#### AIRCRAFT DESIGN

Aircraft Design explores the conceptual phase of a fixed-wing aircraft design project. Designing an aircraft is a complex, multifaceted process that embraces many technical challenges in a multidisciplinary environment. By definition, the topic requires intelligent use of aerodynamic knowledge to configure aircraft geometry suited specifically to a customer's demands. It involves configuring aircraft shape, estimating its weight and drag, and computing the available thrust from the matched engine. The methodology includes formal sizing of the aircraft, engine matching, and substantiating performance to comply with a customer's demands and government regulatory standards. Associated topics include safety issues; environmental issues; material choice; structural layout; and understanding the flight deck, avionics, and systems (for both civil and military aircraft). Cost estimation and manufacturing considerations also are discussed. The chapters are arranged to optimize understanding of industrial approaches to aircraft-design methodology. Example exercises based on the author's industrial experience with typical aircraft design are included. Additional sections specific to military aircraft highlighted with an asterisk are available on the Web at www.cambridge.org/Kundu

Ajoy Kumar Kundu was educated in India (Jadavpur University), the United Kingdom (Cranfield University and Queen's University Belfast), and the United States (University of Michigan and Stanford University). His experience spans nearly thirty years in the aircraft industry and fifteen years in academia. In India, he was Professor at the Indian Institute of Technology, Kharagpur; and Chief Aircraft Designer at Hindustan Aeronautics Ltd., Bangalore. In North America, he was Research Engineer for the Boeing Aircraft Company, Renton, and Intermediate Engineer for Canadair Ltd., Montreal. He began his aeronautical career in the United Kingdom with Short Brothers and Harland Ltd., retiring from Bombardier Aerospace-Shorts, Belfast, as Chief Assistant Aerodynamicist. He is currently associated with Queen's University Belfast. He held British, Indian, and Canadian private pilot licenses. He is a Fellow of the Royal Aeronautical Society and the Institute of Mechanical Engineers and an Associate Fellow of the American Institute of Aeronautics and Astronautics.

#### **Cambridge Aerospace Series**

Editors Wei Shyy and Michael J. Rycroft

- 1. J. M. Rolfe and K. J. Staples (eds.): Flight Simulation
- 2. P. Berlin: The Geostationary Applications Satellite
- 3. M. J. T. Smith: Aircraft Noise
- 4. N. X. Vinh: Flight Mechanics of High-Performance Aircraft
- 5. W. A. Mair and D. L. Birdsall: Aircraft Performance
- 6. M. J. Abzug and E. E. Larrabee: Airplane Stability and Control
- 7. M. J. Sidi: Spacecraft Dynamics and Control
- 8. J. D. Anderson: A History of Aerodynamics
- 9. A. M. Cruise, J. A. Bowles, C. V. Goodall, and T. J. Patrick: *Principles of Space Instrument Design*
- 10. G. A. Khoury and J. D. Gillett (eds.): Airship Technology
- 11. J. Fielding: Introduction to Aircraft Design
- 12. J. G. Leishman: Principles of Helicopter Aerodynamics, 2nd Edition
- 13. J. Katz and A. Plotkin: Low Speed Aerodynamics, 2nd Edition
- 14. M. J. Abzug and E. E. Larrabee: *Airplane Stability and Control: A History of the Technologies that Made Aviation Possible, 2nd Edition*
- 15. D. H. Hodges and G. A. Pierce: Introduction to Structural Dynamics and Aeroelasticity
- 16. W. Fehse: Automatic Rendezvous and Docking of Spacecraft
- 17. R. D. Flack: Fundamentals of Jet Propulsion with Applications
- 18. E. A. Baskharone: Principles of Turbomachinery in Air-Breathing Engines
- 19. D. D. Knight: Numerical Methods for High-Speed Flows
- 20. C. Wagner, T. Hüttl, and P. Sagaut: Large-Eddy Simulation for Acoustics
- 21. D. Joseph, T. Funada, and J. Wang: Potential Flows of Viscous and Viscoelastic Fluids
- 22. W. Shyy, Y. Lian, H. Liu, J. Tang, and D. Viieru: *Aerodynamics of Low Reynolds Number Flyers*
- 23. J. H. Saleh: Analyses for Durability and System Design Lifetime
- 24. B. K. Donaldson: Analysis of Aircraft Structures, Second Edition
- 25. C. Segal: The Scramjet Engine: Processes and Characteristics
- 26. J. Doyle: Guided Explorations of the Mechanics of Solids and Structures
- 27. A. Kundu: Aircraft Design
- 28. M. Friswell, J. Penny, S. Garvey, and A. Lees: Fundamentals of Rotor Dynamics
- 29. B. Conway (ed): Spacecraft Trajectory Optimization

# Aircraft Design

Ajoy Kumar Kundu

Queen's University Belfast



> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org Information on this title: www.cambridge.org/9780521885164

© Ajoy Kumar Kundu 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data

Kundu, Ajoy Kumar, 1932–
Aircraft design / Ajoy Kumar Kundu.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-521-88516-4 (hardback)
1. Airplanes – Design and construction. I. Title.
TL671.2.K76 2010
629.133'34 – dc22 2009027795

ISBN 978-0-521-88516-4 Hardback

Additional resources for this publication at www.cambridge.org/Kundu

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

# Contents

| Lisi | t of S                                                | Symbols and Abbreviations                        | <i>page</i> xxi |  |  |  |
|------|-------------------------------------------------------|--------------------------------------------------|-----------------|--|--|--|
| Pre  | face                                                  |                                                  | xxxi            |  |  |  |
| Rot  | ıd M                                                  | lap of the Book                                  | XXXV            |  |  |  |
|      | XXXV                                                  |                                                  |                 |  |  |  |
|      | The Arrangement<br>Suggested Route for the Coursework |                                                  |                 |  |  |  |
|      | Sug                                                   | xli                                              |                 |  |  |  |
|      | Use                                                   | e of Semi-empirical Relations                    | xlii            |  |  |  |
| 1    | Int                                                   | roduction                                        | 1               |  |  |  |
|      | 1.1                                                   | Overview                                         | 1               |  |  |  |
|      |                                                       | 1.1.1 What Is to Be Learned?                     | 1               |  |  |  |
|      |                                                       | 1.1.2 Coursework Content                         | 1               |  |  |  |
|      | 1.2                                                   | Brief Historical Background                      | 2               |  |  |  |
|      | 1.3                                                   | Current Aircraft Design Status                   | 7               |  |  |  |
|      |                                                       | 1.3.1 Forces and Drivers                         | 8               |  |  |  |
|      |                                                       | 1.3.2 Current Civil Aircraft Design Trends       | 9               |  |  |  |
|      |                                                       | 1.3.3 Current Military Aircraft Design Trends*   | 11              |  |  |  |
|      | 1.4                                                   | Future Trends                                    | 11              |  |  |  |
|      |                                                       | 1.4.1 Civil Aircraft Design: Future Trends       | 12              |  |  |  |
|      |                                                       | 1.4.2 Military Aircraft Design: Future Trends*   | 14              |  |  |  |
|      | 1.5                                                   | Learning Process                                 | 15              |  |  |  |
|      | 1.6                                                   | Units and Dimensions                             | 17              |  |  |  |
|      | 1.7                                                   | Cost Implications                                | 17              |  |  |  |
| 2    | Me                                                    | thodology to Aircraft Design, Market Survey, and |                 |  |  |  |
|      | Air                                                   | worthiness                                       | 19              |  |  |  |
|      | 2.1                                                   | Overview                                         | 19              |  |  |  |
|      |                                                       | 2.1.1 What Is to Be Learned?                     | 20              |  |  |  |
|      |                                                       | 2.1.2 Coursework Content                         | 20              |  |  |  |
|      | 2.2                                                   | Introduction                                     | 20              |  |  |  |
|      | 2.3                                                   | Typical Design Process                           | 21              |  |  |  |

\* These sections are found on the Cambridge University Web site at www.cambridge.org/Kundu

v

vi

Cambridge University Press 978-0-521-88516-4 - Aircraft Design Ajoy Kumar Kundu Frontmatter <u>More information</u>

