Productivity Accounting
The Economics of Business Performance

The productivity of a business exerts a significant influence on its financial performance. A similar influence exists for industries and economies: those with superior productivity performance thrive at the expense of others. Productivity performance helps explain the growth and demise of businesses and the relative prosperity of nations. *Productivity Accounting: The Economics of Business Performance* offers an in-depth analysis of variation in business performance, providing the reader with an analytical framework within which to account for this variation and its causes and consequences. The primary focus is the individual business, and the principal effect of business productivity performance is on business financial performance. Alternative measures of financial performance are considered, including profit, profitability, cost, unit cost, and return on assets. Combining analytical rigor with empirical illustrations, the analysis draws on wide-ranging literature, both historical and current, from business and economics, and explains how businesses create value and distribute it.

Emili Grifell-Tatjé is currently Professor of Management and Business Economics in the Department of Business at the Universitat Autònoma de Barcelona; formerly he was head of the department and academic director of the doctoral program in Economics, Management, and Organization. He has received research grants from academic and private institutions and has been awarded visiting appointments by various universities around the world. Professor Grifell-Tatjé has published in a wide range of academic journals.

C. A. Knox Lovell is Honorary Professor with the Centre for Efficiency and Productivity Analysis in the School of Economics at the University of Queensland. He served as Editor-in-Chief of the *Journal of Productivity Analysis* for a decade. He has authored several books, including *Production Frontiers* (with Rolf Färe and Shawna Grosskopf) and *Stochastic Frontier Analysis* (with Subal Kumbhakhar) for Cambridge University Press.
Productivity Accounting

The Economics of Business Performance

EMILI GRIFELL-TATJÉ
Universitat Autònoma de Barcelona

C. A. KNOX LOVELL
University of Queensland
To the Ladies

Mercè, Marta, Julie, Heidi, Claire, Gemma, Sydney, Savannah, Addison, Holly, and Lucinda
Contents

List of tables xii
List of figures xiv
Preface xvii

1 Introduction 1
 1.1 Management, Accounting, Economics, and the Business Press 1
 1.2 Productivity and Financial Performance 4
 1.2.1 Some empirical evidence 7
 1.2.2 Differing perspectives on the relationship 12
 1.3 Productivity Drivers, Dispersion, and Persistence 21
 1.3.1 Internal productivity drivers 22
 1.3.2 External productivity drivers 28
 1.3.3 A challenge 32
 1.3.4 Productivity dispersion and persistence 32
 1.4 Distribution of the Fruits of Productivity Growth 36
 1.5 The Intellectual Influence of Hiram S. Davis and John W. Kendrick 38
 1.6 Some Useful Technical Material 42
 1.6.1 Production theory 42
 1.6.2 Empirical techniques 51
 1.7 The Organization of the Book 54
 1.8 Some Useful Sources of Data and Other Relevant Information 59
Part I Productivity and Profitability

2 Profitability Change: Its Generation and Distribution
 2.1 Introduction
 2.2 Early Recognition of Profitability as a Performance Indicator
 2.3 Theoretical Decomposition of Profitability Change
 2.3.1 Theoretical quantity and productivity indexes
 2.3.2 An alternative Malmquist productivity index
 2.3.3 Theoretical price and price recovery indexes
 2.3.4 Theoretical decomposition of profitability change
 2.4 Empirical Decomposition of Profitability Change
 2.5 Empirical Estimation of Theoretical Indexes
 2.6 Combining Approximation to and Estimation of Theoretical Indexes
 2.7 Distribution of the Financial Impacts of Productivity Change
 2.8 Additional Productivity Indexes
 2.9 A Dual Productivity Index
 2.10 Exchange Rate Movements

3 Decomposing the Productivity Change and Price Recovery Change Components of Profitability Change
 3.1 Introduction
 3.2 Pairing Empirical Productivity and Price Recovery Indexes
 3.2.1 Empirical indexes without the assistance of economic theory
 3.2.2 Empirical indexes with the assistance of economic theory
 3.3 Pairing Theoretical Productivity and Price Recovery Indexes
 3.3.1 Explicit theoretical indexes
 3.3.2 Explicit and implicit theoretical indexes
3.3.2.1 Implicit Malmquist price and price recovery indexes 140
3.3.2.2 Implicit Konüs quantity and productivity indexes 144
3.4 Pairing a Theoretical Index with an Empirical Index 150
3.5 Conclusions on Ratio Models of Profitability Change 154

