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1

Scattering techniques for the liquid state

1.1 Introduction

1.1.1 Radiation scattering used for condensed matter spectroscopy

Spectroscopy measures the structure and dynamics of the ground or low-lying
excited states of condensed matter. Radiation is useful as a tool for spectroscopy
if it couples weakly (in a sense to be discussed later) to the many-body system. In
this case the double differential cross-section (per unit solid angle, per unit energy
transfer) for the radiation scattering can be written schematically as

d2σ

d�dω
≈
(

dσ

d�

)
0

∑
i, f

Pi

∣∣∣∣∣〈 f |
n∑

l=1

ei(k1−k2)·r1 |i〉
∣∣∣∣∣
2

δ(�ω − Ei + E f ). (1.1)

In Eq. (1.1) the first factor
(

dσ
d�

)
0

refers to the differential scattering cross-section
from the basic unit of scattering medium in the system and the second factor, usu-
ally called the dynamic structure factor, represents the time-dependent structure of
the system as seen by the radiation. This clear separation of the basic scattering
problem, as represented in the first factor, from the dynamic structure factor of the
many-body system itself, is only possible when the radiation couples weakly to the
system, and therefore the use of Born approximation in deriving Eq. (1.1) is valid.
Both thermal neutrons and photons with energy up to the X-ray region satisfy this
criterion and thus are useful as probes for condensed matter time-dependent struc-
tures. The dynamic structure factor contains two parameters related to the energy
and momentum of the probe, namely, the momentum transfer (Eq. (1.2a)) and the
energy transfer (Eq. (1.2b)) to the system in the scattering process:

�Q = �(k1−k2), (1.2a)

�ω = �(ω1 − ω2). (1.2b)

A schematic diagram of indicating the incident and scattered radiation with
respect to the scattering medium is shown in Figure 1.1. In general the double
differential cross-section depends on all four parameters: �k1, ω1, �k2, ω2, namely,
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4 Scattering techniques for the liquid state

Figure 1.1 Schematic diagram of scattering geometry.

both the incident and the scattered wave vectors and frequencies. But this com-
plexity is reduced greatly when the Born approximation is applicable. In this case
the dynamic structure factors depend, apart from the state of the system, on only
two external parameters, Q and ω. This has an immediate significant experimental
implication. We shall explain in Section 1.1.6 that, qualitatively speaking, when the
radiation imparts momentum � �Q and energy �ω to the system it effectively probes
the structure and dynamics of the system with a spatial resolution of R = 2πQ−1

and time scale of τ = 2πω−1. For the purpose of this introductory chapter, we are
mostly interested in situations where nk1 � nk2 � k and n is the refractive index
of the medium. In this case the magnitude of the wave vector transfer Q, which we
call the Bragg wave number, can be expressed in terms of the wave number k and
scattering angle θ as

Q = 2k sin
θ

2
. (1.3)

In order to probe the spatial structure of the system at different levels, one would
like to change Q accordingly. For instance, to detect a periodic structure of spac-

ing d ≈ 10 Å, one needs to have Q � 2π/d � 0.628 Å
−1

. One can use cold

neutrons of wavelength λ ≈ 4 Å (k = 2π/λ = 1.57 Å
−1
) and work at a scattering

angle around θ ≈ 23◦ so that 2k sin θ
2 = 2× 1.57 sin

(
23◦
2

) � 0.628 Å
−1

. Alterna-
tively one can use X-rays of wavelength λ = 0.62 Å and work at an angle around
θ ≈ 3.6◦. Or one can even use γ -rays of λ = 0.03 Å (412 keV γ -rays from gold
Au198) and work at an angle around θ ≈ 0.17◦. Similar consideration applies to the
frequency or the time scale. Since the relevant variable is the difference between
incident and scattered energies, one can tune the dynamic range of the probe by
varying the accuracy of the energy difference measurement. A good example is
a neutron scattering study of polymer chain dynamics by Higgins et al. (1981),
using the so-called spin-echo technique. Using 8 Å neutrons (�ω1 = 1279 μeV)
they were able to measure energy difference of E = �ω in the scattered neutrons
and thus were able to probe the chain dynamics at a time scale τ of 0.4 μs over the
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1.1 Introduction 5