|   |                                                                                                                       | 2.3.1 Four Phases of Aircraft Design                                                                                                                                                                                                                                                                                                                                                              | 23                                                                         |
|---|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|   |                                                                                                                       | 2.3.2 Typical Resources Deployment                                                                                                                                                                                                                                                                                                                                                                | 25                                                                         |
|   |                                                                                                                       | 2.3.3 Typical Cost Frame                                                                                                                                                                                                                                                                                                                                                                          | 26                                                                         |
|   |                                                                                                                       | 2.3.4 Typical Time Frame                                                                                                                                                                                                                                                                                                                                                                          | 26                                                                         |
|   | 2.4                                                                                                                   | Typical Task Breakdown in Each Phase                                                                                                                                                                                                                                                                                                                                                              | 26                                                                         |
|   |                                                                                                                       | 2.4.1 Functional Tasks during the Conceptual Study                                                                                                                                                                                                                                                                                                                                                |                                                                            |
|   |                                                                                                                       | (Phase 1: Civil Aircraft)                                                                                                                                                                                                                                                                                                                                                                         | 28                                                                         |
|   |                                                                                                                       | 2.4.2 Project Activities for Small Aircraft Design                                                                                                                                                                                                                                                                                                                                                | 29                                                                         |
|   | 2.5                                                                                                                   | Aircraft Familiarization                                                                                                                                                                                                                                                                                                                                                                          | 31                                                                         |
|   |                                                                                                                       | 2.5.1 Civil Aircraft and Its Component Configurations                                                                                                                                                                                                                                                                                                                                             | 31                                                                         |
|   |                                                                                                                       | 2.5.2 Military Aircraft and Its Component Configurations*                                                                                                                                                                                                                                                                                                                                         | 33                                                                         |
|   | 2.6                                                                                                                   | Market Survey                                                                                                                                                                                                                                                                                                                                                                                     | 33                                                                         |
|   | 2.7                                                                                                                   | Civil Aircraft Market                                                                                                                                                                                                                                                                                                                                                                             | 35                                                                         |
|   |                                                                                                                       | 2.7.1 Aircraft Specifications and Requirements for Three Civil                                                                                                                                                                                                                                                                                                                                    |                                                                            |
|   |                                                                                                                       | Aircraft Case Studies                                                                                                                                                                                                                                                                                                                                                                             | 36                                                                         |
|   | 2.8                                                                                                                   | Military Market*                                                                                                                                                                                                                                                                                                                                                                                  | 39                                                                         |
|   |                                                                                                                       | 2.8.1 Aircraft Specifications/Requirements for Military Aircraft                                                                                                                                                                                                                                                                                                                                  |                                                                            |
|   |                                                                                                                       | Case Studies*                                                                                                                                                                                                                                                                                                                                                                                     | 39                                                                         |
|   | 2.9                                                                                                                   | Comparison between Civil and Military Aircraft Design                                                                                                                                                                                                                                                                                                                                             |                                                                            |
|   |                                                                                                                       | Requirements                                                                                                                                                                                                                                                                                                                                                                                      | 40                                                                         |
|   |                                                                                                                       | Airworthiness Requirements                                                                                                                                                                                                                                                                                                                                                                        | 41                                                                         |
|   | 2.11                                                                                                                  | Coursework Procedures                                                                                                                                                                                                                                                                                                                                                                             | 42                                                                         |
| 3 | Aer                                                                                                                   | odynamic Considerations                                                                                                                                                                                                                                                                                                                                                                           | 43                                                                         |
|   | 3.1                                                                                                                   | Overview                                                                                                                                                                                                                                                                                                                                                                                          | 43                                                                         |
|   |                                                                                                                       | 3.1.1 What Is to Be Learned?                                                                                                                                                                                                                                                                                                                                                                      | 43                                                                         |
|   |                                                                                                                       | 3.1.2 Coursework Content                                                                                                                                                                                                                                                                                                                                                                          | 44                                                                         |
|   | 3.2                                                                                                                   | Introduction                                                                                                                                                                                                                                                                                                                                                                                      | 44                                                                         |
|   | 3.3                                                                                                                   | Atmosphere                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                         |
|   | 24                                                                                                                    | Atmosphere                                                                                                                                                                                                                                                                                                                                                                                        | 46                                                                         |
|   | 3.4                                                                                                                   | Fundamental Equations                                                                                                                                                                                                                                                                                                                                                                             | 46<br>48                                                                   |
|   |                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                            |
|   |                                                                                                                       | Fundamental Equations                                                                                                                                                                                                                                                                                                                                                                             | 48                                                                         |
|   | 3.5                                                                                                                   | Fundamental Equations<br>Airflow Behavior: Laminar and Turbulent                                                                                                                                                                                                                                                                                                                                  | 48<br>50                                                                   |
|   | 3.5                                                                                                                   | Fundamental Equations<br>Airflow Behavior: Laminar and Turbulent<br>3.5.1 Flow Past Aerofoil                                                                                                                                                                                                                                                                                                      | 48<br>50<br>55<br>56<br>56                                                 |
|   | 3.5                                                                                                                   | Fundamental Equations<br>Airflow Behavior: Laminar and Turbulent<br>3.5.1 Flow Past Aerofoil<br>Aircraft Motion and Forces                                                                                                                                                                                                                                                                        | 48<br>50<br>55<br>56                                                       |
|   | 3.5                                                                                                                   | Fundamental Equations<br>Airflow Behavior: Laminar and Turbulent<br>3.5.1 Flow Past Aerofoil<br>Aircraft Motion and Forces<br>3.6.1 Motion                                                                                                                                                                                                                                                        | 48<br>50<br>55<br>56<br>56                                                 |
|   | 3.5<br>3.6                                                                                                            | Fundamental Equations<br>Airflow Behavior: Laminar and Turbulent<br>3.5.1 Flow Past Aerofoil<br>Aircraft Motion and Forces<br>3.6.1 Motion<br>3.6.2 Forces                                                                                                                                                                                                                                        | 48<br>50<br>55<br>56<br>56<br>57                                           |
|   | <ul><li>3.5</li><li>3.6</li><li>3.7</li><li>3.8</li></ul>                                                             | <ul> <li>Fundamental Equations</li> <li>Airflow Behavior: Laminar and Turbulent</li> <li>3.5.1 Flow Past Aerofoil</li> <li>Aircraft Motion and Forces</li> <li>3.6.1 Motion</li> <li>3.6.2 Forces</li> <li>Aerofoil</li> <li>3.7.1 Groupings of Aerofoils and Their Properties</li> <li>Definitions of Aerodynamic Parameters</li> </ul>                                                          | 48<br>50<br>55<br>56<br>56<br>57<br>58                                     |
|   | <ul> <li>3.5</li> <li>3.6</li> <li>3.7</li> <li>3.8</li> <li>3.9</li> </ul>                                           | Fundamental Equations<br>Airflow Behavior: Laminar and Turbulent<br>3.5.1 Flow Past Aerofoil<br>Aircraft Motion and Forces<br>3.6.1 Motion<br>3.6.2 Forces<br>Aerofoil<br>3.7.1 Groupings of Aerofoils and Their Properties<br>Definitions of Aerodynamic Parameters<br>Generation of Lift                                                                                                        | 48<br>50<br>55<br>56<br>56<br>57<br>58<br>59<br>62<br>63                   |
|   | <ul> <li>3.5</li> <li>3.6</li> <li>3.7</li> <li>3.8</li> <li>3.9</li> </ul>                                           | Fundamental Equations<br>Airflow Behavior: Laminar and Turbulent<br>3.5.1 Flow Past Aerofoil<br>Aircraft Motion and Forces<br>3.6.1 Motion<br>3.6.2 Forces<br>Aerofoil<br>3.7.1 Groupings of Aerofoils and Their Properties<br>Definitions of Aerodynamic Parameters<br>Generation of Lift<br>Types of Stall                                                                                      | 48<br>50<br>55<br>56<br>56<br>57<br>58<br>59<br>62<br>63<br>65             |
|   | <ul> <li>3.5</li> <li>3.6</li> <li>3.7</li> <li>3.8</li> <li>3.9</li> </ul>                                           | Fundamental Equations<br>Airflow Behavior: Laminar and Turbulent<br>3.5.1 Flow Past Aerofoil<br>Aircraft Motion and Forces<br>3.6.1 Motion<br>3.6.2 Forces<br>Aerofoil<br>3.7.1 Groupings of Aerofoils and Their Properties<br>Definitions of Aerodynamic Parameters<br>Generation of Lift<br>Types of Stall<br>3.10.1 Gradual Stall                                                              | 48<br>50<br>55<br>56<br>56<br>57<br>58<br>59<br>62<br>63<br>65<br>66       |
|   | <ul> <li>3.5</li> <li>3.6</li> <li>3.7</li> <li>3.8</li> <li>3.9</li> <li>3.10</li> </ul>                             | Fundamental Equations<br>Airflow Behavior: Laminar and Turbulent<br>3.5.1 Flow Past Aerofoil<br>Aircraft Motion and Forces<br>3.6.1 Motion<br>3.6.2 Forces<br>Aerofoil<br>3.7.1 Groupings of Aerofoils and Their Properties<br>Definitions of Aerodynamic Parameters<br>Generation of Lift<br>Types of Stall<br>3.10.1 Gradual Stall<br>3.10.2 Abrupt Stall                                       | 48<br>50<br>55<br>56<br>57<br>58<br>59<br>62<br>63<br>65<br>66<br>66       |
|   | <ul> <li>3.5</li> <li>3.6</li> <li>3.7</li> <li>3.8</li> <li>3.9</li> <li>3.10</li> <li>3.11</li> </ul>               | Fundamental Equations<br>Airflow Behavior: Laminar and Turbulent<br>3.5.1 Flow Past Aerofoil<br>Aircraft Motion and Forces<br>3.6.1 Motion<br>3.6.2 Forces<br>Aerofoil<br>3.7.1 Groupings of Aerofoils and Their Properties<br>Definitions of Aerodynamic Parameters<br>Generation of Lift<br>Types of Stall<br>3.10.1 Gradual Stall<br>3.10.2 Abrupt Stall<br>Comparison of Three NACA Aerofoils | 48<br>50<br>55<br>56<br>57<br>58<br>59<br>62<br>63<br>65<br>66<br>66<br>66 |
|   | <ul> <li>3.5</li> <li>3.6</li> <li>3.7</li> <li>3.8</li> <li>3.9</li> <li>3.10</li> <li>3.11</li> <li>3.12</li> </ul> | Fundamental Equations<br>Airflow Behavior: Laminar and Turbulent<br>3.5.1 Flow Past Aerofoil<br>Aircraft Motion and Forces<br>3.6.1 Motion<br>3.6.2 Forces<br>Aerofoil<br>3.7.1 Groupings of Aerofoils and Their Properties<br>Definitions of Aerodynamic Parameters<br>Generation of Lift<br>Types of Stall<br>3.10.1 Gradual Stall<br>3.10.2 Abrupt Stall                                       | 48<br>50<br>55<br>56<br>57<br>58<br>59<br>62<br>63<br>65<br>66<br>66       |

 $^{\ast}~$  These sections are found on the Cambridge University Web site at www.cambridge.org/Kundu

Contents

#### Contents

| 1/ | 1 | I. |
|----|---|----|
| v  | I | ı  |

| 3.14 | Wing Aerodynamics                                                | 70 |
|------|------------------------------------------------------------------|----|
|      | 3.14.1 Induced Drag and Total Aircraft Drag                      | 73 |
| 3.15 | Aspect Ratio Correction of 2D Aerofoil Characteristics for 3D    |    |
|      | Finite Wing                                                      | 73 |
| 3.16 | Wing Definitions                                                 | 76 |
|      | 3.16.1 Planform Area, $S_W$                                      | 76 |
|      | 3.16.2 Wing Aspect Ratio                                         | 77 |
|      | 3.16.3 Wing Sweep Angle, $\Lambda$                               | 77 |
|      | 3.16.4 Wing Root ( $c_{root}$ ) and Tip ( $c_{tip}$ ) Chord      | 77 |
|      | 3.16.5 Wing Taper Ratio, $\lambda$                               | 77 |
|      | 3.16.6 Wing Twist                                                | 78 |
|      | 3.16.7 High/Low Wing                                             | 78 |
|      | 3.16.8 Dihedral/Anhedral Angles                                  | 79 |
| 3.17 | Mean Aerodynamic Chord                                           | 79 |
| 3.18 | Compressibility Effect: Wing Sweep                               | 80 |
| 3.19 | Wing Stall Pattern and Wing Twist                                | 82 |
| 3.20 | Influence of Wing Area and Span on Aerodynamics                  | 83 |
|      | 3.20.1 The Square-Cube Law                                       | 84 |
|      | 3.20.2 Aircraft Wetted Area $(A_W)$ versus Wing Planform         |    |
|      | Area $(S_w)$                                                     | 85 |
|      | 3.20.3 Additional Vortex Lift                                    | 87 |
|      | 3.20.4 Additional Surfaces on Wing                               | 87 |
| 3.21 | Finalizing Wing Design Parameters                                | 89 |
| 3.22 | Empennage                                                        | 90 |
|      | 3.22.1 H-Tail                                                    | 90 |
|      | 3.22.2 V-Tail                                                    | 91 |
|      | 3.22.3 Tail Volume Coefficients                                  | 91 |
| 3.23 | Fuselage                                                         | 93 |
|      | 3.23.1 Fuselage Axis/Zero-Reference Plane                        | 93 |
|      | 3.23.2 Fuselage Length, L <sub>fus</sub>                         | 94 |
|      | 3.23.3 Fineness Ratio, FR                                        | 94 |
|      | 3.23.4 Fuselage Upsweep Angle                                    | 94 |
|      | 3.23.5 Fuselage Closure Angle                                    | 94 |
|      | 3.23.6 Front Fuselage Closure Length, L <sub>f</sub>             | 94 |
|      | 3.23.7 Aft Fuselage Closure Length, L <sub>a</sub>               | 95 |
|      | 3.23.8 Midfuselage Constant Cross-Section Length, L <sub>m</sub> | 95 |
|      | 3.23.9 Fuselage Height, H                                        | 95 |
|      | 3.23.10 Fuselage Width, W                                        | 95 |
|      | 3.23.11 Average Diameter, D <sub>ave</sub>                       | 95 |
|      | 3.23.12 Cabin Height, H <sub>cab</sub>                           | 96 |
|      | 3.23.13 Cabin Width, W <sub>cab</sub>                            | 96 |
|      | 3.23.14 Pilot Cockpit/Flight Deck                                | 96 |
|      | Undercarriage                                                    | 96 |
|      | Nacelle and Intake                                               | 96 |
| 3.26 | Speed Brakes and Dive Brakes                                     | 96 |

