
1

Elasticity, seismic events and microseismic monitoring

By “seismic events” we understand earthquakes of any size. There exists a broad
scientific literature on earthquakes and on the processing of seismologic data. We
refer readers interested in a detailed description of these subjects to correspond-
ing books (see, for example, Lay and Wallace, 1995, and Shearer, 2009). We
start this book with an introductory review of the theory of linear elasticity and
of the mechanics of seismic events. The aim of this chapter is to describe classi-
cal fundamentals of the working frame necessary for our consideration of induced
seismicity. We conclude this chapter with a short introduction to methodical aspects
of the microseismic monitoring.

1.1 Linear elasticity and seismic waves

Deformations of a solid body are motions under which its shape and (or) its size
change. Formally, deformations can be described by a field of a displacement
vector u(r). This vector is a function of a location r of any point of the body in an
initial reference state (e.g., the so-called unstrained configuration; see, for exam-
ple, Segall, 2010). Initially we accept here the so-called Lagrangian formulation,
i.e. we observe motions of a given particle of the body.

However, the field of displacements describes not only deformations of the body
but also its possible rigid motions without changes of its shape and its size, such as
translations and/or rotations.

In contrast to rigid motions, under deformations, distances (some or any)
between particles of the body change. Therefore, to describe deformations, a
mathematical function of the displacement field is used that excludes rigid motions
of a solid and describes changes of distances between its particles only. This func-
tion is the strain tensor ε, which is a second-rank tensor with nine components εi j .
Here the indices i and j can accept any of values 1, 2 and 3 denoting the coordinate
directions of a Cartesian coordinate system in which the vectors u and r have been
defined.
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2 Elasticity, seismic events and microseismic monitoring

1.1.1 Strain

In the case of small deformations (i.e. where absolute values of all spatial deriva-
tives of any components of the vector u(r) are much smaller than 1) the strain
tensor has the form of a 3 × 3 symmetric matrix with the following components:

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (1.1)

This form of the strain tensor describes deformations within a small vicinity of a
given location. This form remains the same also by consideration of small defor-
mations in the Eulerian formulation (see Segall, 2010), where instead of a motion
of a given particle of the body (i.e. the Lagrangian approach) rather a motion at
a given coordinate location (i.e. at a given point of the space) is considered. In
this book we accept the small-deformation approximation and do not distinguish
between the Lagrangian and Eulerian approaches.

Strains εi j can be arbitrary (small) numbers. However, because of their definition
(1.1) they cannot be arbitrarily distributed in space. Spatial derivatives of strains
must be constrained by the following compatibility equations (see Segall, 2010):

∂2εi j

∂xk∂xl
+ ∂2εkl

∂xi∂x j
= ∂2εik

∂x j∂xl
+ ∂2ε jl

∂xk∂xi
. (1.2)

Deformations of a body results from applications of loads to it. Deformations
that will disappear completely if the loads are released are called elastic. Bodies
that can have elastic deformations are called elastic bodies.

1.1.2 Stress

Elastic bodies resist their elastic deformations by means of elastic forces. Elastic
forces in a solid body are analogous to a pressure in an ideal fluid. They occur due
to mutual interactions of elastically deformed parts of the body. These interactions
in turn take place on surfaces where the parts of the body are contacting each other
(see also Landau and Lifshitz, 1987).

Let us consider an elementary part of a body under deformation (see Figure 1.1).
Other parts of the body act by means of elastic forces onto this elementary part over
its surface S. Let us consider a differentially small element of this surface at its
arbitrary point r. Such a surface element can be approximated by a differentially
small part of a plane of area d S tangential to S at point r with a unit normal n
directed outside this part of the surface. Owing to elastic deformations an elastic
force dF(r, n) (also called a stress force) acts on the plane element with the normal
n. The following limit defines a traction vector:
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1.1 Linear elasticity and seismic waves 3

dF(r,n)
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Figure 1.1 A sketch for defining a traction.

τ (r, n) = lim
d S→0

dF(r, n)

d S
. (1.3)

Note that the traction has the same physical units as a pressure in a fluid (e.g. Pa
in the SI system). Note also that the traction is a function of a location r and of an
orientation of the normal n.

