Index

\(a\) and \(b\)-values of Gutenberg–Richter law, 205, 240, 243
adibatic elastic constants, 10
aftershocks of earthquake, 206, 235, 236
aging law, 21
Amentons’ law, 17
angular frequency, 11
anisotropy
anisotropic elastic media, 8, 10, 11, 43, 65
anisotropic poroelastic media, 140
anisotropy parameters, elastic, 43
anisotropy of hydraulic diffusivity, hydraulic anisotropy, 124, 134, 153, 154, 162
apparent Gutenberg–Richter distribution, 245
apparent hydraulic diffusivity, 172
aspect ratio, 104
attenuation coefficient, 71, 139
average confining normal stress, 58

\(b\)-value, 215, 222, 240, 243
back front of induced seismicity, 148, 152, 162, 168, 172, 175
back front of seismicity, x, 147, 177
Barnett Shale case study, 177, 178, 208
Basel case study, 208, 221, 225
biharmonic equation, 14
Biot modulus, 58
Biot–Willis coefficient, 58, 110, 184
borehole fluid injections, x
bottom hole pressure, 157, 165
Boussinesq equation, 187, 188
brittle failure, 14, 20, 124
brittle–ductile transition zone, 119
Brown–Korringa equation, 61
bulk compressibility
of grain material, 57
of drained rocks, skeleton, 57, 104, 109
of fluid, 56, 177
of rock, 9, 60, 103

bulk modulus
of grain material, 58
of skeleton, 58, 61
of undrained material, 59, 61
of rock, 9, 61, 105, 106, 108
characteristic frequency of global flow, 68, 69
characteristic frequency of Poiseuille flow, 64, 69
characteristic magnitude, 239
Christoffel equation, 11
coefficient of internal friction, 17, 20
cohesion, 18
compatibility equations, 2
completeness magnitude, 208, 209
compliance tensor, 5, 6, 51–53, 57, 103
crash tensor of undrained rock, 60
compliant porosity, 129, 150–152, 159
critical pore pressure, 129, 150–152, 159
critical pore-pressure perturbation, 123
critical stress, 24
criticality of rocks, 150, 154, 155
crustal faults, 124
crystalline rocks, 118, 154
Darcy’s law, 63, 76, 184, 200
Index

