Index

Note: Terms followed by asterisks are found on the Web at www.cambridge.org/Kundu

A-weighted scale, 479
acceleration
gravity, 46, 47
active control technology, 403, 405, 413
actuator disc, 349
advanced tactical support*
aerofoil, 58, 60, 61
camber, 60
characteristics, 65
chord, 60
comparison, 66
four-digit, 59
five-digit, 60
GAW, 61
mean line, 60, 94
section, 60
selection, 60
thickness-to-chord, 58
thickness ratio, 81
supercritical, 69
Whitcomb, 61, 69
after-burning gas turbine, 322
aileron, 78, 82, 87, 88, 176, 389, 503
airborne early warning*
Airbus, 11, 115, 122, 170, 194, 496, 500
aircraft (see also NACA)
civil mission, 104
classification, 101, 102
classification – military*
component, 113, 153, 193, 225, 226, 229, 265
component groups – mass, 236
design choices – civil, 133
evolution, 100
family variants, 114, 164, 462
force, 56, 57
load, 108, 138, 141, 225, 228
moment, 58, 62, 389, 392, 393
motion, 56, 389, 390, 393
sizing, 363, 369
specification, 35, 36, 39

speed, 148, 414
statistics – civil, 105
statistics – military*
system, 21, 502
turning, 195, 201
variant, 163, 183, 397, 399, 458
aircraft cost, 372, 461, 522, 526, 528
aircraft lighting, 510, 511
aircraft performance,
balanced field length, 426, 427
climb, 426, 427, 431, 443, 444
climb, 426, 427, 431, 443, 444
descent, 430, 434, 447
landing, 282, 381, 425, 429, 481
military mission profile, 451
payload range, 435, 448
takeoff, 373, 375, 376, 379, 421, 425, 426, 433, 437
aircraft price, 524, 529, 545, 546
aircraft structural consideration, 494
air defense, 452
air speed
calibrated, 419
equivalent, 419
indicated, 419
true, 419
air superiority, * 101, 385
air-to-air refueling*
AJT (see worked-out examples),
AJT undercarriage layout, 219
AJT and growth potential, 385
AJT performance, 452
aluminum alloy,* 490, 491
amortization,* 527, 539
angle
downwash, 72, 393
effective, 72
incidence, 67, 72, 393
anhedral, 79, 90, 128, 175, 176, 395
antenna location, 510
Index

anti-icing, 506, 513, 515
approach velocity, 379
area rule, 68, 69, 70
ARINC, 416, 510
aspect ratio
correction, 73, 283
aspiration design space, 19, 40
AST, 35
atmosphere, 46
automatic riveting, 557
aviionics, 499, 509
B2 (F), 10, 145
balanced field length, 425, 427, 428, 441
bel, 479
Bernoulli’s equation, 50
beyond visual range (BVR), 101, 104
Bijet (see worked-out examples)
blade element theory, 349, 351
Blanchard, Jean-Pierre, 3
blended wing body, 13, 88, 115, 122, 132, 486
Blériot, 5
Boeing 737 variants, 151
Boeing 787 (F), 10
Boeing Sonic Cruiser (F), 10, 98
BPR (see by-pass ratio)
boundary layer, 50, 51, 52
Brayton (Joule) cycle, 324
Breguet range equation, 437
buffet, 140
BWB (see blended wing body)
by-pass ratio (turbofan), 318
Cabin
air flow, 515
crew, 121, 246
width, 113
CAD, 16
CAS, 219, 419, 422, 458, 462
(can see worked-out examples)
canard, 90, 140, 396, 398
candidate aircraft, 114, 151
cargo container, 124, 168
sizes, 124, 169
caster angle, 197
caster length, 197
Cayley, 3
center
aerodynamic, 64, 91, 229
