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Introduction

Network models are used to describe power grids, cellular telecommunications sys-
tems, large-scale manufacturing processes, computer systems, and even systems of el-
evators in large office buildings. Although the applications are diverse, there are many
common goals:

(i) In any of these applications one is interested in controlling delay, inventory, and
loss. The crudest issue is stability: do delays remain bounded, perhaps in the mean,
for all time?

(ii) Estimating performance, or comparing the performance of one policy over an-
other. Performance is of course context-dependent, but common metrics are aver-
age delay, loss probabilities, or backlog.

(iii) Prescriptive approaches to policy synthesis are required. A policy should have
reasonable complexity; it should be flexible and robust. Robustnessmeans that the
policy will be effective even under significant modeling error. Flexibility requires
that the system respond appropriately to changes in network topology, or other
gross structural changes.

In this chapter we begin in Section 1.1 with a survey of a few network applications,
and the issues to be explored within each application. This is far from comprehensive.
In addition to the network examples described in the Preface, we could fill several
books with applications to computer networks, road traffic, air traffic, or occupancy
evolution in a large building.1

Although complexity of the physical system is both intimidating and unavoidable in
typical networks, for the purposes of control design it is frequently possible to construct
models of reduced complexity that lead to effective control solutions for the physical
system of interest. These idealized models also serve to enhance intuition regarding
network behavior.
Section 1.2 contains an outline of the modeling techniques used in this book for con-

trol design and performance evaluation. Section 1.3 reviews some of the mathematical
prerequisites required to read the remainder of this book.

1 Egress from a building is in fact a topic naturally addressed using the techniques described in Chapter 7. See the
1981 paper by Smith and Towsley [452], and the collection of papers [424].
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Figure 1.1. Control issues in a production system.

1.1 Networks in practice

1.1.1 Flexible manufacturing

Within the manufacturing domain, complexity is most evident in the manufacture of
semiconductors.
A factory where semiconductors are produced is known as a wafer fabrication facil-

ity, or wafer fab [267, 410]. A schematic of a typical wafer fab is shown in Fig. 1.1. A
large wafer fab will produce thousands of wafers each month, and a single wafer can
hold thousands of individual semiconductor chips, depending on the size of the chips.
Control of a wafer fab or any other complex manufacturing facility involves many

issues, including

(i) Resource allocation: Scheduling to minimize inventory, and satisfy constraints
such as deadlines, finite buffers, and maximum processing rates. A key constraint
in manufacturing applications is that one machine can only process one set of
products at a time. This is significant in semiconductor manufacturing where one
product (e.g., a wafer) may visit a single station repeatedly in the course of man-
ufacture, and must complete with other products with similar requirements.

(ii) Complexity management: In the manufacture of semiconductors there may be
hundreds of processing steps, and many different products. The control solution
should have reasonable complexity in spite of the complexity of the system.

(iii) Visualization of control solutions: It is not enough for a solution to “spit out a se-
quence of numbers” representing service allocations at the stations in the manufac-
turing facility. Solutions should be tunable and provide some intuition to the user.
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Figure 1.2. The Internet is one of the most complex man-made networks.
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Figure 1.3. Control issues in the Internet.

(iv) Recovery from crisis: When machine failures occur, or preventative maintenance
is called for, the control solution should be modified automatically.

(v) Priorities: The lifetime of a typical semiconductor wafer in a wafer fab may be
more than 1 month. These typical wafers may sometimes compete with special
hot lots that are given high priority due to customer demand or testing.

The International Semiconductor Roadmap for Semiconductors (ITRS) maintains a
website describing the current challenges facing the semiconductor industry [279].
Scheduling policies are developed with each of these goals in mind in Chapters 4–7.

Sometimes we are so fortunate that we can formulate policies that are nearly optimal
when the network is highly loaded (see Chapter 9). Methods for approximating perfor-
mance indicators such as mean delay are developed in Chapter 8.

1.1.2 The Internet

Figure 1.2 shows two subsets of the global Internet. Even a network representing a
small Internet service provider (ISP) can show fantastic complexity.
As illustrated in Fig. 1.3, many issues arising in control of the Internet or more

general communication networks are similar to those seen in production systems. In
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4 Introduction

particular, decision making involves scheduling and routing of packets from node to
node across a network consisting of links and buffers. Key differences are:

(i) Individual nodes do not have access to global information regarding buffer levels
and congestion throughout the network. Routing or scheduling decisions must
then be determined using only that information which can be made available.

(ii) Design is thus constrained by limited information. It is also constrained by proto-
cols such as TCP/IP that are an inherent component of the existing Internet.