273
decay rate of seismicity, 206
deformation, 1–4, 9, 10, 54, 56, 60, 63, 90
deformation of undrained rock, 90
differential isochrone, 42
differential pressure, 103, 104, 108, 114
differential stress, 17, 119
diffusion
equation, 74–81, 84–88, 126, 144, 151, 153, 159
front, 199
wave, 70, 74, 128, 138
diffusivity, hydraulic
exponential, 190–192
of fracture, 177
of rocks, 70, 75, 126, 128, 130, 134, 143, 144, 149,
151, 152, 161, 166, 172, 177, 185, 189, 212
power law, 182–185
principal components, tensor, 136
tensor, 134, 135, 141, 154, 155, 157, 161, 162, 196
dilatation, 8, 14, 58, 63, 65, 113
dilatational waves, 65–74
dimensional analysis, 186, 190
dip, fault plane, 29
Dirac function, 12
directivity effect, rupture propagation, 35
Dirichlet boundary condition, 190
dispersion equation, 11, 68
displacement, 1, 10, 13, 14, 49–51, 53, 62–64, 66, 67,
71, 74, 77, 80, 82–86, 90, 92, 93
double couple, 32
double-dot product, 5, 8, 58, 61
dynamic features of induced seismicity, 159
dynamic friction coefficient, 21
dynamic viscosity, 63
earthquake amplitude spectrum, 35
earthquakes, 14
effective diffusivity, 143, 145, 190, 195
effective medium, 105, 107, 143, 154
effective normal stress, 124
effective permeability, 144, 177
effective stress, 18, 50, 52, 54, 58, 103, 133
effective-stress coefficient, 57, 103, 113–115
effective-stress coefficient for porosity, 103
effective-medium theory, 105
eikonal equation, 138–143, 146
elastic anisotropy, 10, 126
elastic body, 2
elastic compliances, 5, 7, 48
elastic deformations, 2
elastic forces, 2–4, 10, 64, 73
elastic moduli, 6, 8, 108–110
elastic piezo-sensitivity, 109
elastic stiffnesses, 5, 7, 8
elastic strain energy, 5, 6
elastic waves, 10–13, 30–35, 65, 73, 125
ergodicity assumption, 147, 150
error function, 85
Eulerian formulation, 2
event probability, 159, 203, 231, 258
event rate, 159, 203, 206, 220, 258
event-location error, 160
exponential diffusion, 190–194
extensional tectonic regime, 100
external surface of a porous sample, 49, 51–53
factorized anisotropy and non-linearity, 197
failure criterion stress, FCS, 20, 99, 124, 131
far field, 13, 33, 92
far-field approximation of Green’s function, 33
fault plane, 16, 17, 20, 29
fault system, 120, 122
fault-displacement vector, 28
fault-guided induced seismicity, 122
Fenton Hill case study, 157
Fermat’s principle, 140
filtration velocity, 62–64, 144, 166, 184, 200
filtration, non-steady-state, 146
fluid flow, 73
fluid incompressible, 165
fluid viscosity, 63, 64, 126, 136, 177
fluid-loss coefficient, 166, 172, 173, 176
fluid-mass conservation, 63, 186, 203
fluid-mass diffusion, 74
fluid-mass dipole, 82
focal mechanisms, 36
foot wall, fault, 27, 28
fractal, 238, 239
fracture closure pressure, 165
fracture toughness, 26
Frenkel–Biot equations, 124, 125
Frenkel–Biot slow wave, ix
friction angle, 19, 20, 131
friction coefficient, 17–20, 234
coefficient of internal friction, 17
gas shale, 166, 177–179, 244
Gassmann equation, 61, 103
geometric non-linearity, 101
geometrical spreading, 131, 133
geometrical-optics approximation, 138, 142, 143
geothermal site, 154, 209, 219, 253
goethothermal system, 89, 154, 180, 219, 242, 244
German Continental Deep Borehole, KTB, see KTB
global flow, 62, 68, 73, 76
grain material, 49, 50, 53, 56–61, 102, 110, 111
Green’s function, 12, 13, 31, 81, 83, 84, 148
Griffith’s failure criterion, 22, 23, 26
group velocity, 12
Gutenberg–Richter law, 216, 222, 224, 227, 238, 240,
242, 244
Gutenberg–Richter statistics, 205, 230
hanging wall, fault, 28
harmonic function, 14
Hashin–Strikman bounds, 105, 106, 110
Haskell fault model, 35
Heaviside function, 12, 83, 147
Hooke’s law, 4–6, 8–10, 51–53, 55–57, 62, 86, 102
hydraulic fracture, 149, 164–177
hydraulic fracturing, x, 165, 169, 176, 181, 182, 187, 188, 219, 242, 244, 253
hypocenter, 42, 123, 129
index of non-linearity, 185, 198
induced and triggered events, 250
injection pressure, 118, 155
inter-event time, 220
internal friction, 17, 20
internal surface of a porous sample, 49, 51–53
irrotational displacement field, 74, 75, 80, 82, 83, 90, 93
isothermal elastic moduli, 9, 10
isotropic medium, 8–11, 13, 33–37, 57–62, 151
jacketed sample, 52
kinematic features of induced seismicity, 149, 159
Kozeny–Carman relation, 114
Kronecker matrix, 6
KTB, 40, 43, 107, 109, 118–124, 156, 190, 218, 219, 245
Lagrangian formulation, 1, 2
Lamé equation, 14
Laplace equation, 19
Laplace equation, 14
Laplace operator, 14
linear diffusion, 133
linear elasticity, 1–13, 25–33, 53, 83
linear relaxation, ix
linear vector dipole, 32
local flow, 72
location error, 44, 133, 154, 251
lock-up angle, 19
longitudinal (P-) waves, 11, 12, 42, 69, 72, 78, 93, 125
magnitude probabilities, 202, 205, 253
Mandel–Cryer effect, 93
material infilling pore space, 54, 55
maximum compressional stress, 96–100, 165
maximum induced magnitude, 252
mean stress, 17
mesoscopic flow, 73
microearthquakes, 37
Microseismic monitoring, ix
microseismicity triggering, ix
minimum compressional stress, 96, 165
minimum critical pressure, 207
minimum-compression in-situ stress, 97
modes of cracks, 24
modified Griffith failure criterion, 23
Mohr’s circle, 17, 22, 98
Mohr–Coulomb failure criterion, 18–23, 227, 239
moment, seismic
density tensor, 31
magnitude, 36
rate, 34
scalar, 36
spectrum, 34, 35
tensor, 33
momentum conservation, 10, 62
monoclinic media, 7
Neumann boundary condition, 199
non-linear diffusion of pore pressure, 163, 177–200
non-linear elastic moduli, 110
non-linear fluid-rock interaction, 203
normal elastic waves, 94
normal fault, 29
normal faulting, 15, 100
normal stress, 16
Oguchi case study, 209
Omori law, 206
optimal angle, fault plane orientation, 19, 20
orthorhombic media, 7, 60
P-wave modulus, 12, 66
Paradox Valley case study, 210
peak ground acceleration, 220
penny-shaped crack, 23, 24, 105, 107, 229
permeability, hydraulic
compliance, 116, 190
of rock, ix, x, 10, 114, 122, 126, 136, 149, 162, 172, 177, 185
tensor, 63, 64, 126, 134, 137, 184
upsampling, 134, 145
phase function, 133
phase slowness, 140
phase velocity, 11, 69–72
piezo-sensitivity, 109–112
F-thereom, 186
PKN model of a hydraulic fracture, 166
plane wave, 10, 11, 67, 70, 78, 146
point source of fluid injection, 83, 159
Poiseuille flow, 64
Poison process
homogeneous, 220
non-homogeneous, 221
Poisson’s ratio, 9, 59, 86, 110, 112
polarization, 11, 42, 68, 71
pore pressure
diffusion, ix, 74, 149, 153, 168
front, 189
in rock, 18, 49, 102, 113, 126
perturbation, time harmonic, 126, 127, 139, 150
relaxation, 168
pore space, 48
porodynamics, ix
poroelastic coupling, 94–113, 134
poroelastic stress coefficient, 85, 86, 112, 131
Index