| viii       | C                                                                 | ontents    |
|------------|-------------------------------------------------------------------|------------|
|            | craft Classification, Statistics, and Choices for                 |            |
| Con        | figuration                                                        | 98         |
| 4.1        |                                                                   | 98         |
|            | 4.1.1 What Is to Be Learned?                                      | 99         |
|            | 4.1.2 Coursework Content                                          | 99         |
|            | Introduction                                                      | 99         |
| 4.3        | Aircraft Evolution                                                | 100        |
|            | 4.3.1 Aircraft Classification and Their Operational               | 101        |
| 4.4        | Environment                                                       | 101        |
| 4.4<br>4.5 |                                                                   | 104        |
| 4.3        | Regression Analysis)                                              | 105        |
|            | 4.5.1 Maximum Takeoff Mass versus Number of Passengers            | 105        |
|            | 4.5.2 Maximum Takeoff Mass versus Operational Empty Mass          | 100        |
|            | 4.5.3 Maximum Takeoff Mass versus Evel Load                       | 107        |
|            | 4.5.4 Maximum Takeoff Mass versus Wing Area                       | 109        |
|            | 4.5.5 Maximum Takeoff Mass versus Engine Power                    | 111        |
|            | 4.5.6 Empennage Area versus Wing Area                             | 112        |
|            | 4.5.7 Wing Loading versus Aircraft Span                           | 113        |
| 4.6        | Civil Aircraft Component Geometries                               | 113        |
| 4.7        | Fuselage Group                                                    | 114        |
|            | 4.7.1 Fuselage Width                                              | 114        |
|            | 4.7.2 Fuselage Length                                             | 117        |
|            | 4.7.3 Front (Nose Cone) and Aft-End Closure                       | 117        |
|            | 4.7.4 Flight Crew (Flight Deck) Compartment Layout                | 121        |
|            | 4.7.5 Cabin Crew and Passenger Facilities                         | 121        |
|            | 4.7.6 Seat Arrangement, Pitch, and Posture (95th Percentile)      |            |
|            | Facilities                                                        | 122        |
|            | 4.7.7 Passenger Facilities                                        | 123        |
|            | 4.7.8 Cargo Container Sizes                                       | 124        |
| 4.9        | 4.7.9 Doors – Emergency Exits                                     | 125        |
| 4.8        | Wing Group                                                        | 126        |
|            | Empennage Group (Civil Aircraft)                                  | 128        |
|            | Nacelle Group<br>Summary of Civil Aircraft Design Choices         | 130<br>133 |
|            | Military Aircraft: Detailed Classification, Evolutionary Pattern, | 155        |
| 4.12       | and Mission Profile*                                              | 134        |
| 4 13       | Military Aircraft Mission*                                        | 134        |
|            | Military Aircraft Statistics (Sizing Parameters – Regression      | 104        |
|            | Analysis)*                                                        | 135        |
|            | 4.14.1 Military Aircraft Maximum Take-off Mass (MTOM)             | 100        |
|            | versus Payload*                                                   | 135        |
|            | 4.14.2 Military MTOM versus OEM*                                  | 135        |
|            | 4.14.3 Military MTOM versus Fuel Load $M_f^*$                     | 135        |
|            | 4.14.4 MTOM versus Wing Area (Military)*                          | 135        |

 $^{*}$  These sections are found on the Cambridge University Web site at www.cambridge.org/Kundu

#### Contents

ix

|   |      | 4.14.5 MTOM versus Engine Thrust (Military)*               | 135 |
|---|------|------------------------------------------------------------|-----|
|   |      | 4.14.6 Empennage Area versus Wing Area (Military)*         | 136 |
|   |      | 4.14.7 Aircraft Wetted Area versus Wing Area (Military)*   | 136 |
|   | 4.15 | Military Aircraft Component Geometries*                    | 136 |
|   |      | Fuselage Group (Military)*                                 | 136 |
|   | 4.17 | Wing Group (Military)*                                     | 136 |
|   |      | 4.17.1 Generic Wing Planform Shapes*                       | 136 |
|   | 4.18 | Empennage Group (Military)*                                | 136 |
|   | 4.19 | Intake/Nacelle Group (Military)*                           | 137 |
|   | 4.20 | Undercarriage Group*                                       | 137 |
|   | 4.21 | Miscellaneous Comments*                                    | 137 |
|   | 4.22 | Summary of Military Aircraft Design Choices*               | 137 |
| 5 | Air  | craft Load                                                 | 138 |
|   | 5.1  | Overview                                                   | 138 |
|   |      | 5.1.1 What Is to Be Learned?                               | 138 |
|   |      | 5.1.2 Coursework Content                                   | 139 |
|   | 5.2  | Introduction                                               | 139 |
|   |      | 5.2.1 Buffet                                               | 140 |
|   |      | 5.2.2 Flutter                                              | 140 |
|   | 5.3  | Flight Maneuvers                                           | 140 |
|   |      | 5.3.1 Pitch Plane (X-Z) Maneuver (Elevator/Canard-Induced) | 140 |
|   |      | 5.3.2 Roll Plane (Y-Z) Maneuver (Aileron-Induced)          | 141 |
|   |      | 5.3.3 Yaw Plane (Z-X) Maneuver (Rudder-Induced)            | 141 |
|   | 5.4  | Aircraft Loads                                             | 141 |
|   |      | 5.4.1 On the Ground                                        | 141 |
|   |      | 5.4.2 In Flight                                            | 141 |
|   | 5.5  | Theory and Definitions                                     | 141 |
|   |      | 5.5.1 Load Factor, $n$                                     | 142 |
|   | 5.6  | Limits – Load and Speeds                                   | 143 |
|   |      | 5.6.1 Maximum Limit of Load Factor                         | 144 |
|   |      | 5.6.2 Speed Limits                                         | 144 |
|   | 5.7  | <i>V-n</i> Diagram                                         | 145 |
|   |      | 5.7.1 Low-Speed Limit                                      | 145 |
|   |      | 5.7.2 High-Speed Limit                                     | 146 |
|   |      | 5.7.3 Extreme Points of a V-n Diagram                      | 146 |
|   | 5.8  | Gust Envelope                                              | 147 |
| 6 | Con  | figuring Aircraft                                          | 149 |
|   | 6.1  | Overview                                                   | 149 |
|   |      | 6.1.1 What Is to Be Learned?                               | 150 |
|   |      | 6.1.2 Coursework Content                                   | 150 |
|   | 6.2  | Introduction                                               | 150 |
|   | 6.3  | Shaping and Layout of a Civil Aircraft Configuration       | 152 |
|   |      | 6.3.1 Considerations in Configuring the Fuselage           | 154 |

\* These sections are found on the Cambridge University Web site at www.cambridge.org/Kundu

х

Cambridge University Press 978-0-521-88516-4 - Aircraft Design Ajoy Kumar Kundu Frontmatter <u>More information</u>

#### Contents

|   |      | 6.3.2 Considerations in Configuring the Wing                        | 157 |
|---|------|---------------------------------------------------------------------|-----|
|   |      | 6.3.3 Considerations in Configuring the Empennage                   | 158 |
|   |      | 6.3.4 Considerations in Configuring the Nacelle                     | 159 |
|   | 6.4  | Civil Aircraft Fuselage: Typical Shaping and Layout                 | 160 |
|   |      | 6.4.1 Narrow-Body, Single-Aisle Aircraft                            | 163 |
|   |      | 6.4.2 Wide-Body, Double-Aisle Aircraft                              | 167 |
|   |      | 6.4.3 Worked-Out Example: Civil Aircraft Fuselage Layout            | 171 |
|   | 6.5  | Configuring a Civil Aircraft Wing: Positioning and Layout           | 174 |
|   |      | 6.5.1 Aerofoil Selection                                            | 174 |
|   |      | 6.5.2 Wing Design                                                   | 175 |
|   |      | 6.5.3 Wing-Mounted Control-Surface Layout                           | 176 |
|   |      | 6.5.4 Positioning of the Wing Relative to the Fuselage              | 177 |
|   |      | 6.5.5 Worked-Out Example: Configuring the Wing in Civil             |     |
|   |      | Aircraft                                                            | 177 |
|   | 6.6  | Configuring a Civil Aircraft Empennage: Positioning and Layout      | 180 |
|   |      | 6.6.1 Horizontal Tail                                               | 181 |
|   |      | 6.6.2 Vertical Tail                                                 | 181 |
|   |      | 6.6.3 Worked-Out Example: Configuring the Empennage in              |     |
|   |      | Civil Aircraft                                                      | 182 |
|   | 6.7  | Configuring a Civil Aircraft Nacelle: Positioning and Layout of     |     |
|   |      | an Engine                                                           | 184 |
|   |      | 6.7.1 Worked-Out Example: Configuring and Positioning the           |     |
|   |      | Engine and Nacelle in Civil Aircraft                                | 185 |
|   |      | Undercarriage Positioning                                           | 187 |
|   | 6.9  | Worked-Out Example: Finalizing the Preliminary Civil Aircraft       |     |
|   |      | Configuration                                                       | 187 |
|   |      | Miscellaneous Considerations in Civil Aircraft                      | 189 |
|   |      | Configuring Military Aircraft – Shaping and Laying Out*             | 189 |
|   | 6.12 | Worked-Out Example – Configuring Military Advanced Jet              |     |
|   |      | Trainer*                                                            | 189 |
|   |      | 6.12.1 Use of Statistics in the Class of Military Trainer Aircraft* | 190 |
|   |      | 6.12.2 Worked-Out Example – Advanced Jet Trainer Aircraft           | 100 |
|   |      | (AJT) – Fuselage*                                                   | 190 |
|   | ( 10 | 6.12.3 Miscellaneous Considerations – Military Design*              | 190 |
|   | 6.13 | Variant CAS Design*                                                 | 190 |
|   |      | 6.13.1 Summary of the Worked-Out Military Aircraft                  | 100 |
|   |      | Preliminary Details*                                                | 190 |
| 7 | Und  | lercarriage                                                         | 191 |
|   | 7.1  | Overview                                                            | 191 |
|   |      | 7.1.1 What Is to Be Learned?                                        | 192 |
|   |      | 7.1.2 Coursework Content                                            | 192 |
|   | 7.2  | Introduction                                                        | 193 |
|   | 7.3  | Types of Undercarriage                                              | 194 |
|   | 7.4  | Undercarriage Layout, Nomenclature, and Definitions                 | 195 |

 $^{*}$  These sections are found on the Cambridge University Web site at www.cambridge.org/Kundu

