4). The
Balinese calendar takes this idea to an extreme; see Chapter 11. The mathematics of
simultaneous cycles are described in Section 1.11.

3 It has been claimed that in equatorial regions, where the tropical year is not of paramount agricultural
importance, arbitrary year lengths are more prevalent, such as the 210-day Balinese Pawukon calandar
(Chapter 11) and the 260-day Mayan divine year (Section 10.2).
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6 1 Calendar Basics

The notions of “month” and “year,” like the day, were originally based on ob-
servations of heavenly phenomena, namely the waxing and waning of the moon,
and the cycle of seasons, respectively.4 Some calendars begin each month with the
new moon, when the crescent moon first becomes visible (as in the Hebrew cal-
endar of classical times and in the religious calendar of the Moslems today—see
Sections 20.2 and 20.4); others begin the month at full moon (in northern India, for
example)—see page 128. For calendars in which the month begins with the observed
new moon, beginning the day at sunset is natural.

Over the course of history, many different schemes have been devised for de-
termining the start of the year. Some are astronomical, beginning at the autumnal
or spring equinox, or at the winter or summer solstice. Solstices are more readily
observable, either by observing when the midday shadow of a gnomon is longest
(winter solstice in the northern hemisphere) or shortest (summer), or by noting the
point in time when the sun rises or sets as far south at it does during the course of
the year (which is winter in the northern hemisphere) or maximally north (summer).
The ancient Egyptians began their year with the heliacal rising of Sirius—that is,
on the day that the Dog Star Sirius (the brightest fixed star in the sky) can first be
seen in the morning after a period during which the sun’s proximity to Sirius makes
the latter invisible to the naked eye. The Pleiades (“Seven Sisters”) were used by the
Maoris and other peoples for the same purpose. Various other natural phenomena
have been used among North American tribes [3] to establish the onset of a new
year such as harvests or the rutting seasons of certain animals.

Calendars have an integral number of days in a month and an integral number
of months in a year. However, these astronomical periods—day, month, and year—
are incommensurate: their periods do not form integral multiples of one another.
The lunar month is about 29 1

2 days long, and the solar year is about 365 1
4 days

long. (Chapter 13 has precise definitions and values.) How exactly one coordinates
these time periods and the accuracy with which they approximate their astronomical
values are what differentiate one calendar from another.

Broadly speaking, solar calendars—including the Egyptian, Armenian, Persian,
Gregorian, Julian, Coptic, Ethiopic, ISO, French Revolutionary, and Bahá’í—are
based on the yearly solar cycle, whereas lunar and lunisolar calendars—such as the
Islamic, Hebrew, Hindu, Tibetan, and Chinese—take the monthly lunar cycle as their
basic building block. Most solar calendars are divided into months, but these months
are divorced from the lunar events; they are sometimes related to the movement of
the sun through the 12 signs of the zodiac, notably in the Hindu solar calendars (see
Chapter 18).

Because observational methods suffer from vagaries of weather and chance, they
have for the most part been supplanted by calculations. The simplest option is to ap-
proximate the length of the year, of the month, or of both. Originally, the Babylonian
solar calendar was based on 12 months of 30 days each, overestimating the length
of the month and underestimating the year. Such a calendar is easy to calculate,
but each month begins at a slightly later lunar phase than the previous, and the

4 The lunar cycle formed the basis for palaeolithic marking of time; see [18] and [5].
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1.1 Calendar Units and Taxonomy 7

seasons move forward slowly through the year. The ancient Egyptian calendar
achieved greater accuracy by having 12 months of 30 days plus 5 extra days. Con-
versions for this calendar are illustrated in Section 1.9. To achieve better correlation
with the motion of the moon, one can instead alternate months of 29 and 30 days.
Twelve such months, however, amount to 354 days—more than 11 days short of the
solar year.