poroelastic systems, 48–52
porosity, 49, 53, 102–114
potency density tensor, 28, 29
power-law, 116, 185, 204, 208
power-law diffusion, 185, 192
power-law diffusivity model, 191–196
power-law function, 114, 238
power-law statistics, 229
principal tectonic stresses, 15, 97, 118
probability density function, criticality, 150–153, 155, 157, 159
probability density function, PDF, 150, 221, 230, 237–239
probability of earthquake occurrence, 159, 202, 203
probability of seismic events, 159, 201–224
proppant, 168, 172, 219
quasi P-waves, 11, 45
quasi S-waves, 11, 45
quasi-static approximation, 76–95
r–t plot, 128–132, 165, 175, 178, 190
radial stress, 92, 93
rake, fault plane, 29
random criticality field, 150
reciprocity theorem, 54, 116
reference seismicity rate, 207
relaxation radius, 128, 191
relaxation zone of pore pressure, 128
representative volume, 48, 62, 64
reverse fault, 29
reverse faulting, 100
Rhine Graben, 154
rigid motions, 1
rock failure, 20, 22, 113, 114, 150
rotational moments, 3, 32
rotational waves, 65, 67, 68, 71
rupture surface, 27, 35, 202, 224, 227–238
rupture velocity, 26, 35
saturating fluid, 48, 53
scalar hydraulic diffusivity, 128, 154
second dilatational wave, 70–72
second Newtonian law, 10, 62
seismic emission, 37
seismic event, 1, 127
seismic hazard indicator, xi, 220
seismic moment, 36, 215, 237
seismic multiplets, 38
seismic P-wave, 12, 69, 76
seismic reflectors, 120, 122
seismic trace, 37–40
seismic velocity, 106, 108
seismic waves, 10, 32, 37, 59, 72, 73, 75, 82, 83
seismicity triggering, 118
seismogenic index, 201, 215–222
seismograms, 37
self similarity, 238
shear (S-) waves, 11, 42, 66, 69
shear crack, 24
shear failure, 14
shear modulus, 9, 62, 106
shear stress, 17–19
Skempton coefficient, 59, 61, 113
slip event, 28, 166
slip law, 21
slip vector, 28–30
slow wave, 72–94, 125, 128, 140, 146
slow wave, harmonic spherical, 139
slow wavefield, 72–94, 143
slowness, 139
small deformations, 2
Soultz case study, 154, 207, 221
spatial averaging, 144
spatial density of events, 159
spatio-temporal evolution of seismicity, 125, 127–130
specific magnitude, 217
spherical wave, 13, 33, 133
squirt flow, 73
stability condition, 6, 9, 44
statistical ensemble, 147, 150
statistically homogeneous random field, 202
statistics of criticality, 150
steady-state filtration, 145
step function, 127
stress porosity, 105, 110, 111, 115
stiffness tensor of skeleton, 57
stiffness tensor of undrained rock, 62
stimulated volume, 224, 227–229, 232, 235
storage coefficient, 70, 126, 144, 200
strain tensor, 1, 2, 10, 27, 50, 54, 113
strength of injection source, 92, 138, 149, 151, 155
strength of pre-existing cracks, 150
stress drop, 26, 27, 36, 237–248, 252
stress force, 2, 25
stress intensity factor, 25
stress sign notation, 15
stress tensor, 3, 4, 13, 51, 57, 60, 78, 86
stress–strain relations, 4, 49, 55, 59, 87
strike, fault plane, 29
strike-slip fault, 29
strike-slip faulting, 15
subduction zone, 235
summation on repeated indices, 4
superposition principle, 12
surface energy per unit area of a crack, 24
tectonic potential, 204, 211
tectonic stress, 15, 30, 95
tensile crack, 22, 24
tensile stress, 4, 22
Terzaghi’s effective stress, 18, 114
thrust fault, 29
thrust faulting, 15, 100
tight gas reservoir, 166, 169
tight gas sandstone, 166–173
tight rock, 9, 109, 111, 113, 132, 166