Let us consider three plane elements parallel to coordinate planes at a given
location. We assume also that their normals point in the positive directions of
coordinate axes, which are perpendicular to the plane elements. Therefore, the cor-
responding three normals coincide with the unit basis vectors x̂1, x̂2 and x̂3 of the
Cartesian coordinate system under consideration. Tractions acting on these plane
elements are τ (r, x̂1), τ (r, x̂2) and τ (r, x̂3), respectively. A 3×3 matrix composed
of nine coordinate components of these tractions defines the stress tensor, σ . Its
element σi j denotes the i th component of the traction acting on the surface with
the normal x̂j:

σi j = τi (x̂ j ). (1.4)

Let us consider a differentially small elastic body under an elastic strain and
assume for all deformation processes enough time to bring parts of this body into
an equilibrium state. From the equilibrium conditions for the rotational moments
(torques) of elastic forces it follows that the stress tensor is symmetric:

σi j = σ j i . (1.5)
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4 Elasticity, seismic events and microseismic monitoring

Note that if the body torques are negligible (which is usually the case) this relation
is valid even in the case of the presence of rotational motions. This is because
of the fact that, in the limit of a small elementary volume, the inertial forces are
decreasing faster than the elastic force torques (see Auld, 1990, volume 1, section
2, for more details).

Similarly, a consideration of forces (elastic forces, body forces and inertial
forces) acting on a volume element in the limit of its vanishing volume shows
that elastic forces applied to the surface of such a volume must be in balance (see
Auld, 1990, volume 1, section 2, for more details). It then follows that a traction
τ (r, n) acting on an arbitrarily oriented plane surface element can be computed by
using the stress tensor:

τi (n) = σi j n j . (1.6)

Note that here and generally in this book (if not specially mentioned) we accept
the agreement on summation on repeated indices, e.g. ai bi = a1b1 + a2b2 + a3b3.

Definition (1.4) of the stress tensor corresponds to a common continuum
mechanics sign convention that tensile stresses are positive and compressive
stresses are negative (see, for example, a thin elementary volume and tractions
acting on its outer surface with normals pointing outside this volume; Figure 1.2).

1.1.3 Stress–strain relations

The strain-tensor and stress-tensor notations give a general form of an observa-
tional fact, known as Hooke’s law, that small elastic deformations are proportional
to elastic forces:

dB

x3

x2

x1

n(B–dB) n(B)

τ(B)τ(B–dB) B

Figure 1.2 A sketch illustrating positiveness of tensile stresses. Indeed,
equation (1.6) requires that the components σ22 in the both points, B and B − d B
must be positive. Note that the point B is shown as a dot on the right-hand side
of the disc. The point denoted as B − d B is not seen. It is on the left-hand side of
the disc; d B denotes the width of the disc.
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1.1 Linear elasticity and seismic waves 5

εi j = Si jklσkl, (1.7)

where the fourth-rank tensor S, with components Si jkl , is the tensor of elastic com-
pliances. Note that their physical units are inverse to the unit of stress: 1/Pa. Owing
to the symmetry of the strain and stress tensors, the tensor of elastic compliances
has the following symmetries:

Si jkl = Sjikl = Si jlk . (1.8)

Another fourth-rank tensor C, with components Ci jkl , called the tensor of elastic
stiffnesses, yields an alternative formulation of Hooke’s law:

σi j = Ci jklεkl . (1.9)

From this equation it is clear that the tensor of elastic stiffnesses also has the
symmetry:

Ci jkl = C jikl = Ci jlk . (1.10)

Both the tensor of elastic stiffnesses and the tensor of elastic compliances are
physical characteristics of a given elastic body.

Often both forms of Hooke’s law (1.7) and (1.9) are written symbolically as (see
Auld, 1990):

ε = S : σ , σ = C : ε. (1.11)

Here the double-dot (or double scalar) products denote summations over pairs of
repeating indices in (1.7) and (1.9), respectively.