Almost every calendar in this book, and virtually all other calendars, incorporate
a notion of “leap” year to deal with the cumulative error caused by approximating a
year by an integral number of days and months.5 Solar calendars add a day every few
years to keep up with the astronomical year. The calculations are simplest when the
leap years are evenly distributed and the numbers involved are small; for instance,
the Julian, Coptic, and Ethiopic calendars add 1 day every 4 years. Formulas for
the evenly distributed case, such as when one has a leap year every fourth or fifth
year, are derived in Section 1.12. The old Hindu solar calendar (Chapter 9) follows
such a pattern; the arithmetical Persian calendar almost does (see Chapter 14). The
Gregorian calendar, however, uses an uneven distribution of leap years but a rela-
tively easy-to-remember rule (see Chapter 2). The modified French Revolutionary
calendar (Chapter 16) included an even more accurate but uneven rule.

Most lunar calendars incorporate the notion of a year. Purely lunar calendars may
approximate the solar year with 12 lunar months (as does the Islamic), though this
is about 11 days short of the astronomical year. Lunisolar calendars invariably alter-
nate 12- and 13-month years, according either to some fixed rule (as in the Hebrew
calendar) or to an astronomically determined pattern (Chinese and modern Hindu).
The so-called Metonic cycle is based on the observation that 19 solar years contain
almost exactly 235 lunar months. This correspondence, named after the Athenian as-
tronomer Meton (who published it in 432 B.C.E.) and known much earlier to ancient
Babylonian and Chinese astronomers, makes a relatively simple and accurate fixed
solar/lunar calendar feasible. The 235 = 12 × 12 + 7 × 13 months in the cycle are
divided into 12 years of 12 months and 7 leap years of 13 months. The Metonic cycle
is used in the Hebrew calendar (Chapter 7) and for the ecclesiastical calculation of
Easter (Chapter 8).

The more precise the mean year, the larger the underlying constants must be.
For example the Metonic cycle is currently accurate to within 6.5 minutes a year,
but other lunisolar cycles are conceivable: 3 solar years are approximately 37 lunar
months with an error of 1 day per year; 8 years are approximately 99 months with
an error of 5 hours per year; 11 years are approximately 136 months with an error of
3 hours per year; and 334 years are 4131 months with an error of 7.27 seconds per
year. The old Hindu calendar is even more accurate, comprising 2,226,389 months
in a cycle of 180,000 years (see Chapter 9) to which the leap-year formulas of
Section 1.12 apply, and errs by fewer than 8 seconds per year.

The placement of leap years must make a trade-off between two conflicting re-
quirements: Small constants defining a simple leap year rule of limited accuracy
or greater accuracy at the expense of larger constants, as the examples in the last

5 See [2, pp. 677–678] for a discussion of the etymology of the term “leap.”
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8 1 Calendar Basics

paragraph suggest. The choice of the constants is aided by taking the continued frac-
tion (see [16]) of the desired ratio and choosing among the convergents (where to
stop in evaluating the fraction). In the case of lunisolar calendars, the solar year is
about 365.24244 days, while the lunar month is about 29.53059 days, so we write

365.24244

29.53059
= 12 + 1

2 + 1

1 + 1

2 + 1

1 + 1

1 + 1

18 + 1

3 + · · ·

.

By choosing further and further stopping points, we get better and better approxi-
mations to the true ratio. For example,

12 + 1

2 + 1

1

= 37

3
,

while

12 + 1

2 + 1

1 + 1

2

= 99

8
,

12 + 1

2 + 1

1 + 1

2 + 1

1

= 136

11
,

and

12 + 1

2 + 1

1 + 1

2 + 1

1 + 1

1

= 235

19
;

these are the ratios of the previous paragraph. Not all approximations must come
from continued fractions, however: 84 years are approximately 1039 lunar months
with an error of 33 minutes per year, but this is not one of the convergents.
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1.2 Fixed Day Numbers 9

Continued fractions can be used to get approximations to solar calendars too. The
number of days per solar year is about 365.242177 which we can write as

365.242177 = 365 + 1

4 + 1

7 + 1

1 + 1

2 + 1

1 + 1

5 + · · ·

.

The convergents are 1/4 (the basis of the Julian, Coptic, and Ethiopic calendars),
7/29, 8/33 (possibly used for an ancient Persian calendar), 23/95, and 31/128 (used
in our implementation of the arithmetical Persian calendar—see Chapter 14).

Table 1.1 compares the values for the mean length of the year and month as
implemented by the various solar, lunar, and lunisolar calendars in this book. The
true values change over time, as explained in Chapter 13.