#### Contents

xi

|   | 7.5                      | Undercarriage Retraction and Stowage                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 197                                                                              |  |  |  |
|---|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|--|
|   |                          | 7.5.1 Stowage Space Clearances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 199                                                                              |  |  |  |
|   |                          | Undercarriage Design Drivers and Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 199                                                                              |  |  |  |
|   |                          | Turning of an Aircraft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 201<br>202                                                                       |  |  |  |
|   | 7.8                      | Wheels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |  |  |  |
|   | 7.9                      | Loads on Wheels and Shock Absorbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 202                                                                              |  |  |  |
|   |                          | 7.9.1 Load on Wheels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 203                                                                              |  |  |  |
|   |                          | 7.9.2 Energy Absorbed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 205                                                                              |  |  |  |
|   |                          | 7.9.3 Deflection under Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 206                                                                              |  |  |  |
|   | 7.10                     | Runway Pavement Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 206                                                                              |  |  |  |
|   |                          | 7.10.1 Load Classification Number Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 207                                                                              |  |  |  |
|   |                          | 7.10.2 Aircraft Classification Number and Pavement                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  |  |  |  |
|   |                          | Classification Number Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 208                                                                              |  |  |  |
|   | 7.11                     | Tires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 209                                                                              |  |  |  |
|   | 7.12                     | Tire Friction with Ground: Rolling and Braking Friction                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |  |  |  |
|   |                          | Coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 212                                                                              |  |  |  |
|   |                          | Undercarriage Layout Methodology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 213                                                                              |  |  |  |
|   | 7.14                     | Worked-Out Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 215                                                                              |  |  |  |
|   |                          | 7.14.1 Civil Aircraft: Bizjet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 215                                                                              |  |  |  |
|   |                          | 7.14.2 Military Aircraft: AJT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 219                                                                              |  |  |  |
|   | 7.15                     | Miscellaneous Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 221                                                                              |  |  |  |
|   | 7.16                     | Undercarriage and Tire Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 222                                                                              |  |  |  |
| 8 | Airc                     | raft Weight and Center of Gravity Estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 223                                                                              |  |  |  |
|   | 8.1                      | Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 223                                                                              |  |  |  |
|   |                          | 8.1.1 What Is to Be Learned?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 224                                                                              |  |  |  |
|   |                          | 8.1.2 Coursework Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 224                                                                              |  |  |  |
|   | 8.2                      | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 225                                                                              |  |  |  |
|   | 8.3                      | The Weight Drivers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 227                                                                              |  |  |  |
|   |                          | Aircraft Mass (Weight) Breakdown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  |  |  |  |
|   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 228                                                                              |  |  |  |
|   | 8.5                      | Desirable CG Position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 228<br>228                                                                       |  |  |  |
|   |                          | Desirable CG Position<br>Aircraft Component Groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  |  |  |  |
|   |                          | Desirable CG Position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 228                                                                              |  |  |  |
|   |                          | Desirable CG Position<br>Aircraft Component Groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 228<br>230                                                                       |  |  |  |
|   |                          | Desirable CG Position<br>Aircraft Component Groups<br>8.6.1 Civil Aircraft                                                                                                                                                                                                                                                                                                                                                                                                                                         | 228<br>230<br>231                                                                |  |  |  |
|   | 8.6<br>8.7<br>8.8        | Desirable CG Position<br>Aircraft Component Groups<br>8.6.1 Civil Aircraft<br>8.6.2 Military Aircraft (Combat Category)*<br>Aircraft Component Mass Estimation<br>Rapid Mass Estimation Method: Civil Aircraft                                                                                                                                                                                                                                                                                                     | 228<br>230<br>231<br>232                                                         |  |  |  |
|   | 8.6<br>8.7               | Desirable CG Position<br>Aircraft Component Groups<br>8.6.1 Civil Aircraft<br>8.6.2 Military Aircraft (Combat Category)*<br>Aircraft Component Mass Estimation                                                                                                                                                                                                                                                                                                                                                     | 228<br>230<br>231<br>232<br>233                                                  |  |  |  |
|   | 8.6<br>8.7<br>8.8        | Desirable CG Position<br>Aircraft Component Groups<br>8.6.1 Civil Aircraft<br>8.6.2 Military Aircraft (Combat Category)*<br>Aircraft Component Mass Estimation<br>Rapid Mass Estimation Method: Civil Aircraft                                                                                                                                                                                                                                                                                                     | 228<br>230<br>231<br>232<br>233                                                  |  |  |  |
|   | 8.6<br>8.7<br>8.8<br>8.9 | Desirable CG Position<br>Aircraft Component Groups<br>8.6.1 Civil Aircraft<br>8.6.2 Military Aircraft (Combat Category)*<br>Aircraft Component Mass Estimation<br>Rapid Mass Estimation Method: Civil Aircraft<br>Graphical Method for Predicting Aircraft Component Weight:                                                                                                                                                                                                                                       | 228<br>230<br>231<br>232<br>233<br>234                                           |  |  |  |
|   | 8.6<br>8.7<br>8.8<br>8.9 | Desirable CG Position<br>Aircraft Component Groups<br>8.6.1 Civil Aircraft<br>8.6.2 Military Aircraft (Combat Category)*<br>Aircraft Component Mass Estimation<br>Rapid Mass Estimation Method: Civil Aircraft<br>Graphical Method for Predicting Aircraft Component Weight:<br>Civil Aircraft<br>Semi-empirical Equation Method (Statistical)<br>8.10.1 Fuselage Group – Civil Aircraft                                                                                                                           | 228<br>230<br>231<br>232<br>233<br>234<br>234                                    |  |  |  |
|   | 8.6<br>8.7<br>8.8<br>8.9 | Desirable CG Position<br>Aircraft Component Groups<br>8.6.1 Civil Aircraft<br>8.6.2 Military Aircraft (Combat Category)*<br>Aircraft Component Mass Estimation<br>Rapid Mass Estimation Method: Civil Aircraft<br>Graphical Method for Predicting Aircraft Component Weight:<br>Civil Aircraft<br>Semi-empirical Equation Method (Statistical)<br>8.10.1 Fuselage Group – Civil Aircraft<br>8.10.2 Wing Group – Civil Aircraft                                                                                     | 228<br>230<br>231<br>232<br>233<br>234<br>234<br>234<br>238<br>238<br>241        |  |  |  |
|   | 8.6<br>8.7<br>8.8<br>8.9 | Desirable CG Position<br>Aircraft Component Groups<br>8.6.1 Civil Aircraft<br>8.6.2 Military Aircraft (Combat Category)*<br>Aircraft Component Mass Estimation<br>Rapid Mass Estimation Method: Civil Aircraft<br>Graphical Method for Predicting Aircraft Component Weight:<br>Civil Aircraft<br>Semi-empirical Equation Method (Statistical)<br>8.10.1 Fuselage Group – Civil Aircraft<br>8.10.2 Wing Group – Civil Aircraft<br>8.10.3 Empennage Group – Civil Aircraft                                          | 228<br>230<br>231<br>232<br>233<br>234<br>234<br>234<br>238<br>238<br>241<br>242 |  |  |  |
|   | 8.6<br>8.7<br>8.8<br>8.9 | Desirable CG Position<br>Aircraft Component Groups<br>8.6.1 Civil Aircraft<br>8.6.2 Military Aircraft (Combat Category)*<br>Aircraft Component Mass Estimation<br>Rapid Mass Estimation Method: Civil Aircraft<br>Graphical Method for Predicting Aircraft Component Weight:<br>Civil Aircraft<br>Semi-empirical Equation Method (Statistical)<br>8.10.1 Fuselage Group – Civil Aircraft<br>8.10.2 Wing Group – Civil Aircraft<br>8.10.3 Empennage Group – Civil Aircraft<br>8.10.4 Nacelle Group – Civil Aircraft | 228<br>230<br>231<br>232<br>233<br>234<br>234<br>234<br>238<br>238<br>241        |  |  |  |
|   | 8.6<br>8.7<br>8.8<br>8.9 | Desirable CG Position<br>Aircraft Component Groups<br>8.6.1 Civil Aircraft<br>8.6.2 Military Aircraft (Combat Category)*<br>Aircraft Component Mass Estimation<br>Rapid Mass Estimation Method: Civil Aircraft<br>Graphical Method for Predicting Aircraft Component Weight:<br>Civil Aircraft<br>Semi-empirical Equation Method (Statistical)<br>8.10.1 Fuselage Group – Civil Aircraft<br>8.10.2 Wing Group – Civil Aircraft<br>8.10.3 Empennage Group – Civil Aircraft                                          | 228<br>230<br>231<br>232<br>233<br>234<br>234<br>234<br>238<br>238<br>241<br>242 |  |  |  |

 $^{*}$  This subsection is found on the Cambridge University Web site at www.cambridge.org/Kundu

Cambridge University Press 978-0-521-88516-4 - Aircraft Design Ajoy Kumar Kundu Frontmatter <u>More information</u>

#### xii

#### Contents

|      | 8.10.7   | Power Plant Group – Civil Aircraft                    | 244 |
|------|----------|-------------------------------------------------------|-----|
|      |          | Systems Group – Civil Aircraft                        | 246 |
|      |          | Furnishing Group – Civil Aircraft                     | 246 |
|      |          | Contingency and Miscellaneous – Civil Aircraft        | 246 |
|      |          | Crew – Civil Aircraft                                 | 246 |
|      |          | Payload – Civil Aircraft                              | 246 |
|      |          | Fuel – Civil Aircraft                                 | 247 |
| 8.11 | Worked   | d-Out Example – Civil Aircraft                        | 247 |
|      |          | Fuselage Group Mass                                   | 247 |
|      |          | Wing Group Mass                                       | 249 |
|      | 8.11.3   | Empennage Group Mass                                  | 250 |
|      | 8.11.4   | Nacelle Group Mass                                    | 250 |
|      | 8.11.5   | Undercarriage Group Mass                              | 250 |
|      | 8.11.6   | Miscellaneous Group Mass                              | 250 |
|      | 8.11.7   | Power Plant Group Mass                                | 250 |
|      | 8.11.8   | Systems Group Mass                                    | 251 |
|      | 8.11.9   | Furnishing Group Mass                                 | 251 |
|      | 8.11.10  | Contingency Group Mass                                | 251 |
|      | 8.11.11  | Crew Mass                                             | 251 |
|      | 8.11.12  | Payload Mass                                          | 251 |
|      | 8.11.13  | Fuel Mass                                             | 251 |
|      | 8.11.14  | Weight Summary                                        | 251 |
| 8.12 | Center   | of Gravity Determination                              | 252 |
|      | 8.12.1   | Bizjet Aircraft CG Location Example                   | 253 |
|      | 8.12.2   | First Iteration to Fine Tune CG Position Relative to  |     |
|      |          | Aircraft and Components                               | 254 |
| 8.13 | Rapid N  | Mass Estimation Method – Military Aircraft*           | 254 |
| 8.14 | Graphi   | cal Method to Predict Aircraft Component Weight –     |     |
|      | Military | y Aircraft*                                           | 255 |
| 8.15 | Semi-er  | mpirical Equation Methods (Statistical) – Military    |     |
|      | Aircraf  | t*                                                    | 255 |
|      | 8.15.1   | Military Aircraft Fuselage Group (SI System)*         | 255 |
|      | 8.15.2   | Military Aircraft Wing Mass (SI System)*              | 255 |
|      | 8.15.3   | Military Aircraft Empennage*                          | 255 |
|      | 8.15.4   | Nacelle Mass Example – Military Aircraft*             | 255 |
|      | 8.15.5   | Power Plant Group Mass Example – Military Aircraft*   | 255 |
|      | 8.15.6   | Undercarriage Mass Example – Military Aircraft*       | 255 |
|      | 8.15.7   | System Mass – Military Aircraft*                      | 255 |
|      | 8.15.8   | Aircraft Furnishing – Military Aircraft*              | 255 |
|      | 8.15.9   | Miscellaneous Group $(M_{MISC})$ – Military Aircraft* | 255 |
|      | 8.15.10  | Contingency $(M_{CONT})$ – Military Aircraft*         | 255 |
|      | 8.15.11  | Crew Mass*                                            | 255 |
|      | 8.15.12  | Fuel $(M_{FUEL})^*$                                   | 256 |
|      | 8.15.13  | Payload $(M_{PL})^*$                                  | 256 |
|      |          |                                                       |     |

 $^{*}$  These sections are found on the Cambridge University Web site at www.cambridge.org/Kundu

#### Contents

|   | 8.16    | Classro | oom Example of Military AJT/CAS Aircraft Weight        |     |
|---|---------|---------|--------------------------------------------------------|-----|
|   |         | Estima  | tion*                                                  | 256 |
|   |         | 8.16.1  | AJT Fuselage Example (Based on CAS Variant)*           | 256 |
|   |         | 8.16.2  | AJT Wing Example (Based on CAS Variant)*               | 256 |
|   |         | 8.16.3  | AJT Empennage Example (Based on CAS Variant)*          | 256 |
|   |         | 8.16.4  | AJT Nacelle Mass Example (Based on CAS Variant)*       | 256 |
|   |         | 8.16.5  | AJT Power Plant Group Mass Example (Based on           |     |
|   |         |         | AJT Variant)*                                          | 256 |
|   |         | 8.16.6  | AJT Undercarriage Mass Example (Based on CAS           |     |
|   |         |         | Variant)*                                              | 256 |
|   |         | 8.16.7  | AJT Systems Group Mass Example (Based on               |     |
|   |         |         | AJT Variant)*                                          | 256 |
|   |         | 8.16.8  | AJT Furnishing Group Mass Example (Based on            |     |
|   |         |         | AJT Variant)*                                          | 256 |
|   |         | 8.16.9  | AJT Contingency Group Mass Example*                    | 256 |
|   |         | 8.16.10 | AJT Crew Mass Example*                                 | 256 |
|   |         | 8.16.11 | Fuel $(M_{FUEL})^*$                                    | 256 |
|   |         | 8.16.12 | Payload $(M_{PL})^*$                                   | 256 |
|   |         | 8.16.13 | Weights Summary – Military Aircraft*                   | 256 |
|   | 8.17    | CG Po   | sition Determination – Military Aircraft*              | 256 |
|   |         | 8.17.1  | 5                                                      |     |
|   |         |         | Example*                                               | 257 |
|   |         | 8.17.2  | First Iteration to Fine Tune CG Position and           |     |
|   |         |         | Components Masses*                                     | 257 |
| 9 | Airc    | raft Dr | ag                                                     | 258 |
|   | 9.1     | Overvi  | -                                                      | 258 |
|   | <i></i> |         | What Is to Be Learned?                                 | 259 |
|   |         |         | Coursework Content                                     | 259 |
|   | 9.2     | Introdu |                                                        | 259 |
|   |         |         | e Drag Definition                                      | 261 |
|   | 9.4     |         | ft Drag Breakdown (Subsonic)                           | 262 |
|   | 9.5     |         | ft Drag Formulation                                    | 263 |
|   | 9.6     |         | ft Drag Estimation Methodology (Subsonic)              | 265 |
|   | 9.7     |         | um Parasite Drag Estimation Methodology                | 265 |
|   |         |         | Geometric Parameters, Reynolds Number, and Basic $C_F$ |     |
|   |         |         | Determination                                          | 266 |
|   |         |         | Computation of Wetted Areas                            | 267 |
|   |         |         | Stepwise Approach to Compute Minimum Parasite Drag     | 268 |
|   | 9.8     |         | mpirical Relations to Estimate Aircraft Component      |     |
|   | -       | Parasit |                                                        | 268 |
|   |         |         | Fuselage                                               | 268 |
|   |         |         | Wing, Empennage, Pylons, and Winglets                  | 271 |
|   |         |         | Nacelle Drag                                           | 273 |
|   |         |         | Excrescence Drag                                       | 277 |
|   |         |         |                                                        |     |

