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Self-organized and self-assembled structures

Almost all systems we encounter in nature possess some sort of form or structure.
It is then natural to ask how such structure arises, and how it changes with time.
Structures that arise as a result of the interaction of a system with a template that
determines the pattern are easy to understand. Lithographic techniques rely on
the existence of a template that is used to produce a material with a given spa-
tial pattern. Such pattern-forming methods are used widely, and soft lithographic
techniques are being applied on nanoscales to produce new materials with dis-
tinctive properties (Xia and Whitesides, 1998). Less easily understood, and more
ubiquitous, are self-organized structures that arise from an initially unstructured
state without the action of an agent that predetermines the pattern. Such self-
organized structures emerge from cooperative interactions among the molecular
constituents of the system and often exhibit properties that are distinct from those
of their constituent elements. These pattern formation processes are the subject of
this book.

Self-organized structures appear in a variety of different contexts, many of which
are familiar from daily experience. Consider a binary solution composed of two
partially miscible components. For some values of the temperature, the equilibrium
solution will exist as a single homogeneous phase. If the temperature is suddenly
changed so that the system now lies in the two-phase region of the equilibrium
phase diagram, the system will spontaneously form spatial domains composed of
the two immiscible solutions with a characteristic morphology that depends on the
conditions under which the temperature quench was carried out. The spatial domains
will evolve in time until a final two-phase equilibrium state is reached. The evolution
of such structures is governed by thermodynamic free energy functions, suitably
generalized to account for the heterogeneity of the medium and the existence of
interfaces separating the coexisting phases. The spontaneous formation of such
structures is the system’s response to an initial instability or metastability (Bray,
1994; Debenedetti, 1996; Dattagupta and Puri, 2004).
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Fig. 1.1. Schematic depictions of hexagonal, gyroid and lamellar nanocompos-
ites that result from the self-assembly of diacetylenic surfactants on silica. From
Brinker (2004), p. 631, Figure 6a.

The formation of macroscopic coherent spatiotemporal structures arising from an
initial instability or metastability is often a consequence of some inherent symmetry-
breaking element. Fluctuations and conservation laws also play an important role in
determining the character of the time evolution leading to self-organized structures.
As the system evolves, interfaces which delineate the boundaries of local domains
also move: thus an understanding of interface dynamics, and more generally of
defect dynamics, is a central feature of the evolution of self-organized structures.

Ultimately, self-organized structures have their origin in the nature of the inter-
molecular forces that govern the dynamics of a system. In some instances, the
connection between the macroscopic coherent structure and specific features of the
intermolecular forces is rather direct. Self-assembly of molecular constituents in
solution is such a process. Self-assembly leads to a variety of three-dimensional
structures: strong hydrophobic attraction between hydrocarbon molecules can cause
short chain amphiphilic molecules to organize into spherical micelles, cylindrical
rod-like micelles, bilayer sheets, and other bicontinuous or tri-continuous struc-
tures (Fig. 1.1) (Gelbart er al., 1994; Grosberg and Khokhlov, 1997; Brinker,
2004; Ozin and Arsenault, 2005; Pelesko, 2007). Self-assembly of long-chain block
copolymers can also occur through microphase separation as a result of covalent
bonds between otherwise immiscible parts of the polymer. This process can lead
to three-dimensional structures with topologies similar to those of amphiphilic
molecules (Fredrickson and Bates, 1996; Bates, 2005). Similarly, two-dimensional
systems, such as Langmuir monolayers at a water—air interface or uniaxial ferromag-
netic films, can self-assemble into unidirectional periodic stripes and hexagonally
arranged circular drops as a result of the competition between long-range repulsive
dipolar interactions and relatively shorter-range attractive van der Waals inter-
actions. Monolayers on a metallic substrate can also self-organize into ordered
structures (Fig. 1.2). The most direct way to model such self-assembly is by fol-
lowing the motions of the constituent elements by molecular dynamics. A number
of different coarse-grain schemes have been devised in order to extend the size,
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Fig. 1.2. Results of amolecular dynamics simulation of a densely packed assembly
of 16-mercapto-hexadecanoic acid molecules tethered to a gold surface. From
Lahann and Langer (2005), p. 185, Figure 2.