1.2 Fixed Day Numbers

May those who calculate a fixed date. . . perish.6

—Morris Braude: Conscience on Trial: Three Public Religious
Disputations between Christians and Jews in the Thirteenth and

Fifteenth Centuries (1952)

Over the centuries, human beings have devised an enormous variety of methods
for specifying dates.7 None are ideal computationally, however, because all have
idiosyncrasies resulting from attempts to coordinate a convenient human labeling
with lunar and solar phenomena.

For a computer implementation, the easiest way to reckon time is simply to count
days: Fix an arbitrary starting point as day 1 and specify a date by giving a day
number relative to that starting point; a single 32-bit integer allows the representation
of more than 11.7 million years. Such a reckoning of time is, evidently, extremely
awkward for human beings and is not in common use, except among astronomers,
who use julian day numbers to specify dates (see Section 1.5), and calendarists,
who use them to facilitate conversion among calendars—see equation (9.2) for the
ancient Indian method; for a more modern example, see [27]. The day-count can

6 This is a loose translation of a famous dictum from the Babylonian Talmud Sanhedrin 97b. The
omitted words from Braude’s translation (page 112 of his book) are “for the coming of the Messiah.”
The exact Talmudic wording is “Blasted be the bones of those who calculate the end.”

7 The best reference is still Ginzel’s monumental three-volume work [7], in German. An exceptional
survey can be found in the Encyclopædia of Religion and Ethics [12, vol. III, pp. 61–141 and vol. V,
pp. 835–894]. Useful, modern summaries are [2], [4], [26], and [30]; [2] and [26] have an extensive
bibliographies. The incomparable tables of Schram [27] are the best available for converting dates by
hand, whereas those of Parise [21] are best avoided because of an embarrassingly large numbers of
errors.
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10 1 Calendar Basics

Table 1.1: Length in days of mean year on solar and lunisolar
calendars and length in days of mean lunar month on lunar and
lunisolar calendars. Year length is given in italics when the sidereal,
rather than tropical, value is intended. These may be compared with
the astronomical values given for various millennial points—in solar
days current at the indicated time. No values are given here for the
Chinese, astronomical Persian, observational Islamic, future Bahá’í,
and (original) French Revolutionary calendars because they are self-
adjusting.

Mean Year Mean Month
Calendar (or year) (days) (days)

C
al

en
dr

ic
al

Egyptian 365
Mayan (haab) 365
Julian/Coptic/Ethiopic 365.25
Hebrew 365.24682 29.530594
Easter (Orthodox) 365.25 29.530851
Islamic (Arithmetic) 29.530556
Hindu (Arya) 365.25868 29.530582
Hindu (Sūrya) 365.25876 29.530588
Tibetan (Phugpa) 365.27065 29.530587
Gregorian 365.2425
Easter (Gregorian) 365.2425 29.530587
French (Arithmetic) 365.24225
Persian (Arithmetic) 365.24220

A
st

ro
no

m
ic

al Year −1000 365.24257 29.530598
Year 0 365.24244 29.530595
Year 1000 365.24231 29.530591
Year 2000 365.24218 29.530588
Year 3000 365.24204 29.530584

be augmented by a fractional part to give a specific moment during the day; for
example, noon on a day i , an integer, would be specified by i + 0.5.

We have chosen midnight at the onset of Monday, January 1, 1 (Gregorian) as
our fixed date 1, which we abbreviate as R.D.8 1, and count forward day-by-day from
there. Of course, this is anachronistic because there was no year 1 on the Gregorian
calendar—the Gregorian calendar was devised only in the sixteenth century—thus
by January 1, 1 (Gregorian) we mean the day we get if we extrapolate backwards
from the present; this day turns out to be Monday, January 3, 1 C.E.9 (Julian); this
too is anachronistic. We call an R.D. that has a fractional part giving the time of day
a “moment.”

The date Monday, January 1, 1 (Gregorian), though arbitrarily chosen as our
starting point, has a desirable characteristic: It is early enough that almost all dates
of interest are represented by positive integers of moderate size. We have been care-
ful to write our functions in such a way that all dependencies on this choice of

8 Rata Die, or fixed date. We are indebted to Howard Jacobson for this coinage.
9 Common Era, or A.D.
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