9.8.4 Excrescence Drag

\* These sections are found on the Cambridge University Web site at www.cambridge.org/Kundu

Cambridge University Press 978-0-521-88516-4 - Aircraft Design Ajoy Kumar Kundu Frontmatter <u>More information</u>

| xiv |      |                                                                                                                   | Contents   |
|-----|------|-------------------------------------------------------------------------------------------------------------------|------------|
|     |      | 9.8.5 Miscellaneous Parasite Drags                                                                                | 278        |
|     | 9.9  | Notes on Excrescence Drag Resulting from Surface                                                                  |            |
|     |      | Imperfections                                                                                                     | 279        |
|     | 9.10 | Minimum Parasite Drag                                                                                             | 280        |
|     | 9.11 | $\Delta C_{Dp}$ Estimation                                                                                        | 280        |
|     | 9.12 | Subsonic Wave Drag                                                                                                | 281        |
|     | 9.13 | Total Aircraft Drag                                                                                               | 282        |
|     | 9.14 | Low-Speed Aircraft Drag at Takeoff and Landing                                                                    | 282        |
|     |      | 9.14.1 High-Lift Device Drag                                                                                      | 282        |
|     |      | 9.14.2 Dive Brakes and Spoilers Drag                                                                              | 286        |
|     |      | 9.14.3 Undercarriage Drag                                                                                         | 286        |
|     |      | 9.14.4 One-Engine Inoperative Drag                                                                                | 288        |
|     | 9.15 | Propeller-Driven Aircraft Drag                                                                                    | 288        |
|     | 9.16 | Military Aircraft Drag                                                                                            | 289        |
|     | 9.17 | Supersonic Drag                                                                                                   | 290        |
|     | 9.18 | Coursework Example: Civil Bizjet Aircraft                                                                         | 292        |
|     |      | 9.18.1 Geometric and Performance Data                                                                             | 292        |
|     |      | 9.18.2 Computation of Wetted Areas, Re, and Basic $C_F$                                                           | 293        |
|     |      | 9.18.3 Computation of 3D and Other Effects to Estimate                                                            |            |
|     |      | Component C <sub>Dpmin</sub>                                                                                      | 295        |
|     |      | 9.18.4 Summary of Parasite Drag                                                                                   | 299        |
|     |      | 9.18.5 $\Delta C_{Dp}$ Estimation                                                                                 | 299        |
|     |      | 9.18.6 Induced Drag                                                                                               | 299        |
|     |      | 9.18.7 Total Aircraft Drag at LRC                                                                                 | 299        |
|     | 9.19 | Coursework Example: Subsonic Military Aircraft                                                                    | 299        |
|     |      | 9.19.1 Geometric and Performance Data of a Vigilante RA-C5<br>Aircraft                                            | 300        |
|     |      | 9.19.2 Computation of Wetted Areas, Re, and Basic $C_F$                                                           | 300<br>302 |
|     |      | 9.19.2 Computation of Wetted Areas, Ke, and Basic $C_F$<br>9.19.3 Computation of 3D and Other Effects to Estimate | 302        |
|     |      | Component C <sub>Dpmin</sub>                                                                                      | 303        |
|     |      | 9.19.4 Summary of Parasite Drag                                                                                   | 305        |
|     |      | 9.19.5 $\Delta C_{Dp}$ Estimation                                                                                 | 306        |
|     |      | 9.19.6 Induced Drag                                                                                               | 306        |
|     |      | 9.19.7 Supersonic Drag Estimation                                                                                 | 306        |
|     |      | 9.19.8 Total Aircraft Drag                                                                                        | 310        |
|     | 9.20 | Concluding Remarks                                                                                                | 310        |
| 10  | Airc | raft Power Plant and Integration                                                                                  |            |
|     | 10.1 | Overview                                                                                                          | 314        |
|     |      | 10.1.1 What Is to Be Learned?                                                                                     | 314        |
|     |      | 10.1.2 Coursework Content                                                                                         | 315        |
|     |      | Background                                                                                                        | 315        |
|     |      | Definitions                                                                                                       | 319        |
|     | 10.4 | Introduction: Air-Breathing Aircraft Engine Types                                                                 | 320        |
|     |      | 10.4.1 Simple Straight-Through Turbojet                                                                           | 320        |
|     |      | 10.4.2 Turbofan: Bypass Engine                                                                                    | 321        |
|     |      | 10.4.3 Afterburner Engine                                                                                         | 322        |

#### Contents

|    |                                      | 40 4 4 7    |                                                         |            |  |  |
|----|--------------------------------------|-------------|---------------------------------------------------------|------------|--|--|
|    |                                      |             | Curboprop Engine                                        | 323        |  |  |
|    | 10.5                                 |             | Piston Engine                                           | 323        |  |  |
|    |                                      |             | ied Representation of the Gas Turbine Cycle             | 324        |  |  |
|    | 10.6                                 |             | lation and Theory: Isentropic Case                      | 325        |  |  |
|    |                                      |             | Simple Straight-Through Turbojet Engine: Formulation    | 325        |  |  |
|    |                                      |             | Bypass Turbofan Engine: Formulation                     | 327        |  |  |
|    |                                      |             | Afterburner Engine: Formulation                         | 329<br>330 |  |  |
|    | 10.6.4 Turboprop Engine: Formulation |             |                                                         |            |  |  |
|    | 10.7                                 | 0           | Integration with an Aircraft: Installation Effects      | 331        |  |  |
|    |                                      |             | Subsonic Civil Aircraft Nacelle and Engine Installation | 332        |  |  |
|    |                                      |             | Surboprop Integration to Aircraft                       | 335        |  |  |
|    | 10.0                                 |             | Combat Aircraft Engine Installation                     | 336        |  |  |
|    | 10.8                                 |             | and Nozzle Design                                       | 338        |  |  |
|    |                                      |             | Civil Aircraft Intake Design: Inlet Sizing              | 338        |  |  |
|    | 10.0                                 |             | Military Aircraft Intake Design*                        | 341        |  |  |
|    | 10.9                                 |             | t Nozzle and Thrust Reverser                            | 341        |  |  |
|    |                                      |             | Civil Aircraft Thrust Reverser Application              | 342        |  |  |
|    |                                      |             | Civil Aircraft Exhaust Nozzles                          | 343        |  |  |
|    |                                      |             | Coursework Example of Civil Aircraft Nacelle Design     | 344        |  |  |
|    |                                      | 10.9.4      | Military Aircraft Thrust Reverser Application and       |            |  |  |
|    | 10.10                                | <b>D</b> 11 | Exhaust Nozzles*                                        | 345        |  |  |
|    | 10.10                                | Propell     |                                                         | 345        |  |  |
|    |                                      |             | Propeller-Related Definitions                           | 348        |  |  |
|    |                                      |             | Propeller Theory                                        | 349        |  |  |
|    |                                      | 10.10.3     | Propeller Performance: Practical Engineering            |            |  |  |
|    |                                      |             | Applications                                            | 355        |  |  |
|    |                                      |             | Propeller Performance: Blade Numbers $3 \le N \ge 4$    | 357        |  |  |
|    |                                      | 10.10.5     | Propeller Performance at STD Day: Worked-Out            |            |  |  |
|    |                                      |             | Example                                                 | 358        |  |  |
|    | 10.11                                | 0           | -Performance Data                                       | 359        |  |  |
|    |                                      |             | Piston Engine                                           | 361        |  |  |
|    |                                      |             | Turboprop Engine (Up to 100 Passengers Class)           | 363        |  |  |
|    |                                      |             | Turbofan Engine: Civil Aircraft                         | 365        |  |  |
|    |                                      | 10.11.4     | Turbofan Engine: Military Aircraft*                     | 370        |  |  |
| 11 | Aircr                                | aft Siziı   | ng, Engine Matching, and Variant Derivative             | 371        |  |  |
|    | 11.1                                 | Overvi      | ew                                                      | 371        |  |  |
|    |                                      | 11.1.1      | What Is to Be Learned?                                  | 371        |  |  |
|    |                                      | 11.1.2      | Coursework Content                                      | 372        |  |  |
|    | 11.2                                 | Introdu     |                                                         | 372        |  |  |
|    | 11.3                                 | Theory      |                                                         | 373        |  |  |
|    |                                      | 11.3.1      | Sizing for Takeoff Field Length                         | 374        |  |  |
|    |                                      | 11.3.2      | Sizing for the Initial Rate of Climb                    | 377        |  |  |
|    |                                      | 11.3.3      | Sizing to Meet Initial Cruise                           | 378        |  |  |
|    |                                      | 11.3.4      | Sizing for Landing Distance                             | 378        |  |  |
|    |                                      |             |                                                         |            |  |  |

\* These sections are found on the Cambridge University Web site at www.cambridge.org/Kundu

Cambridge University Press 978-0-521-88516-4 - Aircraft Design Ajoy Kumar Kundu Frontmatter <u>More information</u>

| xvi |      |                                                                                              | Contents   |
|-----|------|----------------------------------------------------------------------------------------------|------------|
|     | 11.4 | Coursework Exercises: Civil Aircraft Design (Bizjet)                                         | 379        |
|     |      | 11.4.1 Takeoff                                                                               | 379        |
|     |      | 11.4.2 Initial Climb                                                                         | 380        |
|     |      | 11.4.3 Cruise                                                                                | 380        |
|     |      | 11.4.4 Landing                                                                               | 381        |
|     | 11.5 | Coursework Exercises: Military Aircraft Design (AJT)*                                        | 381        |
|     |      | 11.5.1 Takeoff – Military Aircraft*                                                          | 381        |
|     |      | 11.5.2 Initial Climb – Military Aircraft*                                                    | 381        |
|     |      | 11.5.3 Cruise – Military Aircraft*                                                           | 381        |
|     | 11.6 | 11.5.4 Landing – Military Aircraft*                                                          | 381<br>381 |
|     | 11.0 | Sizing Analysis: Civil Aircraft (Bizjet)<br>11.6.1 Variants in the Family of Aircraft Design | 381        |
|     |      | 11.6.2 Example: Civil Aircraft                                                               | 383        |
|     | 11.7 | 1                                                                                            | 383        |
|     | 11./ | 11.7.1 Single-Seat Variant in the Family of Aircraft Design*                                 | 384        |
|     | 11.8 |                                                                                              | 384        |
|     |      | Future Growth Potential                                                                      | 385        |
| 12  | Stab | ility Considerations Affecting Aircraft Configuration                                        | 387        |
|     | 12.1 | Overview                                                                                     | 387        |
|     |      | 12.1.1 What Is to Be Learned?                                                                | 388        |
|     |      | 12.1.2 Coursework Content                                                                    | 388        |
|     | 12.2 | Introduction                                                                                 | 388        |
|     | 12.3 | Static and Dynamic Stability                                                                 | 389        |
|     |      | 12.3.1 Longitudinal Stability: Pitch Plane (Pitch Moment, <i>M</i> )                         | 392        |
|     |      | 12.3.2 Directional Stability: Yaw Plane (Yaw Moment, N)                                      | 393        |
|     |      | 12.3.3 Lateral Stability: Roll Plane (Roll Moment, L)                                        | 393        |
|     |      | 12.3.4 Summary of Forces, Moments, and Their Sign                                            |            |
|     |      | Conventions                                                                                  | 396        |
|     | 12.4 | Theory                                                                                       | 396        |
|     |      | 12.4.1 Pitch Plane                                                                           | 396        |
|     |      | 12.4.2 Yaw Plane<br>12.4.3 Roll Plane                                                        | 400        |
|     | 12.5 | Current Statistical Trends for H- and V-Tail Coefficients                                    | 401<br>402 |
|     | 12.5 |                                                                                              | 402<br>403 |
|     | 12.0 | 12.6.1 Short-Period Oscillation and Phugoid Motion                                           | 403        |
|     |      | 12.6.2 Directional and Lateral Modes of Motion                                               | 404        |
|     | 12.7 |                                                                                              | 400        |
|     | 12.7 | Design Considerations for Stability: Civil Aircraft                                          | 408        |
|     | 12.0 | Military Aircraft: Nonlinear Effects*                                                        | 413        |
|     |      | ) Active Control Technology: Fly-by-Wire                                                     | 413        |
| 13  | Airc | raft Performance                                                                             | 417        |
|     | 13.1 | Overview                                                                                     | 417        |
|     |      | 13.1.1 What Is to Be Learned?                                                                | 417        |
|     |      | 13.1.2 Coursework Content                                                                    | 418        |