pressure, 64
center of gravity (CG)
position, 228, 252
range, 196, 228, 230
chord
mean aerodynamic, 79
root, 79, 178
tip, 77
chronology – fighter aircraft
circulation, 64
civil aircraft configuration, 152, 187
climb, 426
first segment, 427
second segment, 427
gradient, 375, 427, 431, 441, 452, 456
initial climb, 377, 380
close air support
cockpit layout (see flight deck)
coefficient
drag, 61, 62, 260, 262
friction, 53
lift, 61, 62
moment, 62, 394, 396
pressure, 62, 63, 348
comparison
civil versus military, 40
component, aircraft, 113, 152
compressibility effect, 80
computational fluid dynamics, 464
case studies, 471
hierarchy of CFD, 472
postprocessor, 470
preprocessor, 470
conceptual study, 24, 26, 152
concrete surface, 207
Congrave, William, 7
conservation equations
energy, 49
mass, 49
momentum, 49
container
cargo, 124
standard, 125
cost
cost fraction, 528
frame, 26
cost methodology, 532
Curtiss, 5, 192, 315
customer, 34
DBT, 15, 24, 551
d’Arlandes, Francois Laurent, 3
da Vinci, Leonardo, 2
decibel, 475
de-icing, 516
deflection under load, 206
de Rozier, Pilatre, 3
design
driver, 34, 200, 233
process, 21, 191, 557
design consideration
 technology-driven, 563
 manufacture-driven, 564
 management-driven, 551, 564
 operator-driven, 565
 design for customer, 565
 index, 566
 design for manufacture/assembly, 551
 DFM/A steps, 9, 527, 531, 554
digital manufacturing process management (MPM), 568
dihedral angle, 79, 395
direct operating cost (DOC), 544
 breakdown, 544
 formulation, 546
 fixed-cost element, 544, 545, 546
 trip-cost element, 545, 548, 550
directional divergence, 406
dive brake, 90, 286
 (see speed brake)
doors
 emergency egress, 495
types, 495
downwash angle, 72, 393, 398
drag
 base, 274
 boat tail, 274
 breakdown, 262
 canopy, 269
 dive brake/spoiler, 286
 excrescence, 277
 flat-plate equivalent, 262, 266
 form, 261
 formulation, 263
 high-lift device, 282
 induced, 73, 262, 299, 306
 intake, 274
 low speed, 282
 methodology, 265
 minimum parasitic, 265, 268, 280
 nacelle, 273
 one-engine inoperative, 288
 parasitic, 54, 261, 265, 268, 278, 299, 305
 polar, 260, 262, 286, 302, 308, 378
 profile, 54, 261, 289
 propeller, 288
 spillage, 274, 275
 supersonic, 290
total, 262
undercarriage, 286
Dumas, Santos, 5
Duralumin, 6, 223, 488
EASA, 6, 41, 476
ECS, 491, 503, 513
EFIS, 498
effective noise level, 480
efficiency
 overall, 318, 320
propulsive, 318, 319
thermal, 318, 319
ejection,* 479, 498, 521
Ekranoplane, 14
electrical subsystem, 510
electronic warfare*
elevator, 90, 140, 182, 184
emerging scenario, 478, 498, 521
emergency power supply, 508
empennage, 90, 112, 128, 158, 180
end-of-life disposal, 518
energy absorbed, 205
gas engine and fuel control subsystem, 505
 fuel storage and flow management, 505
 piston engine, 505
turbofan system, 506
gas engine performance, 359
 military gas turbofan, 370
 piston engine, 361
turbofan (civil), 365
turboprop, 363
gas engine-performance data
turbofan (civil), 420
turbofan (military)*