Part II Productivity and Profit

4 Profit Change: Its Generation and Distribution 159
4.1 Introduction 159
4.2 Early Recognition of Profit as a Performance Indicator 161
4.3 Empirical Decomposition of Profit Change 164
 4.3.1 Models with investor input or a similar device 166
 4.3.2 Models without investor input 176
4.4 Distribution of the Financial Impacts of Quantity Change 186
 4.4.1 Models with investor input or a similar device 187
 4.4.2 Models without investor input 190
4.5 A Numerical Illustration 196

5 Decomposing the Quantity Change and Price Change Components of Profit Change 202
5.1 Introduction 202
5.2 Empirical Indicators of Quantity Change and Price Change 204
5.3 The Analytical Framework 208
 5.3.1 Laspeyres and Paasche decompositions of profit change 209
 5.3.2 Bennet decompositions of profit change 215
 5.3.3 Empirical applications 220
 5.3.4 Summary 223
5.4 Incorporating Investor Input into the Analytical Framework 224
5.5 A Family of Dual Productivity Indicators 227
5.6 A Numerical Illustration 230
6 Decomposing the Productivity Change Component of Profit Change
 6.1 Introduction 233
 6.2 Decomposing Productivity Change with Investor Input Incorporated
 6.2.1 A productivity indicator approach 236
 6.2.2 A productivity index approach 238
 6.3 Decomposing Productivity Change without Investor Input: A Margin Effect Approach
 6.3.1 An input-oriented margin effect model 240
 6.3.2 An output-oriented margin effect model 248
 6.3.3 Paasche and Bennet decompositions 251
 6.3.4 A productivity index or a quantity index 253
 6.4 Decomposing Productivity Change without Investor Input: An Activity Effect Approach
 6.4.1 An input-oriented activity effect model 256
 6.4.2 An output-oriented activity effect model 260
 6.4.3 Relating the productivity effect to a CCD Malmquist productivity index 263
 6.5 Relating the Margin Effect Approach and the Activity Effect Approach 268
 6.6 Conclusions on Difference Models of Profit Change 272

Part III Productivity, Cost, and Return on Assets

7 Productivity and Cost 277
 7.1 Introduction 277
 7.2 Variance Analysis 280
 7.3 A Cost Frontier: A Konüs Framework 282
 7.4 A Cost Frontier: A Bennet Framework 288
 7.5 A Unit Cost Frontier 292
 7.6 Unit Cost Change, Total Factor Productivity, and Partial Factor Productivities 298
 7.7 A Unit Labor Cost Frontier 304
 7.8 Summary and Conclusions 308

8 Productivity, Capacity Utilization, and Return on Assets 310
 8.1 Introduction 310
 8.2 Decompositions of Return on Assets 315
8.2.1 The duPont triangle 315
8.2.2 The European Productivity Agency pyramids 317
8.2.3 The pyramids of Gold, Eilon, and their associates 319
8.2.4 Remaining challenges 323
8.3 Incorporating Capacity Utilization into a duPont Triangle 325
 8.3.1 Capacity utilization at duPont and General Motors 327
 8.3.2 Output-oriented capacity utilization measures 328
 8.3.3 Input-oriented capacity utilization measures 336
 8.3.4 Incorporating capacity utilization into a duPont triangle 338
 8.3.5 Incorporating productivity into a duPont triangle 342
8.4 Drivers of Change in Return on Assets in a duPont Triangle Framework 343
 8.4.1 The theoretical CCD Malmquist productivity index strategy 344
 8.4.2 The empirical index number strategy 350
8.5 Summary and Conclusions 355

Bibliography 359
Author index 379
Subject index 384
Tables

3.1 Explicit and implicit theoretical price and quantity indexes .. page 149
3.2 Statistical tests of the product test gap 152
4.1 Productivity change and its value with zero nominal profit .. 167
4.2 Productivity change and its value with nonzero nominal profit 177
4.3 Distribution at SNCF .. 193
4.4 Distribution at USPS .. 195
4.5 Example with artificial data .. 197
4.6 Profitability vs. profit decomposition .. 199
5.1 Decompositions of profit change derived from Laspeyres and Paasche indicators 215
5.2 Decompositions of profit change derived from Bennet indicators 219
5.3 Alternative decompositions of profit change .. 231
6.1 Components of profit change at Walmart ... 237
6.2 Quantity effect and its decomposition at USPS ... 246
6.3 Quantity effect and its decomposition by company in the Spanish electricity industry 247
6.4 Quantity effect decompositions .. 253
6.5 Cumulative effect of regulatory change in the Dutch drinking water sector 260
6.6 Profit change decomposition by CEO era at Walmart ... 266
List of tables