A deformed elastic body possesses an elastic strain energy. At zero strain this
energy is equal to zero. With increasing strain by an increment dεkl due to the stress
σkl , the volumetric density of this energy (energy per unit volume) must increase
by the increment d E = σkldεkl (see Landau and Lifshitz, 1987). The tensor of
elastic stiffnesses can then be used to define the density of the elastic strain energy
(by integration of the increment d E) as a positive quadratic function of non-zero
strains:

E = 1

2
Ci jklεi jεkl = 1

2
σklεkl = 1

2
Skli jσklσi j , (1.12)

where in the two last expressions the two forms of Hooke’s law (1.7) and (1.9) have
been used. The product εi jεkl remains unchanged if the index pair i j is replaced by
kl and kl is replaced by i j , respectively. Thus, the tensor of elastic stiffnesses as
well as the the tensor of compliances must also have the following symmetry:

Ci jkl = Ckli j , Si jkl = Skli j . (1.13)
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6 Elasticity, seismic events and microseismic monitoring

Symmetries (1.8), (1.10) and (1.13) of the stiffness and compliance tensors
reduce the number of their independent components. From 81 possible compo-
nents of a tensor (tensors’ indices can be equal to 1, 2 or 3) only 21 components
are mutually independent. These components are also called elastic moduli or
elastic constants (the latter notation neglects such effects as pressure dependence
and temperature dependence of these quantities). The requirement that the elastic
strain energy must be a positive-definite quadratic form of arbitrary strain/stress
components (called also the stability condition) provides additional restrictions on
allowed values of elastic moduli.

1.1.4 Elastic moduli

The tensors Ci jkl and Si jkl are inverse to each other so that (see Cheng, 1997):

Ci jkl Sklmn = 1

2
(δimδ jn + δinδ jm), (1.14)

where quantity δkl is the so-called Kronecker matrix, with components δkl = 1, for
k = l, and δi j = 0 in other cases.

The tensors of stiffnesses and compliances can be expressed in convenient matrix
forms by using their 21 independent components, respectively. For this, one uses
the so-called contracted notation (or the Voigt notations). Let us introduce capital
indices (e.g. I, J, etc.), which can take values 1, 2, 3, 4, 5 and 6. The following
correspondence between the capital indices and the pairs of the usual indices (i j)
is assigned: 1 → 11, 2 → 22, 3 → 33, 4 → 23, 5 → 13, and 6 → 12. In these
notations Hooke’s law has the following forms (Jaeger et al., 2007; Auld, 1990):⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

2ε23

2ε13

2ε12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

s11 s12 s13 s14 s15 s16

s12 s22 s23 s24 s25 s26

s13 s23 s33 s34 s35 s36

s14 s24 s34 s44 s45 s46

s15 s25 s35 s45 s55 s56

s16 s26 s36 s46 s56 s66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ23

σ13

σ12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (1.15)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ23

σ13

σ12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

2ε23

2ε13

2ε12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (1.16)

In these two equations the contracted notation is used in the two symmetric 6 × 6
matrices of components sI K and cI K , where I corresponds to a pair of normal
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1.1 Linear elasticity and seismic waves 7

indices, e.g. i j , and K corresponds to another their pair, e.g. kl. It is clear that
these matrices are inverse to each other, i.e. their matrix product gives a 6 × 6
unit matrix. Their components are also called elastic compliances and elastic stiff-
nesses, respectively. The relations between the contracted-notation stiffness matrix
components and corresponding components of the fourth-rank tensor of elastic
stiffnesses is simple: cI K = Ci jkl . This correspondence for the compliances is a
bit more complicated: sI K = Si jkl if I, K = 1, 2, 3, sI K = 2Si jkl if I = 1, 2, 3 and
K = 4, 5, 6, and sI K = 4Si jkl if I, K = 4, 5, 6.

The higher the physical symmetry of the elastic medium, the smaller is the num-
ber of non-vanishing independent elastic constants. For mineral crystals, different
symmetries are of relevance (see Auld, 1990, for a comprehensive description). In
the most general case of triclinic crystals the elastic properties are characterized by
21 independent compliances (or, equivalently, 21 independent stiffnesses). This sit-
uation corresponds to equations (1.15) and (1.16), respectively. If the medium has a
single symmetry plane (the monoclinic symmetry) then the number of independent
constants will be reduced to 13 (for example, if we assume the xy coordinate plane
as the plane of symmetry, this will result in the invariant coordinate transformation
z → −z and thus, all elastic constants with odd numbers of index 3 must be equal
to zero). This situation corresponds, for example, to a layered medium with a single
system of plane cracks oblique to the lamination plane.