turboprop, 423
gas engine position, 131, 333
gas engine ratings, 359
 idle, 361
 maximum continuous, 360, 420, 423, 488
 maximum climb, 360, 420, 424
 maximum cruise, 360, 420, 424
takeoff, 360, 420, 423, 424
environmental control system (see ECS)
equation of state, 50
escape slide, 496
Euler’s equation, 49
F-22 Raptor (F), * 97
F-117 Nighthawk (F), * 7
FAA, 6, 205, 288, 430, 476, 478, 481, 495
FADEC, 316, 415, 507
FAR, 144, 417, 418, 425, 480, 495
factor of safety, 143, 425, 451
family variants, 112, 114, 164, 218
fence, 89
fin, 32, 129, 189
fixtures, 494, 551
flap, 67, 176, 203, 272, 282
flight deck, 497
 layout (civil), 500
 layout (military), 499
flutter, 140
flight, 206, 210
flyaway tooling, 552, 556
fly by light, 413
fly by wire, 413
force
 aircraft, 56, 396
 fps, 17, 31
fuel fraction, 108
<table>
<thead>
<tr>
<th>Index</th>
<th>603</th>
</tr>
</thead>
<tbody>
<tr>
<td>fuel load, 108, 229, 247, 373</td>
<td></td>
</tr>
<tr>
<td>fuselage, 93</td>
<td></td>
</tr>
<tr>
<td>aft-closure angle, 95</td>
<td></td>
</tr>
<tr>
<td>axis, 93, 156, 252, 336</td>
<td></td>
</tr>
<tr>
<td>closure, 94</td>
<td></td>
</tr>
<tr>
<td>configure, 165</td>
<td></td>
</tr>
<tr>
<td>cross-section, 94, 97, 116, 117, 161, 164</td>
<td></td>
</tr>
<tr>
<td>fineness ratio, 94</td>
<td></td>
</tr>
<tr>
<td>front-closure angle, 94</td>
<td></td>
</tr>
<tr>
<td>height, 95</td>
<td></td>
</tr>
<tr>
<td>layout (civil), 160</td>
<td></td>
</tr>
<tr>
<td>length, 94, 114, 117, 119, 154, 164</td>
<td></td>
</tr>
<tr>
<td>multiboom, 126</td>
<td></td>
</tr>
<tr>
<td>nose cone, 32, 94, 117, 118, 266, 268</td>
<td></td>
</tr>
<tr>
<td>reference line, 93, 156</td>
<td></td>
</tr>
<tr>
<td>twin boom, 129, 133, 159</td>
<td></td>
</tr>
<tr>
<td>upsweep angle, 94, 120</td>
<td></td>
</tr>
<tr>
<td>width, 95, 114</td>
<td></td>
</tr>
<tr>
<td>zero-reference plane, 90</td>
<td></td>
</tr>
<tr>
<td>galley, 123, 124</td>
<td></td>
</tr>
<tr>
<td>gas turbine station number, 319, 321, 325, 326, 331</td>
<td></td>
</tr>
<tr>
<td>gauges, 499, 555</td>
<td></td>
</tr>
<tr>
<td>gaugeless tooling, 557</td>
<td></td>
</tr>
<tr>
<td>geopotential altitude, 48</td>
<td></td>
</tr>
<tr>
<td>glove, 77, 80, 127, 157</td>
<td></td>
</tr>
<tr>
<td>golf ball, 54</td>
<td></td>
</tr>
<tr>
<td>grass turf, 194, 206, 212</td>
<td></td>
</tr>
<tr>
<td>ground attack aircraft*</td>
<td></td>
</tr>
<tr>
<td>ground-effect vehicle, 13</td>
<td></td>
</tr>
<tr>
<td>ground loop, 194, 201</td>
<td></td>
</tr>
<tr>
<td>gust envelope, 147</td>
<td></td>
</tr>
<tr>
<td>hands on throttle and stick (HOTAS), 502</td>
<td></td>
</tr>
<tr>
<td>hard tut, 212</td>
<td></td>
</tr>
<tr>
<td>head-up display, 500</td>
<td></td>
</tr>
<tr>
<td>helmet-mounted display, 501</td>
<td></td>
</tr>
<tr>
<td>Henson, Samuel, 3</td>
<td></td>
</tr>
<tr>
<td>high-lift device, 32, 67, 68, 88, 282, 286</td>
<td></td>
</tr>
<tr>
<td>horizontal-tail, 90, 130, 181</td>
<td></td>
</tr>
<tr>
<td>hydraulic subsystem, 511</td>
<td></td>
</tr>
<tr>