7.1 Benchmarking US electric power generation performance 291
7.2 Components of price change, US nonfinancial corporate business sector 294
7.3 Decompositions of unit cost change 299
7.4 Decompositions of unit cost change using artificial data 303
Figures

1.1 Labor productivity and unit profit in the US economy page 7
1.2 Labor’s cost share in the US economy 8
1.3 Labor productivity in Germany and Italy 9
1.4 Wage rates in Germany and Italy 9
1.5 Unit labor cost in Germany and Italy 10
1.6 Unit costs in US airlines 10
1.7 Unit revenues in US airlines 11
1.8 Profit margins in US airlines 11
1.9 A production set and its frontier 43
1.10 Input sets and output sets of production technology $(M=1, N=1)$ 43
1.11 Input sets and isoquants of production technology $(N=2)$ 44
1.12 Output sets and isoquants of production technology $(M=2)$ 44
1.13 An input distance function $(M=1, N=1)$ 45
1.14 An input distance function $(N=2)$ 45
1.15 An output distance function $(M=1, N=1)$ 46
1.16 An output distance function $(M=2)$ 46
1.17 Input-oriented and output-oriented measures of technical efficiency $(M=1, N=1)$ 47
1.18 An input-oriented measure of technical efficiency $(N=2)$ 47
1.19 An output-oriented measure of technical efficiency $(M=2)$ 48
1.20 A cost frontier $(M=1)$ 48
1.21 A revenue frontier $(N=1)$ 49
1.22 The measurement and decomposition of cost efficiency \((N=2)\) 49
1.23 The measurement and decomposition of cost efficiency \((M=1)\) 50
1.24 The measurement and decomposition of revenue efficiency \((M=2)\) 51
1.25 The measurement and decomposition of revenue efficiency \((N=1)\) 51
1.26 SFA and DEA cost frontiers 52
1.27 Drivers of business financial performance 59
1.28 Productivity, price recovery, and financial performance 59
2.1 Malmquist output quantity index 78
2.2 Malmquist input quantity index 79
2.3 Konüs output price index 83
2.4 Konüs input price index 84
2.5 Decomposing price recovery, Australian coal mining 111
3.1 Decomposing profitability change 115
3.2 Profitability change and the product of a Malmquist productivity change index and a Fisher price recovery index 153
6.1 Input-oriented productivity effect decomposition 242
6.2 Output-oriented productivity effect decomposition 249
6.3 Input-oriented productivity effect decomposition \((N=2)\) 257
6.4 Input-oriented productivity effect decomposition \((M=2)\) 257
6.5 Output-oriented productivity effect decomposition \((M=2)\) 262
6.6 Output-oriented productivity effect decomposition \((N=2)\) 262
6.7 Productivity growth and its value at Walmart 267
6.8 The structure of two quantity effect decompositions 268
7.1 A Konüs cost-oriented productivity effect decomposition 286
7.2 A cost-oriented productivity effect decomposition 289
7.3 Decomposing productivity change using unit cost frontiers 297
8.1 The duPont triangle 316
8.2 Output-oriented capacity utilization \((M=2)\) 331
8.3 Input-oriented capacity utilization 337
8.4 Output-oriented productivity effect decomposition 345
We were inspired to write this book by the pioneering works of Hiram S. Davis and John W. Kendrick. Davis, a staff member and Director of the Industrial Research Unit in the Wharton School of Finance and Commerce at the University of Pennsylvania, wrote on prices, wages, and industrial relations, and more extensively on productivity. His work on productivity influenced Kendrick, the foremost productivity expert of our time (and also a reviewer of the prospectus for this book), and Kendrick in turn has influenced a generation of productivity scholars.

Both writers were concerned with productivity growth at the aggregate level.

In The Industrial Study of Economic Progress, the first of two books devoted to productivity, Davis proposed to investigate productivity at the industry level, and was equally concerned with the sources, both internal and external, of productivity growth and the sharing of the benefits that productivity growth conferred. He claimed that productivity growth constituted one, but not the sole, driver of “economic progress,” which is more far-reaching than the more popular concepts of real income or real income per capita. Economic progress also depends on a distribution of the productivity gains in which all members of society benefit, and the ability to address the labor displacement and social costs of industrial development that productivity growth generates.