(iii) The future Internet will carry voice, audio, and data traffic. How can network
resources be distributed fairly to a heterogenous customer population?

Burstiness and periodicity have been observed in Internet communications traffic [274,
504]. Part of the reason for these difficulties lies in the complex dynamics resulting
from a large number of interconnected computers that are controlled based on limited
local information.
In the future it will be possible to obtain much greater relevant information at each

node in the network through explicit congestion notification algorithms [274, 182].
The system designer must devise algorithms to make use of this global information
regarding varying congestion levels and network topology.

1.1.3 Wireless networks

It is evident today that wireless networks are only beginning to impact communica-
tions and computer networking. In a wireless network there are scheduling and routing
decisions that are nearly identical to those faced in management of the Internet. The
resources in a multiple-access wireless network include transmission power and band-
width, as well as multiple paths between users and stations.
Wireless networks are subject to significant variability due to fading and path losses.

Consequently, maximal transmission rates can be difficult to quantify, especially in a
multiuser setting.
One significant difference between manufacturing and communication applications

is that achievable transmission rates in a communication system depend upon the spe-
cific coding scheme employed. High transmission rates require long block-lengths for
coding, which corresponds to long delays.
A second difference is that errors resulting from mutual interference from different

users need not result in disaster, as would be the case in, say, transportation. Errors
arising through collisions can be repaired through the miracle of coding, up to a point.
These features make it difficult to quantify the capacity region in a communication
networks, and wireless networks in particular.

1.1.4 Power distribution

Shown in Fig. 1.4 is a map of the California transmission network, which is of course
embedded within the highly complex North American power grid.
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Figure 1.4. California power grid.

Regulation of power networks is further complicated by deregulation. Private power
generators now provide a significant portion of electricity in the United States, whose
owners seek to extract the maximal profit from the utilities who serve as their clients.
However, the transmission network remains regulated by independent system opera-
tors (ISOs) who attempt to distribute transmission access fairly, and maintain system
reliability.
Among the stated goals of deregulation are increased innovation, efficiency of power

procurement, and reliability of power delivery. The results are often disappointing:

(i) During the period of 2000–2001, utilities in California saw historic price fluctu-
ations and rolling blackouts. Suspicion of price manipulation was confirmed fol-
lowing the release of phone conversations in which ENRON employees discuss
shutting down power plants in order to drive up prices [450, 91].

(ii) Reliability of the power grid is also dependent on the reliability of the electric
transmission network. We are reminded of its importance by the major black-
out of August 2003 that swept the north-eastern United States and parts of
Canada [179, 168]. Similarly, wildfires in California in 2001 resulted in damaged
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Figure 1.5. Market prices and power demand in continental Europe during the 25th and 26th
weeks of 2003 (taken from the APX website [15]). Demand is periodic and shows high vari-
ability.

transmission lines that subsequently drove up power prices. Private conversations
between ENRON employees reveal that they predicted these natural events would
lead to increased profits [91].

(iii) A contributing factor to high power prices in California was the unusually hot
and dry summer in 2000 [87]. This led to higher demand for power, and lower
hydropower reserves. In a decentralized setting it is difficult to ensure that alter-
nate sources of power reserves will be made available in the face of unexpected
environmental conditions.

Even under average conditions, price and demand for power are periodic, and both
exhibit significant variability. This is illustrated in Fig. 1.5 where demand and prices
are plotted based on data collected in continental Europe during 2 weeks in 2003 [15].
The high volatility shown in these plots is typical behavior that has persisted for many
years.
A power grid differs from many other network systems in that capacity must meet

demand at every instant of time. If not, the transmission system may become unstable
and collapse, with severe economic consequences to follow. For instance, according
to the U.S. Department of Energy, the overall cost of the blackout of August 2003 was
over 4 billion dollars [179, 168]. To ensure reliable operation it is necessary to schedule
power generation capacity beyond the expected demand, called power reserves. Hence
operation of the power grid is based on algorithms for forecasting demand, along with
rules to determine appropriate power reserves.
The operational aspects of scheduling generation capacity in most power markets

can be delineated into two general stages.

STAGE 1 The hour-by-hour demand for power can be predicted reasonably accurately
over the upcoming 24 hour period. The high-capacity generators are scheduled
in the first stage, on a day-ahead basis, based on these predictions. Advance
planning is necessary since the high-capacity generators require time to ramp
up or ramp down power production.