Figure 1.2 The (Q, E = �ω) ranges covered in the scattering experiment and
the corresponding space-time, (R, τ ), ranges probed in the material system for
each of the three scattering techniques. Due to the recent advances in instru-
mentation, the overlaps between neutron and X-ray scattering spectroscopy are
clearly visible. The disk chopper spectrometer (DCS, used for INS), quasi-elastic
backscattering spectrometer (QENS) and neutron spin echo spectrometer (NSE)
are presently available in both NIST Center For Neutron Research (NCNR) and
Spallation Neutron Source (SNS) in Oak Ridge National Laboratory in USA.

distances scale of up to 2π/Q = 200 Å (Q = 0.03 Å
−1
). Figure 1.2 summarises

the present status of neutron, X-ray and light-scattering spectroscopy relevant to
the discussions here in terms of its (Q, E) and its corresponding (R, τ ) space-time
coverage. The important point to notice is the regions of overlap of the three scat-
tering methods due to the recent advances in techniques and instrumentations of
neutron and X-ray spectroscopies.

The primary purpose of this chapter is to derive the important relation given
in Eq. (1.1) and to identify in each of the three cases – thermal neutron, X-ray
and light scattering – the corresponding basic scattering unit that contributes to the
factor

(
dσ
d�

)
0
. We shall comment on the meanings of the dynamic structure factor

using some examples in Section 1.1.6.

1.1.2 Thermal neutron scattering

Consider a combined system of a material medium, described by a Hamiltonian
Hs , and a neutron with a kinetic energy p2

2m and their mutual interaction V . The
time-independent Schrödinger equation for the system is
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6 Scattering techniques for the liquid state(
p2

2m
+ Hs + V

)
�(r, {R}) = E�(r, {R}). (1.4)

We denote by r position of the neutron and R the collection of coordinates of all
particles in the system. The material system has a set of stationary states {|n〉}
defined by

Hs |n〉 = En|n〉, (1.5a)

〈n|n′〉 = δnn′ . (1.5b)

Using this set of stationary states we expand the total wave function as

�(r, {R}) =
∑

n

〈ψn(r)|n〉. (1.6)

Substituting Eq. (1.6) into Eq. (1.4) and taking a scalar product with 〈n| on both
sides, we obtain a wave equation for the neutron in the presence of the material
system:

(∇2 + K 2
n )ψn(r) = 2M

�2

∑
n′
〈n|V |n′〉ψn′(r), (1.7)

where �
2 K 2

n
2M = E − En is the kinetic energy of the neutron in the system.

The neutron wave (Eq. (1.7)) can be used in two ways. The first application is to
consider the propagation of neutrons in the material medium. For this application
we take the system to be in the ground state, i.e. |n〉 = |n′〉 = |0〉, and introduce
an optical potential U (r) = 〈0|V |0〉. Then putting ψ0 ≡ ψ and K0 ≡ K , Eq. (1.7)
reduces to a wave equation:

(∇2 + K 2)ψ(r) = 2M

�2
U (r)ψ(r). (1.8a)

One normally takes the optical potential to be a pseudo-potential (Sears, 1978),

U (r) = 2π�
2

M

n∑
l=1

blδ(r− Rl). (1.8b)

A simple example is to take a homo-nuclear system with identical bound atom scat-
tering length b j = b (Koester et al., 1981),1 and work out the index of refraction
of neutrons in the medium.

1 Bound scattering length refers to scattering length of a nucleus that is fixed in space. Measurement of
scattering length is normally made in a situation where the nucleus is free to recoil. The measurement gives
the free scattering length a, which is related to b by b = A+1

A α, where A is atomic weight of the nucleus.
See Koester et al. (1981) for tabulation of values of b.
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1.1 Introduction 7

Write

U (r) = 2π�
2b

M

n∑
l=1

δ(r− Rl) = 2π�
2b

M
n(r), (1.8c)

where n(r) is the local number density of nuclei. Putting Eq. (1.8c) into Eq. (1.8a)
we have

(∇2 + K 2)ψ(r) = 4πbn(r)ψ(r). (1.9a)

Take a plane wave ψ(r) = exp(iK
′ · r) propagating in an optically homogeneous

medium where we can set n(r) = n (this is valid when no Bragg condition is
satisfied). We have from Eq. (1.9a) a relation

− K ′2 + K 2 = 4πbn. (1.9b)