<td>hydrostatic equations, 46, 47</td>
<td></td>
</tr>
<tr>
<td>hypersonic aircraft, 12, 101</td>
<td></td>
</tr>
<tr>
<td>INCOSE, 21</td>
<td></td>
</tr>
<tr>
<td>induced drag, 71, 73, 83, 262, 299</td>
<td></td>
</tr>
<tr>
<td>inline assembly, 557</td>
<td></td>
</tr>
<tr>
<td>intake, 96, 338</td>
<td></td>
</tr>
<tr>
<td>design (civil), 338</td>
<td></td>
</tr>
<tr>
<td>design (military)*</td>
<td></td>
</tr>
<tr>
<td>diffuser, 339</td>
<td></td>
</tr>
<tr>
<td>highlight diameter, 339</td>
<td></td>
</tr>
<tr>
<td>position (nacelle), 98, 131</td>
<td></td>
</tr>
<tr>
<td>supersonic*</td>
<td></td>
</tr>
<tr>
<td>throat, 339</td>
<td></td>
</tr>
<tr>
<td>(see also nacelle)*</td>
<td></td>
</tr>
<tr>
<td>installation (military), 348</td>
<td></td>
</tr>
<tr>
<td>engine, 331</td>
<td></td>
</tr>
<tr>
<td>turboprop, 335</td>
<td></td>
</tr>
<tr>
<td>interdiction*</td>
<td></td>
</tr>
<tr>
<td>IPPD, 9, 22, 494, 527, 531, 544</td>
<td></td>
</tr>
<tr>
<td>isentropic relations, 49, 325</td>
<td></td>
</tr>
<tr>
<td>ISA, 46</td>
<td></td>
</tr>
<tr>
<td>JAA, 6</td>
<td></td>
</tr>
<tr>
<td>Jatho, Karl, 4</td>
<td></td>
</tr>
<tr>
<td>jigs, 494, 555, 556</td>
<td></td>
</tr>
<tr>
<td>jigless assembly, 552, 556</td>
<td></td>
</tr>
<tr>
<td>joined wing aircraft, 13, 14</td>
<td></td>
</tr>
<tr>
<td>Johnson, Clarence, 7</td>
<td></td>
</tr>
<tr>
<td>Joule (Brayton), cycle, 325</td>
<td></td>
</tr>
<tr>
<td>JUCAS, 14</td>
<td></td>
</tr>
<tr>
<td>laminar, 50, 52, 267, 331</td>
<td></td>
</tr>
<tr>
<td>Langley, Samuel P., 4</td>
<td></td>
</tr>
<tr>
<td>LCN, 207, 208</td>
<td></td>
</tr>
<tr>
<td>life cycle cost (LCC), 530</td>
<td></td>
</tr>
<tr>
<td>lift, 57</td>
<td></td>
</tr>
<tr>
<td>curve slope, 74</td>
<td></td>
</tr>
<tr>
<td>dumper, 32, 88</td>
<td></td>
</tr>
<tr>
<td>Lilienthal, Gustav and Otto, 3</td>
<td></td>
</tr>
<tr>
<td>limit</td>
<td></td>
</tr>
<tr>
<td>load, 143</td>
<td></td>
</tr>
<tr>
<td>low speed, 146</td>
<td></td>
</tr>
<tr>
<td>high speed, 145</td>
<td></td>
</tr>
<tr>
<td>speed, 143</td>
<td></td>
</tr>
<tr>
<td>lip contraction ratio, 340</td>
<td></td>
</tr>
<tr>
<td>lip suction, 270</td>
<td></td>
</tr>
<tr>
<td>load factor, 142, 147, 205, 227, 238</td>
<td></td>
</tr>
<tr>
<td>factor, maximum limit, 154</td>
<td></td>
</tr>
<tr>
<td>limit, 144</td>
<td></td>
</tr>
<tr>
<td>negative, 146</td>
<td></td>
</tr>
<tr>
<td>positive, 146</td>
<td></td>
</tr>
<tr>
<td>ultimate, 143, 491</td>
<td></td>
</tr>
<tr>
<td>load classification group, 207</td>
<td></td>
</tr>
<tr>
<td>load classification number (see LCN)</td>
<td></td>
</tr>
<tr>
<td>load on wheel, 203</td>
<td></td>
</tr>
<tr>
<td>low observable*</td>
<td></td>
</tr>
<tr>
<td>macadam surface, 207</td>
<td></td>
</tr>
<tr>
<td>Mach</td>
<td></td>
</tr>
<tr>
<td>critical, 81, 381</td>
<td></td>
</tr>
<tr>
<td>number, 49, 50</td>
<td></td>
</tr>
<tr>
<td>main wheel failed, 200</td>
<td></td>
</tr>
<tr>
<td>maneuver</td>
<td></td>
</tr>
<tr>
<td>pitch, 144</td>
<td></td>