Fig. 1.3. Spiral wave CO oxidation patterns on the surface of a Pt(110) sur-
face. Reprinted with permission from Nettesheim ez al. (1993). Copyright 1993,
American Institute of Physics.

length, and timescales of such simulations (Karttunen et al., 2004; Nielsen et al.,
2004; Venturoli et al., 2006). On mesoscopic scales self-assembly can be analyzed
and understood through models based on free energy functionals and relaxational
dynamics.

Self-organized structures also arise in systems that are forced by external flows
of matter or energy to remain far from equilibrium (Nicolis and Prigogine, 1977;
Kapral and Showalter, 1995; Walgraef, 1997; Manrubia et al., 2004; Hoyle, 2006;
Pismen, 2006). If chemical reagents are continuously supplied to and removed from
a container where an oxidation reaction takes place on a catalytic surface, in many
circumstances the chemical reaction does not occur homogeneously over the entire
surface but instead proceeds by the propagation of chemical waves of oxidation that
travel across the catalytic surface. The combination of nonlinear chemical kinetics
and conditions that force the reaction to occur in far-from-equilibrium conditions
is responsible for the existence of the evolving patterns of chemical waves seen on
the surface of the catalyst (Fig. 1.3).
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Biological systems almost always operate under far-from-equilibrium conditions
since input of chemical and other energy sources is needed to maintain the living
state. Consequently, the conditions for the appearance of self-organized structures
are present in these systems. Indeed, the nonlinear chemistry associated with bio-
chemical networks, in combination with diffusion of chemical species, can lead
to the formation of chemical waves which are often implicated in the mechanisms
responsible for biological function (Winfree, 1987, 2001; Murray, 1989; Goldbeter,
1996). Chemical waves are known to play a role in cell signaling processes leading
to cell division, aggregation processes in colonies of the amoeba Dictyostelium
discoideum, and the pumping action of the heart, to name a few examples. Per-
haps even more interesting is the fact that chemical patterns have been observed in
individual living cells (Petty et al., 2000).

Although applications to fluid dynamics are not considered in this book, fluid flow
also provides many examples of self-organized structures (Cross and Hohenberg,
1993; Frisch, 1995; Nicolis, 1995; Walgraef, 1997). The hexagonal patterns arising
from Rayleigh—Bénard convection when a fluid is heated from below are familiar,
as are the complex spatiotemporal patterns seen in turbulent fluids. In such cases,
descriptions of the origins and dynamics of the patterns are usually based on an
analysis of the Navier—Stokes equation; the instabilities are seen to emerge as a
result of the convective nonlinear terms in this equation.

In contrast to equilibrium systems, in far-from-equilibrium systems free energy
functions do not always exist, and the description of the dynamics of self-organized
structures must be based on different premises. In the case of chemical and bio-
chemical systems the starting point is usually a reaction—diffusion equation, while,
as noted above, for fluid dynamics problems the Navier—Stokes equation is a natural
starting point for the analysis.

In spite of the fundamental differences in the origins of diverse self-organized
structures, there are often superficial similarities in their forms, and there exist com-
mon basic elements which are needed to understand their formation and evolution.
At the macroscopic level, one needs a description in terms of suitable field variables
or order parameters that account for the existence of spatial structure in the system.
Other common elements include the presence of interfaces that separate phases
or spatial domains that constitute the self-organized structure, and the existence of
defects in the medium. Both of these features often control the dynamical evolution
of the structure on certain time scales.