\* These sections are found on the Cambridge University Web site at www.cambridge.org/Kundu

#### Contents

#### xvii

|    | 13.2 | Introduction                                                 | 418 |
|----|------|--------------------------------------------------------------|-----|
|    |      | 13.2.1 Aircraft Speed                                        | 419 |
|    | 13.3 | Establish Engine Performance Data                            | 420 |
|    |      | 13.3.1 Turbofan Engine (BPR $< 4$ )                          | 420 |
|    |      | 13.3.2 Turbofan Engine (BPR $> 4$ )                          | 422 |
|    |      | 13.3.3 Military Turbofan (Advanced Jet Trainer/CAS Role –    |     |
|    |      | Very Low BPR) – STD Day*                                     | 422 |
|    |      | 13.3.4 Turboprop Engine Performance                          | 423 |
|    | 13.4 | Derivation of Pertinent Aircraft Performance Equations       | 425 |
|    |      | 13.4.1 Takeoff                                               | 425 |
|    |      | 13.4.2 Landing Performance                                   | 429 |
|    |      | 13.4.3 Climb and Descent Performance                         | 430 |
|    |      | 13.4.4 Initial Maximum Cruise Speed                          | 435 |
|    |      | 13.4.5 Payload Range Capability                              | 435 |
|    | 13.5 | Aircraft Performance Substantiation: Worked-Out Examples     |     |
|    |      | (Bizjet)                                                     | 437 |
|    |      | 13.5.1 Takeoff Field Length (Bizjet)                         | 437 |
|    |      | 13.5.2 Landing Field Length (Bizjet)                         | 442 |
|    |      | 13.5.3 Climb Performance Requirements (Bizjet)               | 443 |
|    |      | 13.5.4 Integrated Climb Performance (Bizjet)                 | 444 |
|    |      | 13.5.5 Initial High-Speed Cruise (Bizjet)                    | 446 |
|    |      | 13.5.6 Specific Range (Bizjet)                               | 446 |
|    |      | 13.5.7 Descent Performance (Bizjet)                          | 447 |
|    |      | 13.5.8 Payload Range Capability                              | 448 |
|    | 13.6 | Aircraft Performance Substantiation: Military Aircraft (AJT) | 451 |
|    |      | 13.6.1 Mission Profile                                       | 451 |
|    |      | 13.6.2 Takeoff Field Length (AJT)                            | 452 |
|    |      | 13.6.3 Landing Field Length (AJT)                            | 456 |
|    |      | 13.6.4 Climb Performance Requirements (AJT)                  | 457 |
|    |      | 13.6.5 Maximum Speed Requirements (AJT)                      | 458 |
|    |      | 13.6.6 Fuel Requirements (AJT)                               | 458 |
|    | 13.7 | Summary                                                      | 459 |
|    |      | 13.7.1 The Bizjet                                            | 461 |
|    |      | 13.7.2 The AJT                                               | 462 |
| 14 | Com  | putational Fluid Dynamics                                    | 464 |
| 14 |      | Overview                                                     | 464 |
|    | 14.1 | 14.1.1 What Is to Be Learned?                                | 464 |
|    |      |                                                              |     |
|    | 140  | 14.1.2 Coursework Content                                    | 465 |
|    | 14.2 | Introduction                                                 | 465 |
|    | 14.3 | Current Status                                               | 466 |
|    | 14.4 |                                                              | 468 |
|    |      | 14.4.1 In the Preprocessor (Menu-Driven)                     | 470 |
|    |      | 14.4.2 In the Flow Solver (Menu-Driven)                      | 470 |
|    | 115  | 14.4.3 In the Postprocessor (Menu-Driven)                    | 470 |
|    | 14.5 | Case Studies                                                 | 471 |

\* This subsection is found on the Cambridge University Web site at www.cambridge.org/Kundu

Cambridge University Press 978-0-521-88516-4 - Aircraft Design Ajoy Kumar Kundu Frontmatter <u>More information</u>

| xviii |        |                                                      | Contents |
|-------|--------|------------------------------------------------------|----------|
|       | 14.6   | Hierarchy of CFD Simulation Methods                  | 472      |
|       |        | 14.6.1 DNS Simulation Technique                      | 473      |
|       |        | 14.6.2 Large Eddy Simulation (LES) Technique         | 473      |
|       |        | 14.6.3 Detached Eddy Simulation (DES) Technique      | 473      |
|       |        | 14.6.4 RANS Equation Technique                       | 473      |
|       |        | 14.6.5 Euler Method Technique                        | 473      |
|       |        | 14.6.6 Full-Potential Flow Equations                 | 474      |
|       |        | 14.6.7 Panel Method                                  | 474      |
|       | 14.7   | Summary                                              | 475      |
| 1     | 5 Misc | ellaneous Design Considerations                      | 476      |
|       | 15.1   | Overview                                             | 476      |
|       |        | 15.1.1 What Is to Be Learned?                        | 477      |
|       |        | 15.1.2 Coursework Content                            | 477      |
|       | 15.2   | Introduction                                         | 477      |
|       |        | 15.2.1 Environmental Issues                          | 478      |
|       |        | 15.2.2 Materials and Structures                      | 478      |
|       |        | 15.2.3 Safety Issues                                 | 478      |
|       |        | 15.2.4 Human Interface                               | 478      |
|       |        | 15.2.5 Systems Architecture                          | 478      |
|       |        | 15.2.6 Military Aircraft Survivability Issues        | 479      |
|       |        | 15.2.7 Emerging Scenarios                            | 479      |
|       | 15.3   | Noise Emissions                                      | 479      |
|       |        | 15.3.1 Summary                                       | 485      |
|       | 15.4   | Engine Exhaust Emissions                             | 487      |
|       | 15.5   | Aircraft Materials                                   | 487      |
|       |        | 15.5.1 Material Properties                           | 489      |
|       |        | 15.5.2 Material Selection                            | 491      |
|       |        | 15.5.3 Coursework Overview                           | 493      |
|       | 15.6   | Aircraft Structural Considerations                   | 494      |
|       | 15.7   | Doors: Emergency Egress                              | 495      |
|       | 15.8   | Aircraft Flight Deck (Cockpit) Layout                | 497      |
|       |        | 15.8.1 Multifunctional Display and Electronic Flight |          |
|       |        | Information System                                   | 498      |
|       |        | 15.8.2 Combat Aircraft Flight Deck                   | 499      |
|       |        | 15.8.3 Civil Aircraft Flight Deck                    | 500      |
|       |        | 15.8.4 Head-Up Display                               | 500      |
|       |        | 15.8.5 Helmet-Mounted Display                        | 501      |
|       |        | 15.8.6 Hands-On Throttle and Stick                   | 502      |
|       |        | 15.8.7 Voice-Operated Control                        | 502      |
|       | 15.9   | Aircraft Systems                                     | 502      |
|       |        | 15.9.1 Aircraft Control Subsystem                    | 503      |
|       |        | 15.9.2 Engine and Fuel Control Subsystems            | 505      |
|       |        | 15.9.3 Emergency Power Supply                        | 508      |
|       |        | 15.9.4 Avionics Subsystems                           | 509      |
|       |        | 15.9.5 Electrical Subsystem                          | 510      |
|       |        | 15.9.6 Hydraulic Subsystem                           | 511      |
|       |        | 15.9.7 Pneumatic System                              | 513      |

#### Contents

#### xix

|    |       | 15.9.8 U | Utility Subsystem                                   | 517   |
|----|-------|----------|-----------------------------------------------------|-------|
|    |       | 15.9.9 I | End-of-Life Disposal                                | 518   |
|    | 15.10 |          | y Aircraft Survivability*                           | 521   |
|    |       |          | Military Emergency Escape*                          | 521   |
|    |       | 15.10.2  | Military Aircraft Stealth Consideration*            | 521   |
|    |       |          | Low Observable (LO) Aircraft Configuration*         | 521   |
|    | 15.11 |          | ing Scenarios                                       | 522   |
| 16 | Aircr | aft Cos  | t Considerations                                    | 523   |
|    | 16.1  | Overvi   | ew                                                  | 523   |
|    |       | 16.1.1   | What Is to Be Learned?                              | 526   |
|    |       | 16.1.2   | Coursework Content                                  | 526   |
|    |       | Introdu  |                                                     | 526   |
|    | 16.3  | Aircrat  | ft Cost and Operational Cost                        | 528   |
|    | 16.4  | Aircrat  | ft Costing Methodology: Rapid-Cost Model            | 531   |
|    |       | 16.4.1   | Nacelle Cost Drivers                                | 533   |
|    |       | 16.4.2   | Nose Cowl Parts and Subassemblies                   | 536   |
|    |       | 16.4.3   | Methodology (Nose Cowl Only)                        | 536   |
|    |       | 16.4.4   | Cost Formulas and Results                           | 540   |
|    | 16.5  |          | ft Direct Operating Cost                            | 544   |
|    |       |          | Formulation to Estimate DOC                         | 546   |
|    |       | 16.5.2   | Worked-Out Example of DOC: Bizjet                   | 548   |
| 17 | Aircr | aft Mar  | nufacturing Considerations                          | 551   |
|    | 17.1  | Overvi   | ew                                                  | 551   |
|    |       | 17.1.1   | What Is to Be Learned?                              | 553   |
|    |       | 17.1.2   | Coursework Content                                  | 553   |
|    |       | Introdu  |                                                     | 553   |
|    |       | -        | for Manufacture and Assembly                        | 554   |
|    |       |          | acturing Practices                                  | 555   |
|    | 17.5  |          | ma Concept                                          | 557   |
|    | 17.6  |          | nce Relaxation at the Wetted Surface                | 559   |
|    |       | 17.6.1   | 8                                                   | 560   |
|    |       |          | Cost-versus-Tolerance Relationship                  | 560   |
|    |       |          | ility and Maintainability                           | 561   |
|    | 17.8  |          | Considerations                                      | 562   |
|    |       | 17.8.1   | Category I: Technology-Driven Design Considerations | 563   |
|    |       | 17.8.2   | e ;                                                 |       |
|    |       | 1700     | Considerations                                      | 564   |
|    |       | 17.8.3   | Category III: Management-Driven Design              |       |
|    |       | 1704     | Considerations                                      | 564   |
|    |       | 17.8.4   | Category IV: Operator-Driven Design                 | = ( = |
|    | 17.0  | "D- '    | Considerations                                      | 565   |
|    | 17.9  |          | n for Customer"                                     | 565   |
|    |       | 17.9.1   | 8                                                   | 566   |
|    |       | 17.9.2   | Worked-Out Example                                  | 567   |

