NEW DIRECTIONS IN LINEAR ACOUSTICS
AND VIBRATION

The field of acoustics is of immense industrial and scientific importance. The subject is built on the foundations of linear acoustics, which is widely regarded as so mature that it is fully encapsulated in the physics texts of the 1950s. This view was changed by developments in physics such as the study of quantum chaos. Developments in physics throughout the last four decades, often equally applicable to both quantum and linear acoustic problems but overwhelmingly more often expressed in the language of the former, have explored this. There is a significant new amount of theory that can be used to address problems in linear acoustics and vibration, but only a small amount of reported work does so. This book is an attempt to bridge the gap between theoreticians and practitioners, as well as the gap between quantum and acoustic. Tutorial chapters provide introductions to each of the major aspects of the physical theory and are written using the appropriate terminology of the acoustical community. The book will act as a quick-start guide to the new methods while providing a wide-ranging introduction to the physical concepts.

Matthew Wright is a senior lecturer in Acoustics at the Institute of Sound and Vibration Research (ISVR). His B.Eng. was in engineering acoustics and vibration, and his Ph.D. was in Volterra series characterization and identification of nonlinear bioacoustic systems, both from the University of Southampton. Since then he has worked on flow control for drag and noise reduction, turbofan inlet design, aeroacoustic theory, violin acoustics, and quantum chaos in acoustics, for the study of which he was awarded an EPSRC Advanced Research Fellowship. His current interests include wind farm noise and the neuroscience of hearing. He is a Fellow of the Institute of Acoustics, a Fellow of the Institute of Mathematics and Its Applications, a Senior Member of the American Institute of Aeronautics and Astronautics, a Member of the Acoustical Society of America, and the book reviews editor of the Journal of Sound and Vibration. He teaches musical instrument acoustics and acoustical design.

Richard Weaver received an A.B. degree in physics from Washington University in St. Louis in 1971 and a Ph.D. in astrophysics from Cornell University in 1977. He has been at the University of Illinois since 1981, after a research associateship in theoretical elastic wave propagation and ultrasonics at Cornell. He was elected a Fellow of the Acoustical Society of America in 1996 and received the Hetényi Award from the Society for Experimental Mechanics in 2004. He is associate editor of the Journal of the Acoustical Society of America.
New Directions in Linear Acoustics and Vibration

QUANTUM CHAOS, RANDOM MATRIX THEORY, AND COMPLEXITY

Edited by

Matthew Wright
University of Southampton

Richard Weaver
University of Illinois
Contents

Foreword by Michael Berry
Page vii

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Semiclassical Trace Formula</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Wave Chaos for the Helmholtz Equation</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>The Unreasonable Effectiveness of Random Matrix Theory for the Vibrations and Acoustics of Complex Structures</td>
<td>42</td>
</tr>
<tr>
<td>4</td>
<td>Gaussian Random Wavefields and the Ergodic Mode Hypothesis</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>Short Periodic Orbit Theory of Eigenfunctions</td>
<td>77</td>
</tr>
<tr>
<td>6</td>
<td>Chaotic Wave Scattering</td>
<td>96</td>
</tr>
<tr>
<td>7</td>
<td>Transfer Operators Applied to Elastic Plate Vibrations</td>
<td>110</td>
</tr>
<tr>
<td>8</td>
<td>Mesoscopics in Acoustics</td>
<td>123</td>
</tr>
<tr>
<td>9</td>
<td>Diagrammatic Methods in Multiple Scattering</td>
<td>131</td>
</tr>
<tr>
<td>10</td>
<td>Time-Reversed Waves in Complex Media</td>
<td>146</td>
</tr>
</tbody>
</table>
11 Ocean Acoustics: A Novel Laboratory for Wave Chaos 169
 Steven Tomsovic and Michael Brown

12 Mesoscopic Seismic Waves .. 188
 Michel Campillo and Ludovic Margerin

13 Random Matrices in Structural Acoustics 206
 Christian Soize

14 The Analysis of Random Built-Up Engineering Systems 231
 Robin Langley

References 251
Index .. 271
Foreword

Michael Berry

H. H. Wills Physics Laboratory, University of Bristol, Bristol, UK

In the early 1970s, Martin Gutzwiller and Roger Balian and Claude Bloch described quantum spectra in terms of classical periodic orbits, and in the mid 1970s it became clear that the random matrix theory devised for nuclear physics would also describe the statistics of quantum energy levels in classically chaotic systems. It seemed obvious even then that these two great ideas would find application in acoustics, but it has taken more than three decades for this insight to be fully implemented. The chapters in this fine collection provide abundant demonstration of the continuing fertility, in the understanding of acoustic spectra, of periodic orbit theory and the statistical approach. The editors’ kind invitation to me to write this foreword provides an opportunity to make a remark about each of these two themes.