</tr>
<tr>
<td>roll, 141</td>
<td></td>
</tr>
<tr>
<td>yaw, 141</td>
<td></td>
</tr>
<tr>
<td>manufacturer’s empty mass, 106, 228</td>
<td></td>
</tr>
<tr>
<td>manufacturing practices, 568</td>
<td></td>
</tr>
<tr>
<td>maritime patrol*</td>
<td></td>
</tr>
<tr>
<td>market, 33</td>
<td></td>
</tr>
<tr>
<td>military, 39</td>
<td></td>
</tr>
<tr>
<td>survey, 33</td>
<td></td>
</tr>
<tr>
<td>mass estimation, 233</td>
<td></td>
</tr>
<tr>
<td>mass flow ratio, 349</td>
<td></td>
</tr>
<tr>
<td>mass (weight) fraction (civil), 235, 237</td>
<td></td>
</tr>
<tr>
<td>mass (weight) fraction (military)*</td>
<td></td>
</tr>
</tbody>
</table>
material
aircraft, 478
composite, 489
properties, 489
selection, 491
stress–strain relationship, 490
maximum takeoff mass (MTOM), 106, 220, 228
MDA, 24, 29
MDO, 17, 24, 385
mean aerodynamic chord, 79
military
aircraft component*, mission*, mission profile, 451
statistics*
transport aircraft*
modular concept, 31, 156, 315, 510
Montgolfier, Joseph and Etienne, 3
motion, aircraft, 56, 503
multifunctional display (MFD), 498, 510
multirole fighter*
NACA
four-digit aerofoil, 59
five-digit aerofoil, 60
six-digit aerofoil, 60
nacelle/intake, 96
external diameter, 339
fuselage-mounted, 130
layout, 184
long-duct, 322, 327, 333
overwing, 130, 131, 332, 411
position, 128, 184, 332, 334
short-duct, 333, 337
underwing, 130, 332
wing tip, 132
nacelle cost driver, 533
Newton, Isaac, 3
Night Hawk, F117, 11, 291, 415, 504
noise, 479
propeller, 486
radiation, 484
source, 483
standards, 493
suppression, 335, 485
nozzle, 273, 337, 338, 349, 343
OEM fraction, 107, 234
operating cost (OC), 529
operational empty mass (OEM), 106, 228
Oswald’s efficiency factor, 72, 77, 261
oxygen supply, 515
pavement (see runway)
payload range, 29, 104, 435, 448
perceived noise level, 480
phases of project, 23, 26
phugoid, 404
Piaggio, 92
pilot seat dimension, 122
pilot vision, 114
piston engine, 101, 243, 289, 317, 323, 362, 505
piston engine – supercharged, 324
Pline, Joseph, 3
pneumatic subsystem, 503, 513
potato curve, 229
power control unit, 504
propeller, 345, 349, 355, 358
activity factor, 348, 353
advance ratio, 349
blade element theory, 351
blade-pitch angle, 346, 348
constant pitch, 347, 349
definition, 348
design Cl?, 355
momentum theory, 349
performance, 355, 358
power, 348, 356
power coefficient, 348, 353
type, 346
variable pitch, 346
radar cross-section*
rain removal, 516, 517
rake angle, 196, 197
ram air turbine (RAT), 508
Raptor F22*
RD&D, 34
reconnaissance*
reliability and maintainability (R&M), 524, 561
remotely piloted vehicles*
return to base*
Reynolds number, 51, 266
critical, 52
RFP, 34
RPM, 10
rudder, 32, 90, 97, 389
runway pavement classification, 206
runway types, 206
sea-level static thrust, 111, 420
Sears–Haack body, 69
seat
mile cost, 105
pitch, 123, 162
posture, 122
width, 123
seating
two-abreast, 163
three-abreast, 164
four-abreast, 165
five-abreast, 166
six-abreast, 167
seven-abreast, 168
eight-abreast, 168
seating (cont.)