STAGE 2 The predicted demand is inevitably subject to error. To ensure system relia-
bility, smaller generators are called upon in the second stage to provide a mar-
gin of excess generation capacity. These generators can ramp up or ramp down
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1.2 Mathematical models 7

power production on a relatively short time scale, and hence can be scheduled
on an hour-ahead basis.

A typical transmission network such as the California network may have hundreds
of nodes, so a detailed model is far too complex to provide any insight into planning
or design. On the other hand, the deterministic DC power flow model that is favored in
many recent economic studies ignores important dynamic issues such as limited ramp-
up rates, delayed information, and variability. The DC model can be viewed as a fluid
equilibrium model, of the form used to define network load (see e.g. Chapter 4).
One of the goals of this book is to formulate compromise models that are simple

enough for control design, and for performance approximation to compare control
solutions.

1.2 Mathematical models

In each of these applications one is faced with a control problem: what is the best way
to sequence processing steps, or routing and scheduling decisions to obtain the best
performance?
An essential aspect of control theory is its flexible approach to modeling. For the

purposes of design one typically considers a finite-dimensional, linear, deterministic
system, even if the physical system is obviously nonlinear, with significant uncertainty
with respect to modeling and disturbances. The idea is that the control system should be
robust to uncertainty, so one should consider the simplest model that captures essential
features of the system to be controlled.

1.2.1 A range of probabilistic models

The networks envisioned here consist of a finite set of stations, each containing a finite
set of buffers. A customer residing at one of the buffers may represent a wafer, a packet,
or a unit of power reserve. One or more servers process customers at a given station,
after which a customer either leaves the network, or visits another station. Customers
arrive from outside the network to various buffers in the network. The interarrival and
service times all exhibit some degree of irregularity.
Consider a network with � buffers, and �u different activities that may include

scheduling, routing, or release of raw material into the system. Some of these buffers
may be virtual. For example, in a manufacturing model, they may correspond to back-
log or excess inventory. In a power distribution system, a buffer level is interpreted as
the difference between the capacity and demand for power.
A general stochastic model can be described as follows: the vector-valued queue-

length process Q evolves on R
�
+, and the vector-valued cumulative allocation process

Z evolves onR
�u
+ . The ith component of Z(t), denoted Zi(t), is equal to the cumulative

time that the activity i has run up to time t. The evolution of the queue-length process
is described by the vector equation

Q(t) = x+B(Z(t)) +A(t), t ≥ 0, Q(0) = x, (1.1)
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8 Introduction

where the process A may denote a combination of exogenous arrivals to the network,
and exogenous demands for materials from the network. The function B( · ) represents
the effects of (possibly random) routing and service rates.
The cumulative allocation process and queue-length process are subject to several

hard constraints:

(i) The queue-length process is subject to the state space constraint

Q(t) ∈ X, t ≥ 0, (1.2)

where X ⊂ R
�
+ is used to model finite buffers.

(ii) The control rates are subject to linear constraints

C(Z(t1)−Z(t0)) ≤ 1(t1 − t0), Z(t1)−Z(t0) ≥ 0, 0 ≤ t0 ≤ t1 , (1.3)

where the constituency matrix C is an �m × �u matrix. The rows of C correspond
to resources r = 1, . . . , �m, and the constraint (1.3) expresses the assumption that
resources are shared among activities, and they are limited.

Stochastic models such as (1.1) have been by far the most popular in queueing the-
ory. An idealization is the linear fluid model, described by the purely deterministic
equation

q(t;x) = x+Bz(t) + αt, t ≥ 0, x ∈ R
�
+, (1.4)

where the state q evolves in the state space X ⊂ R
�
+, and the (cumulative) allocation

process z evolves in R
�u
+ . We again assume that z(0) = 0, and for each 0 ≤ t0 ≤ t1 <

∞,
C[z(t1) − z(t0)] ≤ (t1 − t0)1, and z(t1) − z(t0) ≥ 0. (1.5)

The fluid model can also be described by the differential equation

d+

dtq = Bζ + α, (1.6)

where ζ = ζ(t) denotes the right derivative, ζ = d+

dtz.
Two different symbols are used to denote the state processes for the stochastic and

fluid models since much of the development to follow is based on the relationship
between the two models. In particular, the fluid model can be interpreted as the mean
flow of the stochastic model (1.1) on writing

Q(t) = x+A(t) −B(Z(t)) = x−BZ(t) + αt+N(t), t ≥ 0, (1.7)

where α and B are interpreted as average values of (A,B), and

N(t) := [A(t) − αt] − [B(Z(t)) −BZ(t)].