One of most relevant symmetries for rocks is the orthorhombic one. It can be
applied to describe different geological situations, like rocks with three mutu-
ally perpendicular systems of cracks or horizontally layered rocks permeated by
a single system of aligned vertical fractures. An orthorhombic medium has three
mutually perpendicular symmetry planes. This means that in such a medium under
corresponding coordinate transformations (reflections across symmetry planes) the
tensors of elastic constants must remain unchanged. In a coordinate system with
axes normal to the symmetry planes it follows that all components Ci jkl and Si jkl

with odd numbers of any index must be equal to zero. This leads to the following
forms of the compliance and stiffness matrices, respectively:⎡

⎢⎢⎢⎢⎢⎢⎢⎣

s11 s12 s13 0 0 0
s12 s22 s23 0 0 0
s13 s23 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s55 0
0 0 0 0 0 s66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

;

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (1.17)

We see that nine independent constants are enough to completely describe the
elastic properties of an orthorhombic medium. The compliances can be obtained
from stiffnesses by the matrix inversion and vice versa. In the case of an arbitrary
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8 Elasticity, seismic events and microseismic monitoring

coordinate orientation, three additional constants (corresponding to three rotational
angles) are required.

A useful and geologically relevant subset of orthorhombic symmetry is
transverse isotropy. Layered sedimentary rocks can frequently be described by
this symmetry. The plane of lamination is then the symmetry plane. If one of
the coordinate planes coincides with the symmetry plane, then a coordinate axis
normal to the symmetry plane will be an axis of an arbitrary-angle rotational
symmetry. This symmetry results in four additional relations between the elastic
constants, reducing the number of independent ones to five. If the symmetry axis
coincides with the direction of the axis x3, then in equations (1.17) additional rela-
tions will be (Auld, 1990): s22 = s11, s23 = s13, s55 = s44 and s66 = 2(s11 − s12).
Correspondingly, c22 = c11, c23 = c13, c55 = c44 and c66 = (c11 − c12)/2.

Finally, in the case of an elastic isotropic medium (all coordinate axes are
arbitrary-angle rotational symmetry axes and any plane is a plane of symmetry),
two constants remain independent only: s22 = s33 = s11, s23 = s13 = s12,
s66 = s55 = s44 and s44 = 2(s11 − s12). Correspondingly, c22 = c33 = c11,
c23 = c13 = c12, c66 = c55 = c44 and c44 = (c11 − c12)/2. The independent elastic
stiffnesses are usually denoted as the elastic moduli λ and μ, so that c44 = μ and
c12 = λ. Inverting the matrix ci j we obtain compliances of an isotropic medium:

s11 = λ + μ

μ(3λ + 2μ)
, s12 = − λ

2μ(3λ + 2μ)
, s44 = 1

μ
. (1.18)

Let us consider a volumetric strain (dilatation) of an elementary volume V of an
arbitrary anisotropic elastic medium:

ε ≡ dV

V
. (1.19)

We can choose such an elementary volume to be a cuboid with side lengths lx , ly

and lz . Thus we see that

ε = d(lx lylz)

lx lylz
= dlx

lx
+ dly

ly
+ dlz

lz
= ε11 + ε22 + ε33. (1.20)

Let us further assume that this dilatation is a result of a hydrostatic stress,
σkl = −pδkl , applied to the medium, where p is the pressure loading the medium.
A general relation between the dilatation and the pressure can be obtained by tak-
ing a double-dot product (the scalar product) of Hooke’s law (1.7) with the δi j (i.e.
multiplying the both sides with δi j and summing up over repeating indices):

ε = −Siikk p. (1.21)
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1.1 Linear elasticity and seismic waves 9

The proportionality coefficient here is a bulk compressibility Cmt of the elastic
material:

Cmt ≡ Siikk = S1111 + S2222 + S3333 + 2(S1122 + S1133 + S2233)

= s11 + s22 + s33 + 2(s12 + s13 + s23). (1.22)

It follows from (1.19)–(1.21) that the bulk compressibility of a sample has the
following relation to its bulk density ρ:

Cmt = − dV

V dp
= − d(1/ρ)

(1/ρ)dp
= 1

ρ

dρ

dp
. (1.23)

In the case of an isotropic elastic material we obtain (see equations (1.22) and
(1.18)) Cmt = 3s11 + 6s12 = 1/(λ + 2μ/3). Therefore,

K = λ + 2μ/3 (1.24)

is a bulk modulus describing the stiffness of the material to volumetric
deformations.