During the second half of the twentieth century, the concept of universality
played a major role in our understanding of structural correlations and dynamics
in condensed matter systems. Starting with Landau’s unifying concept of the order
parameter (Landau, 1937) and culminating in the renormalization group theory of
critical phenomena (Wilson and Kogut, 1974), these developments demonstrated
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that a description of the relevant physics does not necessarily lie at the smallest
available length or time scales for many fundamental problems. In many instances,
the description of the dynamics of self-organized structures in nonequilibrium sys-
tems can be examined within a similar context. Consequently, often a macroscopic
perspective may be adopted to describe the dynamics of these structures. Even for
situations such as self-assembly where the crucial role of the underlying intermolec-
ular forces is evident, the nature and dynamics of the self-assembled structures on
long distance and time scales can be captured by approaches based on suitably
defined field variables. While the use of such a perspective limits the spatial and
temporal scales on which the description is valid, it is general enough to pro-
vide a basis for understanding most of the commonly observed structures, even on
mesoscopic scales.

In the chapters that follow we describe the dynamics of self-organized structures
based on equations of motion for order parameter fields, which provide a descrip-
tion of systems at the mesoscopic and macroscopic levels. Equations of motion
for such order parameter fields can be constructed for systems described by free
energy functionals, as well as for systems which are constrained to lie far from
equilibrium, for which no such functionals exist. Such formulations enable one to
identify similarities in both the forms of the self-organized structures and features
that determine their evolution in equilibrium and far-from-equilibrium systems.

We begin with an analysis of the familiar phenomenon of phase segregation fol-
lowing a quench of a system into the two-phase region of the phase diagram. An
essential ingredient in the dynamics is the behavior of interfaces separating domains
of coexisting phases, and we develop a description of such interface dynamics.
Domain segregation is modified when long-range repulsive interactions exist: the
theoretical description of these systems is considered. In the far-from-equilibrium
regime, the order parameter equations are constructed on the basis of weakly non-
linear theory where crucial slow modes are identified in the dynamics. Once again
interfaces and fronts play an important role in determining the evolution of the
system. Because of the lack of a free energy functional, a much richer variety of
self-organized structures is observed, which includes structures with periodic or
chaotic temporal behavior. While no truly unified picture of diverse self-organizing
structures is possible, the presentation in this book provides the tools needed to ana-
lyze and understand the origins of various types of self-organized structure. The
material should permit one to see similarities in the structures observed in nonequi-
librium and driven systems, and draw parallels in the methods used to describe the
phenomena.
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Order parameter, free energy,
and phase transitions

The kinetics of first-order phase transitions involves the separation of an initially
one-phase system into two coexisting phases. The formation and coarsening of
domains of the coexisting phases as the system evolves are of central interest. The
phase segregation process is usually studied by first preparing the system in a region
of the phase diagram where the homogeneous state is stable. The system is then
suddenly quenched into the two-phase region, and segregation into domains of the
two stable phases takes place. Such phase segregation arises in a variety of phys-
ical contexts, including binary alloys and fluid mixtures, ferromagnetic systems,
superfluids, polymer mixtures, and chemically reacting fluids. The temperature—
composition (7, ¢) phase diagram for a binary mixture composed of constituents
A and B is shown in Fig. 2.1. For low enough temperatures, in the region bounded
by the coexistence curve the binary mixture will segregate into A-rich and B-rich
phases.

A quench that takes the system from a homogeneous to a two-phase region is
often performed by changing temperature suddenly at fixed concentration. Such
a quench from the one-phase state at high temperatures may be carried out either
along the critical isoconcentration line that passes through the critical point (path a),
or along off-critical paths (path b). Phase segregation may be monitored by the
changes in the local concentration of the binary mixture. In general, the variable
that signals the passage from the one-phase to two-phase regions is called the order
parameter ¢.