\* These sections are found on the Cambridge University Web site at www.cambridge.org/Kundu

Cambridge University Press 978-0-521-88516-4 - Aircraft Design Ajoy Kumar Kundu Frontmatter <u>More information</u>

| xx |            |                                                         | Contents |
|----|------------|---------------------------------------------------------|----------|
|    | 17.10 Dig  | gital Manufacturing Process Management                  | 568      |
|    | 17.        | 10.1 Product, Process, and Resource Hub                 | 570      |
|    | 17.        | 10.2 Integration of CAD/CAM, Manufacturing, Operations, | ,        |
|    |            | and In-Service Domains                                  | 571      |
|    | 17.        | 10.3 Shop-Floor Interface                               | 572      |
|    | 17.        | 10.4 Design for Maintainability and 3D-Based Technical  |          |
|    |            | Publication Generation                                  | 573      |
|    | Appendix A | Conversion                                              | 575      |
|    | Appendix B | International Standard Atmosphere                       | 577      |
|    | Appendix C | Aerofoils*                                              | 579      |
|    | Appendix D | Case Studies                                            | 580      |
|    | Appendix E | Tire Data*                                              | 590      |
|    | References |                                                         | 591      |
|    | Index      |                                                         | 600      |
|    |            |                                                         |          |

 $^{*}$  These appendixes are on the Cambridge University Press Web site at www.cambridge.org/Kundu

# Symbols and Abbreviations

#### Symbols

| А                  | area                                                               |
|--------------------|--------------------------------------------------------------------|
| $A_1$              | intake highlight area                                              |
| $A_{th}$           | throat area                                                        |
| APR                | augmented power rating                                             |
| AR                 | aspect ratio                                                       |
| $A_W$              | wetted area                                                        |
| а                  | speed of sound; acceleration                                       |
| ā                  | average acceleration at $0.7 V_2$                                  |
| ac                 | aerodynamic center                                                 |
| В                  | breadth, width                                                     |
| b                  | span                                                               |
| $C_R, C_B$         | root chord                                                         |
| CD                 | drag coefficient                                                   |
| C <sub>Di</sub>    | induced drag coefficient                                           |
| C <sub>Dp</sub>    | parasitic drag coefficient                                         |
| C <sub>Dpmin</sub> | minimum parasitic drag coefficient                                 |
| C <sub>Dw</sub>    | wave drag coefficient                                              |
| $C_v$              | specific heat at constant volume                                   |
| C <sub>F</sub>     | overall skin friction coefficient; force coefficient               |
| $C_{f}$            | local skin friction coefficient; coefficient of friction           |
| C <sub>L</sub>     | lift coefficient                                                   |
| Cl                 | sectional lift coefficient; rolling moment coefficient             |
| C <sub>Li</sub>    | integrated design lift coefficient                                 |
| C <sub>Lα</sub>    | lift curve slope                                                   |
| $C_{L\beta}$       | sideslip curve slope                                               |
| C <sub>m</sub>     | pitching-moment coefficient                                        |
| C <sub>n</sub>     | yawing-moment coefficient                                          |
| Cp                 | pressure coefficient; power coefficient; specific heat at constant |
|                    | pressure                                                           |
| C <sub>T</sub>     | thrust coefficient                                                 |
| C <sub>HT</sub>    | horizontal tail volume coefficient                                 |

Cambridge University Press 978-0-521-88516-4 - Aircraft Design Ajoy Kumar Kundu Frontmatter <u>More information</u>

#### xxii

Symbols and Abbreviations

| C <sub>VT</sub>           | vertical tail volume coefficient                                         |
|---------------------------|--------------------------------------------------------------------------|
| $C_{VT}$<br>$C_{xxxx}$    | cost, with subscript identifying parts assembly                          |
| $C_{XXXX}$<br>$C'_{XXXX}$ | cost, heading for the type                                               |
| C <sub>xxxx</sub><br>CC   | combustion chamber                                                       |
| CG                        |                                                                          |
|                           | center of gravity                                                        |
| c                         | chord                                                                    |
| c <sub>root</sub>         | root chord                                                               |
| c <sub>tip</sub>          | tip chord                                                                |
| cp                        | center of pressure                                                       |
| D                         | drag; diameter                                                           |
| D <sub>skin</sub>         | skin friction drag                                                       |
| D <sub>press</sub>        | pressure drag                                                            |
| d                         | diameter                                                                 |
| E                         | modulus of elasticity                                                    |
| e                         | Oswald's factor                                                          |
| F                         | force                                                                    |
| f                         | flat-plate equivalent of drag; wing span                                 |
| f <sub>c</sub>            | ratio of speed of sound (altitude to sea level)                          |
| F <sub>ca</sub>           | aft-fuselage closure angle                                               |
| F <sub>cf</sub>           | front-fuselage closure angle                                             |
| $F_B$                     | body axis                                                                |
| $F_{I}$                   | inertia axis                                                             |
| $F_W$                     | wind axis                                                                |
| F <sub>xxx</sub>          | component mass fraction; subscript identifies the item (see Section 8.8) |
| F/ma                      | specific thrust                                                          |
| FR                        | fineness ratio                                                           |
| g                         | acceleration due to gravity                                              |
| Н                         | height                                                                   |
| h                         | vertical distance; height                                                |
| J                         | advance ratio                                                            |
| k                         | constant (sometimes with subscript for each application)                 |
| L                         | length; lift                                                             |
| $L_{FB}$                  | nacelle forebody length                                                  |
| $L_{HT}$                  | horizontal tail arm                                                      |
| $L_N$                     | nacelle length                                                           |
| $L_{VT}$                  | vertical tail arm                                                        |
| L                         | length                                                                   |
| М                         | mass; moment                                                             |
| $M_{\mathrm{f}}$          | fuel mass                                                                |
| $M_i$                     | component group mass; subscript identifies the item (see Section 8.6)    |
| M <sub>xxx</sub>          | component item mass; subscript identifies the item (see Section 8.6)     |
| $\dot{m}_a$               | airmass flow rate                                                        |
| $\dot{m}_f$               | fuel mass flow rate                                                      |
|                           |                                                                          |

#### Symbols and Abbreviations

xxiii

| $\dot{m}_p$                      | primary (hot) airmass flow rate (turbofan)                      |
|----------------------------------|-----------------------------------------------------------------|
| $\dot{m}_s$                      | secondary (cold) airmass flow rate (turbofan)                   |
| N                                | revolutions per minute; number of blades; normal force          |
| N <sub>e</sub>                   | number of engines                                               |
| n                                | load factor                                                     |
| ng                               | load factor $\times$ acceleration due to gravity                |
| P, p                             | static pressure; angular velocity about X-axis                  |
| pe                               | exit plane static pressure                                      |
| $p_{\infty}$                     | atmospheric (ambient) pressure                                  |
| $P_t, p_t$                       | total pressure                                                  |
| Q                                | heat energy of the system                                       |
| q                                | dynamic head; heat energy per unit mass; angular velocity about |
|                                  | <i>Y</i> -axis                                                  |
| R                                | gas constant; reaction                                          |
| Re                               | Reynolds number                                                 |
| Re <sub>crit</sub>               | critical Reynolds number                                        |
| r                                | radius; angular velocity about X-axis                           |
| S                                | area (usually with the subscript identifying the component)     |
| S <sub>H</sub>                   | horizontal tail reference area                                  |
| S <sub>n</sub>                   | maximum cross-sectional area                                    |
| S <sub>W</sub>                   | wing reference area                                             |
| S <sub>V</sub>                   | vertical tail reference area                                    |
| sfc                              | specific fuel consumption                                       |
| Т                                | temperature; thrust; time                                       |
| T <sub>C</sub>                   | nondimensional thrust                                           |
| T <sub>F</sub>                   | nondimensional force (for torque)                               |
| T <sub>SLS</sub>                 | sea-level static thrust at takeoff rating                       |
| T/W                              | thrust loading                                                  |
| t/c                              | thickness-to-chord ratio                                        |
| tf                               | turbofan                                                        |
| Ug                               | vertical gust velocity                                          |
| $U_{\infty}^{g}$                 | freestream velocity                                             |
| u<br>u                           | local velocity along X-axis                                     |
| V                                | freestream velocity                                             |
| VA                               | aircraft stall speed at limit load                              |
| VB                               | aircraft speed at upward gust                                   |
| VC                               | aircraft maximum design speed                                   |
| V <sub>D</sub>                   | aircraft maximum dive speed                                     |
| V <sub>S</sub>                   | aircraft stall speed                                            |
| $V_e$                            | exit plane velocity (turbofan)                                  |
| $V_{ep}$                         | primary (hot) exit plane velocity (turbofan)                    |
| $V_{es}$                         | secondary (cold) exit plane velocity (turbofan)                 |
| v es<br>W                        | weight; width                                                   |
| WA<br>WA                         | useful work done on aircraft                                    |
| W <sub>A</sub><br>W <sub>E</sub> | mechanical work produced by engine                              |
| WE<br>W/Sw                       | wing; loading                                                   |
| W/Ow                             | wing, ioaullig                                                  |

#### xxiv

#### Symbols and Abbreviations

- Xdistance along X-axisydistance along Y-axis
- y distance along Y-ax z vertical distance

#### **Greek Symbols**

| α                   | angle of attack                                                      |
|---------------------|----------------------------------------------------------------------|
| β                   | CG angle with vertical at main wheel; blade pitch angle; sideslip    |
|                     | angle                                                                |
| Г                   | dihedral angle; circulation                                          |
| γ                   | ratio of specific heat; fuselage clearance angle                     |
| $\Delta$            | increment measure                                                    |
| δ                   | deflection                                                           |
| ε                   | downwash angle                                                       |
| $\eta_{\mathrm{t}}$ | thermal efficiency                                                   |
| $\eta_{ m p}$       | propulsive efficiency                                                |
| $\eta_{0}$          | overall efficiency                                                   |
| $\theta$            | angle                                                                |
| Λ                   | wing sweep (subscript indicates the chord line)                      |
| λ                   | taper ratio                                                          |
| $\mu$               | friction coefficient; wing mass                                      |
| Σ                   | summation                                                            |
| ρ                   | density                                                              |
| θ                   | fuselage upsweep angle                                               |
| π                   | pi                                                                   |
| σ                   | atmospheric density ratio                                            |
| τ                   | thickness parameter                                                  |
| ω                   | angular velocity                                                     |
|                     |                                                                      |
| Subscripts          | (In many cases, subscripts are spelled out and are not listed here.) |
| a                   | aft                                                                  |
| ave                 | average                                                              |
|                     |                                                                      |

| а      | aft                                                     |
|--------|---------------------------------------------------------|
| ave    | average                                                 |
| ep     | primary exit plane                                      |
| es     | secondary exit plane                                    |
| f      | front; fuselage                                         |
| $f_b$  | blockage factor for drag                                |
| $f_h$  | drag factor for nacelle profile drag (propeller-driven) |
| fus    | fuselage                                                |
| HT     | horizontal tail                                         |
| Μ      | middle                                                  |
| N, nac | nacelle                                                 |
| 0      | freestream condition                                    |
| р      | primary (hot) flow                                      |
| S      | stall; secondary (cold) flow                            |
| t, tot | total                                                   |
|        |                                                         |