From Eq. (1.9b) the index of refraction follows as

n ≡ K
′

K
=
√

1− 4πbn

K 2
= 1− bnλ2

2π
. (1.10)

Take a typical case of nickel for which n = 9.13 × 1022 cm−3 and b = 1.03 ×
10−12 cm. We have for a 4 Å neutron, bnλ2

2π ∼ 2.4 × 10−5. The refractive index of
a material with b > 0 is therefore slightly optically rare with respect to neutron
wave. Notice the λ2 dependence in Eq. (1.10). This means for ultra cold neutrons
of λ = 800 Å (speed≈ 5 m/sec), the index of refraction is as large as n = 0.04 and
the total reflection from the surface of Ni film of up to θc = 87.7◦ is possible. If one
takes into account the periodic variation of n(r) in a crystalline solid then one can
proceed to work out the dynamic theory of neutron diffraction in a perfect crystal
(Rauch and Petrascheck, 1978). The second application is to solve Eq. (1.5) for
the scattered wave function of neutrons. Scattering of neutrons in general induces
excitation or de-excitation of the medium, so the matrix element 〈n|V |n′〉 of the
interaction potential has to be evaluated between the initial and final states of the
scattering medium. To calculate the scattering cross-section, we are interested in
the asymptotic wave function at distances large compared to the sample size. First,
solve for Green’s function:

(∇2 + K 2
n )Gn(|r− r′|) = −δ(r− r′), (1.11)

which gives

Gn(|r− r′|) = ei Kn |r−r′|

4π |r− r′| −−−→r>>r ′
ei Knr

4πr
ei Kn r̂·r′ . (1.12)

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-88380-1 - Scattering Methods in Complex Fluids
Sow-Hsin Chen & Piero Tartaglia
Excerpt
More information

http://www.cambridge.org/9780521883801
http://www.cambridge.org
http://www.cambridge.org


8 Scattering techniques for the liquid state

Constructing an inhomogeneous solution from Eq. (1.12) and adding to it the
homogeneous solution which represents the incident plane wave, we get

ψn(r) = δnn0eiK·r − ei Knr

r

(
M

2π�2

)∑
n′

∫
V

d3r ′e−iKn ·r′Vnn′(r′)ψn′(r′), (1.13)

where K ≡ k1 denotes the incident wave vector, Kn ≡ k2 = Knr̂ denotes the
scattered wave vector and the integration is over the volume the system.

To go further from here one makes the Fermi approximation, which essentially
consists of two parts: make the Born approximation by taking

ψn′(r′) � δn′n0eiK·r′, (1.14a)

and simultaneously use the pseudo-potential

V (r) = 2π�
2

M

n∑
l=1

blδ(r− Rl), (1.14b)

to get

ψn(r) = δnn0eiK·r − ei Knr

r

(
M

2π�2

)∑
n′

∫
V

d3r
′
ei(K−Kn)·r′Vnn0(r

′). (1.15)

There are a number of discussions in the literature with regard to the Fermi approx-
imation, such as Sachs (1953), so we shall not go into it here. The accuracy
of this approximation is estimated to be of the order of 0.1% in the case of a
hydrogen atom bound in a molecule. Taking a typical neutron–nuclear potential
of depth −V0 ≈ 36 MeV and width r0 ≈ 2 × 10−13 cm, the validity of the Fermi
approximation rests on the following considerations:

(i) Kr0 � 1 (in fact ≈ 10−4) – a consideration for validity of low-energy
scattering from a bound nucleus where a scattering length b is sufficient to
characterise the cross-section.

(ii) For a square-well potential b ∝ V0r3
0 and one can redefine fictitious potential

parameters V̄0, r̄0 such that not only the scattering length is preserved, i.e.
V̄0r̄3

0 = V0r3
0 , but at the same time the condition for validity of the Born

approximation is also satisfied, i.e.
mV̄0r̄3

0
�2 � 1.

(iii) The fictitious range of nuclear force r̄0 chosen above can still be much smaller
than amplitude of the zero point vibration A of the bound nucleus in the
molecule.