The kinetics of the phase separation process in a binary mixture is often discussed
in terms of a free energy function f(c). In the one-phase region the free energy
function has a simple single minimum, while it is bistable in the two-phase region
(Fig. 2.2). The chemical potential is defined as u = (9 f/dc)7,p. In mean field
descriptions based on the free energy function, the spinodal line (dashed line in
Fig. 2.1) is defined as the locus of points where the derivative of the chemical
potential with respect to the concentration is zero. The definition of the spinodal
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Fig. 2.1. Binary mixture phase diagram in the concentration—temperature plane
showing critical (path a) and off-critical (path b) quenches into the two-phase
region from the one-phase region. Path a starts at 7; and ends at 7'y.
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Fig. 2.2. Mean field free energy as a function of concentration for temperatures
in the (a) one-phase and (b) two-phase regimes.

line may be generalized to any order parameter. A quench to a state within the
spinodal region may lead to a labyrinthine pattern if it is associated with decay
from an initial unstable state corresponding to the maximum in the free energy
barrier. The evolution to a labyrinthine pattern is called spinodal decomposition.
In contrast, an off-critical quench, such as the one shown as path b in Fig. 2.1,

corresponds to evolution from an initial metastable state and involves a nucleation
mechanism.
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8 Order parameter, free energy, and phase transitions

Both the morphology and phase separation dynamics depend crucially on the
nature of the order parameter field. The order parameter may be conserved as in
binary alloys or fluids, or nonconserved as in chemically reacting systems and
antiphase domain growth in crystals. Dynamical models for the order parameter
field that embody these conditions may be constructed and used to simulate phase
separation dynamics. The system may require more than a single order parameter
field for its description, and these order parameter fields may have different char-
acters and symmetries. In such more general cases it may not be possible to define
a free energy functional, and new phenomena may exist.

2.1 Mean field theory

2.1.1 Binary mixtures: alloys, fluids, and polymer blends

The specification of the thermodynamic state of a binary mixture requires three
independent thermodynamic variables, say, the number density p, the concentration
of the A species ¢ and the temperature 7. Only the (c, T') pair is relevant for the
phase segregation process: thus, we consider a mixture of N, molecules of type A
and Nj molecules of type B with a fixed total number of molecules N, = N, + N,
and fixed volume V. We define ¢ = N,/N,,, which implies (1 — c¢) = Np/N,. The
differential Helmholtz free energy for a binary mixture may be expressed as

dF = —SdT + pnadNy + ppd Np,
= —8dT + Nyudc, (2.1)

where the fixed N, constraint is used in the second equality and 1 = (1, — up). It
follows that the differential of the free energy per molecule f = F /N, is

df = —sdT + udc, (2.2)

where s = §/N,. From this equation one can deduce that

0
w= (—f) . (2.3)
dc /1

The chemical potential  is thermodynamically conjugate to ¢, and the product
of such a conjugate pair has dimensions of energy. The equation of state specifies
the functional dependence among the three variables i = pu(c, T) and defines a
surface in the three-dimensional (c, T', i) space. A projection of this surface in the
(c, T) plane was sketched in Fig. 2.1. The binary mixture critical point (c., T¢) is
at the apex of the coexistence curve and is also referred to as the consolute point.
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2.1 Mean field theory 9

There are two other projections of the equation-of-state surface. The (u,T)
projection consists of two regions: a homogeneous A-rich-phase region and a
homogeneous B-rich-phase region. The two are separated by a monotonically
increasing coexistence line of first-order phase transitions, which ends at the critical/
consolute point, (i, 7¢). The three coordinates of the critical point are obtained
by simultaneously solving the following three equations:

ou %
<_) =0, <_2) =0, pe=pleeTe). (2.4
de Jr-t, de= ) rr,

The projection on the (u,c) plane reveals what the (u,T) projection hides,
and it is useful to consider the behavior of isotherms in this plane. To gain an
understanding of the qualitative structure of the chemical potential w(c, T'), consider
the free energy functions sketched in Fig. 2.2. Differentiation of these functions
with respect to ¢ will result in two isotherms, one for the one-phase region and the
other for the two-phase region. The isotherm for the one-phase region is monotonic
and starts with a negative value of u for small c. It becomes zero at the free energy
minimum and increases monotonically to positive values of i beyond the minimum.
In contrast, the two-phase isotherm has a so-called van der Waals loop, since the
free energy has three extrema at which p vanishes.