Typical assumptions on the stochastic model (1.1) imply that the mean of the process
{N(t)} is bounded as a function of time, and its variance grows linearly with t. Under
these conditions (1.1) can be loosely interpreted as a fluid model subject to the additive
disturbanceN .
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1.2 Mathematical models 9

1.2.2 What is a good model?

It is impossible to construct a model that provides an entirely accurate picture of net-
work behavior. Statistical models are almost always based on idealized assumptions,
such as independent and identically distributed (i.i.d.) interarrival times, and it is often
difficult to capture features such as machine breakdowns, disconnected links, scheduled
repairs, or uncertainty in processing rates.
In the context of economic modeling, Milton Friedman writes . . . theory is to be

judged by its predictive power for the class of phenomena which it is intended to “ex-
plain.” The choice of an appropriate network model is also determined by its intended
use. For long-range prediction the linear fluid model has little value, and for prediction
alone a detailed model may be entirely suitable. Conversely, a model that gives an ac-
curate representation of network behavior is likely to be far too complex to be useful
for control design. Fortunately, it is frequently possible to create policies that are in-
sensitive to modeling error, so that a design based on a relatively naive model will be
effective in practice.
The controlled differential equation (1.6) can be viewed as a state space model, as

frequently used in control applications, with control ζ, state q, and state space X. It
is instructive to consider how control is typically conceptualized for linear systems
without state-space constraints. Typically, a deterministic “fluid” model similar to (1.6)
is taken as a starting point. If a successful design is obtained, then refinements are
constructed based on a more detailed model that includes prior knowledge regarding
uncertainty and noise. Once these issues are understood, the next step is to consider
response to major structural uncertainty, such as component failure.
If the control engineers at NASA had not understood this point we never would have

made it to the moon! In virtually every application of control, from flight control to
cruise control, design is based on a fluid model described by an ordinary differential
equation. This design is then refined to account for variability and other unmodeled
quantities.
Throughout much of this book we adopt this control-theoretic viewpoint. We find

that understanding a simple network model leads to practical solutions to many network
control problems.

(i) Stability of the model of interest, in the sense of ergodicity, is essentially equiva-
lent to a finite draining time for a fluid model. These connections are explored in
Chapter 10.

(ii) Optimality of one is closely related to optimality of the other, with appropriate
notions of “cost” for either model. In particular, the value function for the fluid
control problem approximates the relative value function (the solution to Poisson’s
equation) for the discrete model (see Chapters 8 and 9).
In the control of linear state space models, Poisson’s equation is known as the

Lyapunov equation, and the solution is known to be a quadratic function of the
state process when the cost is quadratic (see e.g. [329]). Remarkably, the solution
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10 Introduction

is completely independent of variability, and moreover it coincides with the value
function for an associated “fluid model.”

(iii) In the case of network models, the value function for the deterministic fluid model
is known as the fluid value function. This is a piecewise quadratic function when
the cost function is linear. The solution to Poisson’s equation for a stochastic net-
work does not coincide with the fluid value function in general, but the two func-
tions are approximately equal for large state values. This motivates the develop-
ment of algorithms to construct quadratic or piecewise quadratic approximations
to Poisson’s equation for stochastic networks to bound steady-state performance.
Deterministic algorithms are described in Chapter 8.
Approximate solutions to Poisson’s equation such as a carefully chosen quad-

ratic function, or the fluid value function, are used to construct fast simulation
algorithms to estimate performance in Chapter 11.

(iv) A convenient approach to the analysis of buffer overflow or any similar disaster is
through the analysis of a fluid model (see Section 3.5).

Again, when it comes to control design (i.e., policy synthesis), a solution obtained
from an idealized model (deterministic or probabilistic) must be refined to account for
unmodeled behavior. This refinement step for networks is developed over Chapters 4–
11.

1.3 What do you need to know to read this book?

This book makes use of several different sets of tools from probability theory, control
theory, and optimization.

1.3.1 Linear programs

In the theory of linear programming the standard primal problem is defined as the
optimization problem

max cTx

s.t.
∑

j aijxj ≤ bi, for i = 1, . . . ,m;
xj ≥ 0, for j = 1, . . . , n.

(1.8)

Its dual is the linear program

min bTw

s.t.
∑

j ajiwj ≥ ci, for i = 1, . . . , n;
wj ≥ 0, for j = 1, . . . ,m.

(1.9)

The primal is usually written in matrix notation, max cTx subject to Ax ≤ b, x ≥ 0;
and the dual as min bTw subject to ATw ≥ c, w ≥ 0.
Any linear programming problem can be placed in the standard form (1.8). For ex-

ample, a minimization problem can be reformulated as a maximization problem by
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