time-harmonic plane wave, 11, 67
torques, 3
tortuosity, 65
total moment tensor, 33
total stress, 49, 86
traction, 2–4, 15, 16, 49, 95, 117
transformation strain, 30
transverse isotropy, 8, 43–45, 60
treatment fluid, 165, 166, 168, 172, 177, 178
triclinic media, 7
triggering front, 118, 127–149, 152, 158, 161–166, 176–200
undrained rock, 55, 59–62, 66, 69, 83, 88–90, 94, 108
undrained system, 54, 55, 59, 61, 79
uniaxial strain, 87
uniaxial tensile strength, 22, 165
unjacketed sample, 50, 52

Index

vector of fluid flux, 62, 146
velocity strengthening, 21
velocity weakening, 21
viscosity of a fluid, 63, 64, 145, 177
Voigt's notations, 6
volume averaged strain, 27, 50, 53
volume balance, 164, 165, 168, 181, 187
volume of a hydraulic fracture, 166
volumetric hydraulic fracturing, 177, 180, 183
volumetric strain, 8

wave number, 68–71, 73, 142
wave vector, 11, 67, 68, 70, 71
wavelength, 13, 32, 33, 71, 128
weak anisotropy, 44
well-head pressure, 119, 120, 155, 157
width of fracture, 173