First, here is a simple argument for periodic orbit theory being the uniquely appropriate tool for describing the acoustics of rooms. The reason for confining music and speech within auditoriums – at least in climates where there is no need to protect listeners from the weather – is to prevent sound from being attenuated by radiating into the open air. But if the confinement were perfect, that is, if the walls of the room were completely reflecting, sounds would reverberate forever and get confused. To avoid these extremes, the walls in a real room must be partially absorbing. This has the effect of converting the discrete eigenvalues with perfectly reflecting walls into resonances. I will argue that for real rooms the width of resonances usually exceeds their spacing. This is important because it casts doubt on the usefulness of the concept of an individual mode in assessing the acoustic response of rooms; a smoothed description of the spectrum seems preferable. But smoothing is precisely what periodic orbit theory naturally describes. When there is no absorption, the contributions from the long periodic orbits make the convergence of the sum problematic, frustrating the direct calculation of individual eigenvalues, for example, in quantum chaology. Absorption attenuates the long orbits, and the oscillatory contributions from few shortest orbits are sufficient to describe the acoustic response. But these few orbits are important: the crudest smoothing, based simply on the average spectral density, obliterates all the spectral oscillations and fails to capture the characteristics of most real rooms.

To assess the significance of absorption, start from the Weyl counting formula for the number N of modes with frequencies less than f, for a room of volume L^3:

$$N \sim \frac{L^3}{\pi^2} f.$$

This formula is an approximate result for infinite domains, which becomes exact for a box of finite size. The earlier approaches to calculating acoustic eigenvalues, based on the use of absorbing devices, were highly ad hoc. The periodic orbit theory is a more general method, based on the invariant manifolds surrounding the periodic orbits. To calculate the number of eigenvalues with frequencies less than f, one starts from a single periodic orbit and integrates its invariant manifold across all possible initial conditions.
if the speed of sound is $c = 330 \text{ m/s}$,

$$N = \frac{4\pi L^3 f^3}{3c^3}.$$

In the presence of absorption, modeled approximately by an exponential amplitude decay time T, that is, intensity $\sim \exp(-2t/T)$, the resonance width corresponds to a frequency broadening,

$$\Delta f = \frac{1}{2\pi T}.$$

Thus, incorporating the reverberation time T_{60}, corresponding to 60-dB intensity reduction, that is, $T = T_{60}/\log_{10} 10$, the number ΔN of modes smoothed over by the broadening is

$$\Delta N = 6\log_{10} \frac{L^3 f^2}{c^3 T_{60}}.$$

For estimates, we can choose the frequency middle A ($f = 440 \text{ Hz}$). Then, for a small auditorium with $L = 6 \text{ m}$, and a reverberation time $T_{60} = 0.7 \text{ s}$, $\Delta N \sim 23$, which is unexpectedly large for such a small room. For the Albert Hall in London, where the effective $L \sim 60 \text{ m}$, and taking $T_{60} = 2 \text{ s}$, $\Delta N \sim 8,200$. These estimates strongly suggest that there is little sense in studying individual modes.

Second, here is an unusual application of spectral statistics from 1993, inspired by a visit to Loughborough University, where I talked about quantum chaos and mentioned that the ideas could be usefully applied in acoustics. Afterward, Robert Perrin showed me his measurements (Perrin et al. 1983) of eigenfrequencies of one English church bell, ranging from 292.72 Hz – the lowest mode, called the hum, through the first few harmonics, with their traditional names Fundamental, Tierce, Quint, Nominal, Twister, Superquint – up to the 134th frequency of $9,285 \text{ Hz}$. This
provided sufficient data to make a first attempt to understand the frequency spacings distribution.

I did this in two ways. First, taking the whole set of 134 frequencies, unfolding them by fitting the counting function (spectral staircase) to a cubic function, and then calculating the 133 spacings, normalized to unit mean. The resulting cumulative spacings distribution $C(S) = \text{fraction of spacings less than } S$, fits the Poisson distribution $1 - \exp(-S)$ reasonably well (the thin and dashed curves in the figure). This is not surprising because the bell has approximate rotation symmetry, and the whole set of frequencies conflates subsets with different numbers l of nodal meridians (“angular momentum quantum number”). Fortunately the value of l for each frequency was given; l ranged from 0 to 28, but only the subsets with $0 \leq l \leq 10$ included sufficient frequencies to generate sensible statistics. In the second procedure, I unfolded these subsets separately and conflated the spacings afterwards, thereby generating the heavy curve in the figure. This is better fitted to the Wigner cumulative distribution $1 - \exp(-S^2/4)$ (the dotted curve in the figure), indicating strong repulsion of neighboring frequencies in each l-subset. The precise fit is not important because the Wigner distribution should apply when the ray geodesics on the bell – “classical paths” – are chaotic, whereas the vibrations of the bell, regarded as a thin elastic sheet, are probably integrable, with frequencies given by the modes of a one-dimensional “radial” equation, albeit of fourth order.

Reference