 nine/ten-abreast, 169
ten-abreast, 170
separation, 52, 54, 55
service
galley, 114, 123	
trolley, 123
location, 520
shock absorber, 202
shop-floor interface, 572
short period, 330, 404
silent aircraft, 486
simple straight-through	
turbojet, 320, 325
sizing theory, 373
 initial cruise, 378
 initial rate of climb, 377
 landing, 378
 takeoff, 374
Six Sigma
concept, 558
distribution, 558
skin friction coefficient, 52, 54, 261, 265, 295, 309
slat, 32, 67, 88, 241, 282, 427
sonic cruiser, 10
sound pressure level, 479
Space Ship One, 7, 13
 specific range, 432, 446, 459
 specific thrust, 317, 328, 366
speed
 brake application, 203, 426
decision, 426, 428
 minimum control, 426
 minimum unstuck, 426
 rotation, 420
speed brake (see dive brake)
 spinning, 408
spiral, 408
spoiler, 32, 88, 96, 97, 241, 286
square-cube law, 84
stabilator, 505
stability
design considerations, 389, 413
 directional, 189, 393
dynamic, 389, 391
lateral, 390, 393, 406
 pitch plane, 140, 392, 396
static, 389, 391, 396, 409
theory, 412
stability augmented system, 413
stabilizer, 90, 184, 508
STAGNAG 3838, 509
stall, 55, 65, 82
type, 65
stealth considerations
 heat signature*
 radar signature*
stowage space, 199
strategic bomber*
stress–strain relationship, 490
Stringfellow, John, 4
subsystem, 503
supersonic transport aircraft, 12
survivability (military aircraft)
 ejection seat*
 emergency escape*
system
 aircraft, 21, 503
T-s diagram, 325, 329
tail
 asymmetric, 128
canard, 140, 396, 412
circular, 129
H-tail, 90, 128, 181
T-tail (high tee), 33, 78, 90, 128, 181
 high, 128
 low, 128
 mid, 128
twin boom, 129
 multiboom, 128
 position, 128
 single boom, 128
statistics, 112, 402
V-tail, 90, 114, 128, 181, 189, 396, 402
Y-tail, 129
tail volume coefficient, 399
takeoff, 379, 425, 428
 thrust loading, 110, 111, 373, 381, 382
 thrust reverser, 332, 341
effect on stopping distance, 429
 efflux pattern, 342
 military*
types, 343
 thrust vectoring*
time frame, 27
Tippu, Sultan, 7
Tire, 209
 braking friction, 212
data (see Appendix E*)
 designation, 211
 extra-high pressure, 210
 friction with ground, 212
 low pressure, 210
 new design, 210
 pressure, 210
 rolling friction, 212
 sizing, 213, 215
types, 210
tolerance relaxation, 559
tools, 555
TQM, 15
transonic,
effect, 68, 80, 281
trim drag, 65, 278
trolley, 124
true air speed, 419
turbofan engine, 321, 327, 365
turbojet engine, 325
turboprop engine, 323, 330, 360, 363, 423
turbulent, 56, 62, 306
turning of aircraft, 201
UAV* undercarriage, 194
CG position, 195
data, 221
deflection, 199
energy absorbed, 202
layout, 213
layout methodology, 213
layout/nomenclature/definitions, 195
nose wheel type, 196
retraction, 197
stowage, 197
strut, 195
tail-dragging type, 196
turnover, 195
type, 195, 197
unit load device (ULD), 125
unprepared surface, 206
utility system, 517
V-n diagram, 145
verified design space, 19, 40
vertical tail (see tail – V-tail)
voice-operated control (VOC)*
von Braun, W., 7
von Ohain, Hans, 6
vortex generator, 89
lift, 87
vortilon*

water and waste system, 517, 519
weight (see also mass)
data, 251
driver, 227
estimation graphical, 234
semi-empirical method, 238
Weisskopf, Gustav, 4
wetted area, 85
wheel arrangement, 202
load, 202
shock absorber, 202
Whitcomb aerofoil, 61, 174
White Knight, 13
Whitte, Frank, 6
wing
anhedral, 79
configuration, 78
dihedral, 79
generic* group, 114, 126
high, 79, 120, 131
layout, 174
loading, 84, 109, 113, 180, 373
low, 78, 120, 131
reference area, 76, 176, 279
root chord, 77, 79
shape, 128
stall, 82
sweep angle, 81, 82, 176
taper ratio, 77
three-surface*
tip chord, 77
twist, 78
two-surface*
wing design
planform shape, 86, 126
position, 133, 174
wing planform
area, 76
cranked, 127
elliptical, 127
generic, 136
rectangular, 127
tapered, 127
wing reference area, 76
winglet, 88
worked-out example
AJT
baseline, 294
(CAS), 207
CG location, 274
discussion, 475
drag evaluation, 314
fuselage layout, 204
growth potential, 385
performance, 452
sensitivity study, 401
sizing, 398
undercarriage layout, 219
variant (CAS), 399
wing, 204
Bizjet
baseline aircraft, 188
CG location, 254
design for customer, 567
discussion, 461
DOC estimation, 548
drag evaluation, 292
empennage layout, 182
finalized configuration, 383
fuselage layout, 171
nacelle design, 185
performance, 437
sizing analysis, 379, 384
undercarriage layout, 215
variants, 171, 379
weight and CG analysis, 226, 254
weight estimation, 260–263
wing layout, 178
costing of nacelle nose cowl, 536
design for customer, 565, 567
propeller performance, 358
supersonic drag evaluation, 299
turboprop performance, 636
Weight brothers (Grville and Wilber), 2, 4

Yeager, Chuck, 6
Yehudi, 77
yield point, 490
Young's Modulus, 490