#### Symbols and Abbreviations

#### Abbreviations

| AB    | afterburning                                                   |
|-------|----------------------------------------------------------------|
| ACAS  | advanced close air support                                     |
| ACN   | aircraft classification number                                 |
| ACT   | active control technology                                      |
| AEA   | Association of European Airlines                               |
| AEW   | airborne early warning                                         |
| AF    | activity factor                                                |
| AGARD | Advisory Group for Aerospace Research and Department           |
| AGS   | aircraft general supply                                        |
| AIAA  | American Institute for Aeronautics and Astronautics            |
| AIP   | Aeronautical Information Publication                           |
| AJT   | advanced jet trainer                                           |
| AMPR  | Aeronautical Manufacturer's Planning Report                    |
| APR   | augmented power rating                                         |
| APU   | auxiliary power unit                                           |
| AST   | Air Staff Target                                               |
| ATA   | Aircraft Transport Association                                 |
| ATC   | air traffic control                                            |
| ATF   | advanced tactical support                                      |
| AVGAS | aviation gasoline (petrol)                                     |
| AVTUR | aviation turbine fuel                                          |
| BAS   | Bombardier Aerospace–Shorts                                    |
| BFL   | balanced field length                                          |
| BOM   | bill of material                                               |
| BPR   | bypass ratio                                                   |
| BRM   | brake release mass                                             |
| BVR   | beyond visual range                                            |
| BWB   | blended wing body                                              |
| CAA   | Civil Aviation Authority                                       |
| CAD   | computer-aided design                                          |
| CAE   | computer-aided engineering                                     |
| CAM   | computer-aided manufacture                                     |
| CAPP  | computer-aided process planning                                |
| CAS   | close air support; control augmentation system; calibrated air |
|       | speed                                                          |
| CAT   | clear air turbulence                                           |
| CBR   | California bearing ratio                                       |
| CCV   | control configured vehicle                                     |
| CFD   | computational fluid dynamics                                   |
| CFL   | critical field length                                          |
|       |                                                                |

Cambridge University Press 978-0-521-88516-4 - Aircraft Design Ajoy Kumar Kundu Frontmatter <u>More information</u>

#### xxvi

Symbols and Abbreviations

| 00     |                                           |
|--------|-------------------------------------------|
| CG     | center of gravity                         |
| CRT    | cathode ray tube                          |
| CV     | control volume                            |
| DBT    | design-build team                         |
| DCPR   | Design Controller's Planning Report       |
| DES    | detached eddy simulation                  |
| DFFS   | Design for Six Sigma                      |
| DFM/A  | design for manufacture and assembly       |
| DNS    | direct numerical simulation               |
| DOC    | direct operating cost                     |
| DTLCC  | design to life cycle cost                 |
| EAS    | equivalent air speed                      |
| EASA   |                                           |
|        | European Aviation Safety Agency           |
| EBU    | engine-build unit                         |
| ECS    | environment control system                |
| EDP    | engine-driven pump                        |
| EFIS   | electronic flight information system      |
| EGT    | exhaust gas temperature                   |
| EI     | emission index                            |
| EPA    | U.S. Environmental Protection Agency      |
| EPNL   | effective perceived noise level           |
| EPR    | exhaust-pressure ratio                    |
| ESDU   | Engineering Sciences Data Unit            |
| ESHP   | equivalent SHP                            |
| ESWL   | equivalent single wheel load              |
| ETOPS  | extended twin operations                  |
| EW     | electronic warfare                        |
| FAA    | Federal Aviation Administration           |
| FADEC  | full authority digital electronic control |
|        |                                           |
| FAR    | Federal Aviation Regulations (U.S.)       |
| FBW    | fly-by-wire                               |
| FEM    | finite element method                     |
| FPS    | foot, pound, second                       |
| FS     | factor of safety                          |
| GAW    | Global Atmosphere Watch                   |
| HAL    | Hindustan Aeronautics Ltd.                |
| HMD    | helmet-mounted display                    |
| HOTAS  | hands-on throttle and stick               |
| HP     | horse power; high pressure                |
| HSC    | high-speed cruise                         |
| HST    | hypersonic transport                      |
| H-tail | horizontal tail                           |
| HUD    | head-up display                           |
| IAS    |                                           |
|        | indicated air speed                       |
| IATA   | International Air Transport Association   |
| ICAO   | International Civil Aviation Organization |
| IIT    | Indian Institute of Technology            |

#### Symbols and Abbreviations

xxvii

| IMC            | instrument meteorelesies lean ditions        |
|----------------|----------------------------------------------|
| IMC            | instrument meteorological conditions         |
| INCOSE         | International Council of Systems Engineering |
| IOC            | indirect operational cost                    |
| IPPD           | Integrated Product and Process Development   |
| ISA            | International Standard Atmosphere            |
| ISRO           | Indian Space Research Organization           |
| JAA            | Joint Aviation Authority                     |
| JAR            | Joint Airworthiness Regulation               |
| JPT            | jet pipe temperature                         |
| JUCAS          | Joint Unmanned Combat Air System             |
| KE             | kinetic energy                               |
| KEAS           | knots equivalent air speed                   |
| km             | kilometer                                    |
| LA             | light aircraft                               |
| LAM            | lean and agile manufacturing                 |
| LCA            | light combat aircraft                        |
| LCC            | life cycle cost                              |
| LCD            | liquid crystal display                       |
| LCG            | load classification group                    |
| LCN            | load classification number                   |
| LCR            | lip contraction ratio                        |
| LD, L/D        | lift-to-drag (ratio)                         |
| LE             | leading edge                                 |
| LES            | large eddy simulation                        |
| LF             | load factor                                  |
| LFL            | landing field length                         |
| LOH            | liquid hydrogen                              |
| LP             | low pressure                                 |
| LPO            | long-period oscillation                      |
| LRC            | long-range cruise                            |
| LRU            | line replacement unit                        |
| MAC            | mean aerodynamic chord                       |
| MDA            | multidisciplinary analysis                   |
| MDO            | multidisciplinary optimization               |
| MEM (W)        | manufacturer's empty mass (weight)           |
| MEM (W)<br>MFD | multifunctional display                      |
| MFR            | mass flow rate                               |
| MoD            | Ministry of Defense                          |
|                | 5                                            |
| MOGAS<br>MP    | motor gasoline (petrol)                      |
|                | minor parts                                  |
| mph            | miles per hour                               |
| MPM            | manufacturing process management             |
| MRM            | maximum ramp mass                            |
| m/s            | meters per second                            |
| MTM            | maximum taxi mass                            |
| MTOM (W)       | maximum take off mass (weight)               |
| NACA           | National Advisory Committee for Aeronautics  |

Cambridge University Press 978-0-521-88516-4 - Aircraft Design Ajoy Kumar Kundu Frontmatter <u>More information</u>

xxviii

Symbols and Abbreviations

| NASA       | National Aeronautics and Space Administration        |
|------------|------------------------------------------------------|
| NBAA       | National Business Aircraft Association               |
| NC         | numerically controlled                               |
| NHA        | negative high angle of attack                        |
| NIA        | negative intermediate angle of attack                |
| NLA        | negative low angle of attack                         |
| nm         | nautical miles                                       |
| NP         | neutral point                                        |
| NRC        | non-recurring cost                                   |
| NTC        | normal training configuration                        |
| OC         | operational cost                                     |
| OEM (W)    | operator's empty mass (weight)                       |
| OEMF       | operational empty mass fraction                      |
| OEWF       | operational empty weight fraction                    |
| PAX        | passenger                                            |
| PCN        | pavement classification number                       |
| PCU        | power control unit                                   |
| PE         | potential energy                                     |
| PFD        | primary flight display                               |
| PHA        | positive high angle of attack                        |
| PIA        | positive intermediate angle of attack                |
| PLA        | positive low angle of attack                         |
| PLM        | product life cycle management                        |
| PNdB       | perceived noise decibel                              |
| PNL        | perceived noise decider                              |
| PPR        | *                                                    |
| PRSOV      | product, process, and resource                       |
|            | pressure-reducing shutoff valve                      |
| psfc       | power-specific fuel consumption                      |
| psi<br>DTU | pounds per square inch                               |
| PTU        | power transfer unit                                  |
| QFD        | quality function deployment                          |
| QUB        | The Queen's University Belfast                       |
| RAE        | Royal Aircraft Establishment                         |
| RAeS       | Royal Aeronautical Society                           |
| RANS       | Reynolds Average Navier–Stokes                       |
| RAT        | ram air turbine                                      |
| RC         | rate of climb, recurring cost                        |
| RCS        | radar cross-section signature                        |
| RD&D       | research, design, and development                    |
| RDDMC      | research, design, development, manufacture, and cost |
| RDD&T      | research, design, development, and test              |
| RFP        | Request for Proposal                                 |
| RJ         | regional jet                                         |
| R&M        | reliability and maintainability                      |
| rpm        | revolutions per minute; revenue passenger mile       |
| rps        | revolutions per second                               |
| RPV        | remotely piloted vehicle                             |
|            |                                                      |

#### Symbols and Abbreviations

| SAS     | stability augmentation system        |
|---------|--------------------------------------|
| SATS    | Small Aircraft Transportation System |
| SAWE    | Society of Allied Weights Engineers  |
| SEP     | specific excess power                |
| sfc     | specific fuel consumption            |
| SHP     | shaft horsepower                     |
| SI      | system international                 |
| SOV     | shutoff valve                        |
| SPL     | sound pressure level                 |
| SPO     | short-period oscillation             |
| SST     | supersonic transport                 |
| STOL    | short takeoff and landing            |
| STR     | structures                           |
| TAF     | total activity factor                |
| TAS     | true air speed                       |
| TBO     | time between overhauls               |
| t/c     | thickness to chord                   |
| TET     | turbine entry temperature            |
| TGT     | turbine guide vane temperature       |
| TOC     | total operating cost                 |
| TOFL    | takeoff field length                 |
| ТР      | thrust power                         |
| TQM     | Total Quality Management             |
| TR      | thrust reverser                      |
| TTOM    | typical takeoff mass (military)      |
| T&E     | training and evaluation              |
| UAV     | unmanned air vehicle                 |
| UCA     | unmanned combat aircraft             |
| UHBPR   | ultra-high BPR                       |
| UHC     | unburned hydrocarbons                |
| ULD     | unit load device                     |
| USDOT   | U.S. Department of Transportation    |
| VOC     | voice-operated control               |
| VPI     | Virginia Polytechnic Institute       |
| V-tail  | vertical tail                        |
| VTOL    | vertical takeoff and landing         |
| ZFM (W) | zero fuel mass (weight)              |
| . /     |                                      |

xxix

# Preface

This book is about the conceptual phase of a fixed-winged aircraft design project. It is primarily concerned with commercial aircraft design, although it does not ignore military aircraft design considerations. The level of sophistication of the latter is such that were I to discuss advanced military aircraft design, I would quickly deviate from the objective of this book, which is for introductory but extensive coursework and which provides a text for those in the industry who wish to broaden their knowledge. The practicing aircraft design engineer also will find the book helpful. However, this book is primarily meant for intensive undergraduate and introductory postgraduate coursework.

A hundred years after the first controlled flight of a manned, heavier-than-air vehicle, we can look back with admiration at the phenomenal progress that has been made in aerospace science and technology. In terms of hardware, it is second to none; furthermore, integration with software has made possible almost anything imaginable. Orville and Wilbur Wright and their contemporaries would certainly be proud of their progenies. Hidden in every mind is the excitement of participating in such feats, whether as operator (pilot) or creator (designer): I have enjoyed both no less than the Wright brothers.

The advancement of aerospace science and technology has contributed most powerfully to the shaping of society, regardless to which part of the world one refers. Sadly, of course, World War II was a catalyst for much of what has been achieved in the past six decades. My career spans the 1960s to the beginning of the twenty-first century, possibly the "golden age" of aeronautics! In that period, investment in the aerospace sector by both government and private organizations led to rapid changes in the acquisition, application, and management of resources. Aerospace design and manufacturing practices were transformed into their present manifestation.

The continuous changes in aircraft design and manufacturing procedures and methodologies have resulted in leaner aerospace infrastructure (sometimes to an "anorexic" level). New graduate-level engineers are expected to contribute to the system almost immediately, with minimal supervision, and to "do it right the first time." The route to the design office through apprentice training is not open to as many as it once was. Life is now more stressful for both employers and employees than it was the day I started my career: Organizational survivability and consequent loyalty are not what they used to be. The singular aim of this book is to