In his authoritative Productivity Trends in the United States Kendrick measured US productivity growth over a half-century, finding that it accounted for three quarters of the increase in real output per capita, a concept less inclusive, and more concrete, than Davis’s notion of economic progress. Kendrick then showed that, as a consequence, prices of final goods
and services increased less than prices of the factors of production did, and
he concluded that this explains how the fruits of productivity growth were
distributed to providers of the factor services. This also implies that the
measurement of productivity change can be based on price changes, an idea
central to the work of the French writer Fourastié that is enjoying a renais-
sance more than a half-century later.

Both writers were also concerned with productivity growth at the level of
the individual business.

In Productivity Accounting Davis studied productivity in a business and
devoted much of his attention to the relationship between productivity
growth and financial performance, a relationship he called “productivity
accounting,” a term we have borrowed for the title of our book. He also
explained the need to convert the accountant’s current price accounts to
constant price accounts in order to obtain a productivity measure
independent of prices. Davis also continued his interest in the distribution
of the benefits of productivity growth to consumers, resource suppliers,
labor, management, and investors, and the concept of investor input played
a central role in his analysis.

In a pair of books devoted to the measurement of business productivity –
Measuring Company Productivity (with Daniel Creamer) and a subsequent
updated version, Improving Company Productivity – Kendrick referred
explicitly to the influence of Davis. He echoed Davis by emphasizing the
necessity of converting current price accounts to constant price accounts in
order to measure productivity, and he explored the relationship between
productivity change, price change, and profitability change. He devoted
considerable attention to measurement problems, partly within the context
of several case studies.

In this book we follow Davis and Kendrick by examining productivity
dispersion and the determinants of productivity change, by relating produc-
tivity change to change in financial performance, and by exploring the
distribution of the benefits of productivity change. We do so within an
analytical framework, augmented with empirical applications. We have
reviewed a wide range of literature, in business and economics, created
around the world over a long period of time, in academe, in consultancies,
and in government agencies. We have learned much about productivity
dispersion and its persistence from studies that appeared nearly a century
ago in Monthly Labor Review, a journal published by the US Bureau of Labor
Statistics. We have gained valuable insights into the relationship between
productivity and business financial performance from reading Productivity
Preface

Measurement Review, a journal published quarterly from 1955 through 1965 by the European Productivity Agency. We have gained additional insights into the distribution of the benefits of productivity change, and to alternative definitions of these benefits, from reading several monographs published under the auspices of the Centre d’Étude des Revenus et des Coûts (CERC) in Paris during the late 1960s and early 1970s. None of these sources occupies a prominent place on the bookshelves of most scholars. We have incurred some debts in the lengthy process of writing this book.

We are indebted to the innovators whose contributions we have absorbed, re-interpreted, and hopefully not distorted. Our primary influences have been the two pioneers, Hiram Davis and John Kendrick. We also have benefited from exposure to the large analytical and empirical body of work produced by André L. A. Vincent, Raymond Courbis, and Philippe Templé (who, while acknowledging the influence of Kendrick, were more interested in the distribution, rather than the generation, of productivity gains) and their colleagues in Paris; Bela Gold, Samuel Eilon, and their colleagues, whose work on integrated managerial control ratios and related matters academics tend to overlook; the detailed business histories of Alfred Chandler and H. Thomas Johnson; Ephraim Sudit and his colleagues, whose business experience has enriched academic discourse; William W. Lewis and a host of writers for the McKinsey Quarterly and the McKinsey Global Institute, who have seen the business world as it exists rather than as academics would perceive it; and our friends and colleagues Bert Balk and Erwin Diewert for teaching us much. Although our book is inspired by the work of these and other innovators, it also contains much original material that extends their work in hopefully productive ways.

We thank Bert Balk for his thoughtful comments on part of the book; Ephraim Sudit for sharing his insights into productivity measurement at the company level; audiences at seminars and conferences around the world for their questions, comments, suggestions, and references; and graduate students in Barcelona, Chapel Hill, and Athens, whose reactions to half-baked ideas and preliminary drafts have contributed productively to the development of this book.

Thanks to our original editor Scott Parris, for his enthusiasm for and support of this project, but whose patience understandably finally ran out, to his successor Kristin Purdy, and to our current editors Karen Maloney and Kate Gavino, whose patience we have not yet tested.

We started this project with the financial support of Fundación Banco Bilbao Vizcaya Argentaria (BBVA) and continued with the financial