To examine these features quantitatively, consider an analytic free energy func-
tion obtained from a mean field theory of a binary mixture (Bragg and Williams,
1934; Bethe, 1935; Huang, 1987),

fe,T)
kpT

=cln(c)+ (1 —=¢) In(1—-c¢c)+ x c(1—=2c). 2.5

The first two terms in this function arise from the increase in the translational
entropy due to mixing. In the last term, x is a parameter describing the enthalpic
interaction between the two species. For small molecules it is

o = ]
= ——|eap — =(€a4 + € , 2.6

X = T leas 2( AA +€BB) (2.6)
where z is the effective coordination number and ¢;; is the interaction energy
between monomers of species i and j. It is straightforward to obtain the
corresponding chemical potential

wu(c,T)
kgT

= In(c) — In(1 — ¢) — x(2c — 1),

=2 tanh 'Qc— 1) — x(2c — 1). (2.7
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10 Order parameter, free energy, and phase transitions

By equating each of the first two derivatives of p with respect to ¢ to zero, one
finds c. = 1/2, xc = 2 and u. = 0. Since x = x(T), one can obtain T, from y,.
If x is large and positive, phase segregation is favorable. The tanh ™! (x) function
increases monotonically from —oo to +00 as x goes from —1 to +1. For small x
(high T), the linear term in Eq. (2.7) does not change the monotonic nature of u;
however, for x > x., one obtains a van der Waals loop.

In the region around the critical point, it is appropriate to expand the free energy
in powers of ¢* = (¢ — ¢.). At the critical point f./(kgT,) = % + ln(%), and the
Taylor series expansion leads to the result

f(C*’T) _ fe _ @C*z aq

*4
- g4 28
kel kel 2° T3¢ T (2:8)

where a» = 2(x. — x), which is proportional to T — T, for y ~ T andas = 13—6.

This expansion is an example of what is generically called a Landau expansion of
the free energy around the critical point.

An A-B polymer blend is a binary mixture of long-chain polymer molecules, and
Flory—Huggins (FH) theory is a mean field theory for such a polymer mixture. In
FH theory, polymer chains are placed on a lattice in such a way that each monomer
unit occupies a lattice site, and connected polymer chains are placed so that they
are locally self-avoiding. For an incompressible blend, all lattice sites are occupied
by either A or B monomers. Let N4 (Np) be the number of monomers (degree of
polymerization) in an A(B) polymer chain. If ¢ is the concentration of A in the
polymer blend, the free energy of mixing per site for an incompressible blend is

fe,T) ¢ (1-o0)
Np

= — In(c) +

ksT N In(1 =)+ x (1 —o), (2.9)

where the Flory interaction parameter x depends on ¢ and 7 in a more complicated
way than that for small molecule mixtures. It is often empirically fitted to a form
X = a+ (b/T). The equation of state now takes the form

u(,T)
kgT

= (N;' = NgH + N In(e) = Ng'in(l —¢) + x (1 —2¢). (2.10)

For a symmetric polymer blend (N4 = Np = N) the critical point coordinates are
e =0,cc =1/2, xc = 2/N.More %enerally, for non-symmetric polymer blends,
cc=N /2/(Nl/2 + Nl/z) Xe = (N + Ny )2 /(2N 4 Np). The Landau expansion
for a symmetric blend has the same form as that for the small molecules with
ay = 2(x. — x) and a4 = 16/3N. Many blends have an upper critical point where
the blend is miscible for x < x. (T > T.) and immiscible for x > x. (T < T,)

at the critical concentration c.. Two limiting cases of a phase-separated blend are
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