The following representation of the stiffness tensor of an isotropic medium is
useful (Aki and Richards, 2002):

Ci jkl = λδi jδkl + μ(δikδ jl + δilδ jk). (1.25)

In the same terms, Hooke’s law for isotropic elastic media can be written in the
following form:

σi j = λδi jε + 2μεi j . (1.26)

From this equation it follows that μ is a shear modulus of the material, describing
its stiffness to shear deformations (under which i �= j). It follows also that under
uniaxial stress conditions (for example σ33 �= 0 and σ11 = σ22 = 0) the ratio ν of
the transverse strain to the longitudinal strain, −ε11/ε33, is equal to

ν = λ

2(λ + μ)
. (1.27)

This quantity is called Poisson’s ratio. For an isotropic elastic solid the stability
condition requires that both bulk and shear moduli must be positive. For Poisson’s
ratio this yields the restriction −1 ≤ ν ≤ 0.5. For realistic rocks this coefficient is
positive. Its upper limit of 0.5 corresponds to fluids. Frequently, its values for stiff
tight isotropic rocks are close to 0.25 (corresponding to λ ≈ μ).

All elastic moduli introduced above will usually be assumed to be isothermal
ones, if static deformations or processes being very slow in respect to the thermal
diffusion are considered. In this book we consider processes that are faster than the
temperature equilibration (e.g. wave propagation and pore-pressure equilibration).
We will assume that these processes are approximately adiabatic. Thus, we assume

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-88457-0 - Fluid-induced Seismicity
Serge A. Shapiro
Excerpt
More information

http://www.cambridge.org/9780521884570
http://www.cambridge.org
http://www.cambridge.org


10 Elasticity, seismic events and microseismic monitoring

that the elastic moduli introduced above are adiabatic. Note that the adiabatic and
isothermal moduli of hard materials (e.g. rocks) differ by a small amount (see also
Landau and Lifshitz, 1987).

In this book we will frequently assume that the elastic properties of the medium
are isotropic. This simplifying assumption is often too rough for problems of
seismic event location and imaging (which are not the main subject of our
consideration). For such problems velocity models should take into account seis-
mic anisotropy at least in the weak anisotropy approximation (Thomsen, 1986;
Tsvankin, 2005; Grechka, 2009). For describing dominant effects responsible for
the triggering of induced microseismicity the assumption of elastic isotropy seems
to be adequate at least as the first approximation. For such effects hydraulic
anisotropy of rocks is much more important. Elastic anisotropy in rocks is usually
below 10% and seldom exceeds 30%, in respect to the velocity contrast between
the slowest and fastest wave propagation directions. In shale the elastic anisotropy
can be even higher. However, usually it is much smaller than a possible anisotropy
of the hydraulic permeability, which can reach several orders of magnitude.

1.1.5 Dynamic equations and elastic waves

By an elastic deformation, a transfer of an elastic solid from one equilibrium state
to another equilibrium state occurs by means of propagation of elastic waves.
Elastic waves in rocks in the frequency range between 10−3 and 104 Hz are usu-
ally referred to as seismic waves. Resulting elastic forces acting on an elementary
volume of the elastic medium define its acceleration vector. Owing to Hooke’s
law and the definition of the strain tensor, the second Newtonian law (i.e. the
momentum conservation) takes the form of the following dynamic equation (Lamé
equation):

∂

∂x j
Ci jkl

∂uk

∂xl
= ρ

∂2ui

∂t2
. (1.28)

This equation describes the propagation of elastic waves in the most general case
of a heterogeneous anisotropic elastic medium. Note that this is a system of three
equations for three unknown components of the displacement vector. A plane-
wave analysis (see also our later discussion of poroelastic waves) is instructive
for investigating modes of propagation of elastic perturbations.

Let us consider the case of a homogeneous arbitrary anisotropic elastic medium.
Then equation (1.28) simplifies to:

Ci jkl
∂2uk

∂x j xl
= ρ

∂2ui

∂t2
. (1.29)
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