Physically speaking, even though neutron–nuclear interaction is so strong that the
Born approximation is not applicable, a fortunate situation arises because the inter-
action is over such a short range that one can smear out the interaction range
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1.1 Introduction 9

considerably, so as to decrease its strength in such a way that the Born approx-
imation can be used. In practice, the amplitude of the zero point vibration A is
10−9 cm and r̄0 can be taken to be 100 r0 = 2 × 10−11 cm. We now define the
scattering amplitude fnn0(θ) by writing Eq. (1.15) in asymptotic form:

ψn(r) = δnn0eiK·r + fnn0(θ)
ei Knr

r
, (1.16a)

and identify

fnn0(θ) = −
N∑

l=1

bl〈n|ei(k1−k2)·Rl |n0〉. (1.16b)

The first term in Eq. (1.16a) represents the incident wave ψinc while the second
term represents the scattered wave ψsc in the region θ �= 0. The differential cross-
section for elastic scattering dσ can then be obtained by calculating the ratio of the
number of neutrons elastically scattered into d� in the direction of k2 per second
to the incident neutron flux,

dσ = k2|ψsc|2
k1|ψinc|2 r2d�, (1.17a)

or
dσ

d�
= k2

k1

∑
n0

Pn0 | fn0n0(θ)|2, (1.17b)

where Eq. (1.17b) is obtained from Eq. (1.17a) by averaging over the initial
distribution Pn0 of the initial states |n0〉 of the system.

The inelastic scattering cross-section can likewise be obtained from the scatter-
ing amplitude by

d2σ

d�dω2
= k2

k1

∑
n,n0

Pn0 | fn,n0(θ)|2δ
(
ω1 − ω2 + En0 − En

�

)
, (1.18a)

where an additional average over the unknown final states |n〉 is made together with
a delta function factor, ensuring the energy conservation

�ω = �ω1 − �ω2 = En − En0 . (1.18b)

Using the expression for the scattering amplitude (Eq. (1.17a)) in Eq. (1.18a) we
then get (by writing |i〉 ≡ |n0〉, | f 〉 ≡ |n〉 )

d2σ

d�dω2
= k2

k1

∑
i, f

Pi |〈 f |
N∑

l=1

ble
iQ·Rl |i〉|2δ

(
ω + Ei − E f

�

)
. (1.18c)
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10 Scattering techniques for the liquid state

In expression similar to Eq. (1.1) is recovered except for a trivial kinematic factor
k2/k1. When all nuclei are identical, i.e. b j = b,

d2σ

d�dω2
= b2 k2

k1

∑
i, f

Pi |〈 f |
N∑

l=1

eiQ·Rl |i〉|2δ
(
ω + Ei − E f

�

)
. (1.18d)

We note that in this case
(

dσ
d�

)
0
= b2 is the differential cross-section for a single

bound state nucleus.

Coherence and incoherence

The cross-sections in Eqs. (1.17b) and (1.18c) contain a coherent superposition of
phase factors from each nuclei exp(iQ · Rl) only when all nuclei look identical to
incoming neutrons. In practice there are two sources of incoherence. First, even
a chemically homogeneous system contains isotopes of the same element. Sec-
ond, neutron–nuclear interaction is spin dependent, namely the scattering length is
dependent on mutual orientations of neutron spin relative to nuclear spin. There-
fore, even for an unpolarised incident neutron beam, Eq. (1.18c) has to be averaged
over all possible nuclear isotopic and spin states. We denote this average by a bar.
Consider then the factor

∑
i, f

Pi |〈 f |
N∑

l=1

bleiQ·Rl |i〉|2δ
(
ω + Ei − E f

�

)
, (1.19a)

which, by using an integral representation of the delta function,

δ

(
ω + Ei − E f

�

)
= 1

2π

∞∫
−∞

dte−iωt e
i
�
(E f−Ei )t , (1.19b)

can easily be transformed into the time-dependent form:

1

2π

∞∫
−∞

dte−iωt
∑

i

Pi |〈i |
N∑

l,l ′
blbl ′e−iQ·Rl(0)eiQ·Rl(t)|i〉|. (1.19c)

If one now assumes that the isotopic states and spin states of each nucleus are
completely uncorrelated with its position one can rewrite the above expression as

1

2π

∞∫
−∞

dte−iωt
∑

i

Pi |〈i |
N∑

l,l ′
blbl ′e

−iQ·Rl(0)eiQ·Rl(t)|i〉|. (1.19d)

Consider now the average

bl bl ′ = b̄2
l = b̄2, when l = l ′,

blbl ′ = (b̄)2, when l �= l ′,
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