CLOUD AND PRECIPITATION MICROPHYSICS – PRINCIPLES AND PARAMETERIZATIONS

Numerous studies have demonstrated that cloud and precipitation parameterizations are essential components for accurate numerical weather prediction and research models on all scales, including the cloud scale, mesoscale, synoptic scale, and global climate scale.

This book focuses primarily on bin and bulk parameterizations for the prediction of cloud and precipitation at various scales. It provides a background to the fundamental principles of parameterization physics, including processes involved in the production of clouds, ice particles, rain, snow crystals, snow aggregates, frozen drops, graupels and hail. It presents complete derivations of the various processes, allowing readers to build parameterization packages, with varying levels of complexity based on information in this book. Architectures for a range of dynamical models are also given, in which parameterizations form a significant tool for investigating large non-linear numerical systems. Model codes are available online at www.cambridge.org/ straka.

Written for researchers and advanced students of cloud and precipitation microphysics, this book is also a valuable reference for all atmospheric scientists involved in models of numerical weather prediction.

JERRY M. STRAKA received a Ph.D. in Meteorology from the University of Wisconsin, Madison in 1989. He then worked for a short time at the University of Wisconsin's Space Science and Engineering Center (SSEC) in Madison before joining the University of Oklahoma in 1990 where he is an Associate Professor of Meteorology. Dr Straka's research interests include microphysical modeling, severe thunderstorm dynamics, numerical prediction, radar meteorology, and computational fluid dynamics. He was co-director of the Verifications of the Origins of Rotation in Tornadoes Experiment (VORTEX I) and is a Member of the American Meteorological Society.

Cambridge University Press 978-0-521-88338-2 - Cloud and Precipitation Microphysics: Principles and Parameterizations Jerry M. Straka Frontmatter <u>More information</u>

CLOUD AND PRECIPITATION MICROPHYSICS

Principles and Parameterizations

JERRY M. STRAKA University of Oklahoma, USA

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521883382

© J. Straka 2009

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2009

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Straka, Jerry M.

Cloud and precipitation microphysics : principles and parameterizations / Jerry M. Straka.

p. cm. ISBN 978-0-521-88338-2 (hardback) 1. Precipitation (Meteorology)–Measurement. 2. Cloud forecasting. 3. Precipitation forecasting. I. Title.

> QC925.S77 2009 551.57-dc22

2009009612

ISBN 978-0-521-88338-2 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Cambridge University Press 978-0-521-88338-2 - Cloud and Precipitation Microphysics: Principles and Parameterizations Jerry M. Straka Frontmatter <u>More information</u>

This book is specially dedicated to Katharine, Karen, and Michael

"All men dream, but not equally. Those who dream by night in the dusty recesses of their minds wake in the day to find that it was vanity; but dreamers of the day are dangerous men, for they may act their dream with open eyes, to make it possible. This I did."

Seven Pillars of Wisdom (A Triumph) by T. E. Lawrence

Preface

Introduction

Cambridge University Press 978-0-521-88338-2 - Cloud and Precipitation Microphysics: Principles and Parameterizations Jerry M. Straka Frontmatter More information

Contents

1.1	Cloud and precipitation physics and parameterization perspective	1
1.2	Types of microphysical parameterization models	2
1.3	Warm-rain parameterizations	4
1.4	Cold-rain and ice-phase parameterizations	5
1.5	Hydrometeor characteristics overview	7
1.6	Summary	17
2 Fou	ndations of microphysical parameterizations	19
2.1	Introduction	19
2.2	Background	19
2.3	Power laws	21
2.4	Spectral density functions	23
2.5	Gamma distributions	27
2.6	Log-normal distribution	42
2.7	Microphysical prognostic equations	51
2.8	Bin microphysical parameterization spectra	
	and moments	57
3 Clo	ud-droplet and cloud-ice crystal nucleation	59
3.1	Introduction	59
3.2	Heterogeneous nucleation of liquid-water droplets	
	for bulk model parameterizations	61
3.3	Heterogeneous liquid-water drop nucleation for bin model	
	parameterizations	68
3.4	Homogeneous ice-crystal nucleation parameterizations	70
3.5	Heterogeneous ice-crystal nucleation parameterizations	72

page xiii

ambridge University Press	
78-0-521-88338-2 - Cloud and Precipitation Microphysics: Principles and Parameterizatio	ns
erry M. Straka	
rontmatter	
Iore information	

viii	Contents		
4 Saturation adjustment 78			
4.1	Introduction	78	
4.2	Liquid bulk saturation adjustments schemes	81	
4.3	Ice and mixed-phase bulk saturation adjustments schemes	86	
4.4	A saturation adjustment used in bin microphysical		
	parameterizations	91	
4.5	Bulk model parameterization of condensation from a	0.2	
1.0	bin model with explicit condensation	93 07	
4.6	The saturation ratio prognostic equation	97	
-	or diffusion growth of liquid-water drops	101	
5.1	Introduction	101	
5.2	Mass flux of water vapor during diffusional growth	100	
5 2	of liquid-water drops	102	
5.3 5.4	Heat flux during vapor diffusional growth of liquid water Plane, pure, liquid-water surfaces	106 109	
5.5	Ventilation effects	1109	
5.6	Curvature effects on vapor diffusion and Kelvin's law	118	
5.7	Solute effects on vapor diffusion and Raoult's law	120	
5.8	Combined curvature and solute effects and the Kohler curves	121	
5.9	Kinetic effects	122	
	Higher-order approximations to the mass tendency equation	124	
	Parameterizations	129	
	Bin model methods to vapor-diffusion mass gain and loss	134	
5.13	Perspective	138	
6 Vap	or diffusion growth of ice-water crystals and particles	139	
6.1	Introduction	139	
6.2	Mass flux of water vapor during diffusional growth		
()	of ice water	140	
6.3	Heat flux during vapor diffusional growth of ice water	141	
6.4 6.5	Plane, pure, ice-water surfaces Ventilation effects for larger ice spheres	141 142	
6.6	Parameterizations	142	
6.7	Effect of shape on ice-particle growth	143	
	ection growth	152	
7.1 7.2	Introduction Various forms of the collection equation	152 153	
7.2	Analysis of continuous, quasi-stochastic, and pure-stochastic	155	
,	growth models	155	
	-		

Cambridge University Press
978-0-521-88338-2 - Cloud and Precipitation Microphysics: Principles and Parameterizations
ferry M. Straka
Frontmatter
More information

		Contents	ix
	7.4	Terminal velocity	164
	7.5	Geometric sweep-out area and gravitational sweep-out volume per unit time	165
	7.6	Approximate polynomials to the gravitational collection kernel	165
	7.7	The continuous collection growth equation as a two-body problem	166
	7.8	The basic form of an approximate stochastic collection equation	168
	7.9	Quasi-stochastic growth interpreted by Berry and Reinhardt	169
		Continuous collection growth equation parameterizations	173
		Gamma distributions for the general collection equations	175
		Log-normal general collection equations	183
		Approximations for terminal-velocity differences	188
		Long's kernel for rain collection cloud	191
		Analytical solution to the collection equation	194
		Long's kernel self-collection for rain and cloud	195
		Analytical self-collection solution for hydrometeors	196
		Reflectivity change for the gamma distribution owing	
		to collection	197
	7.19	Numerical solutions to the quasi-stochastic collection	
		equation	198
	7.20	Collection, collision, and coalescence efficiencies	222
8	Drop	o breakup	231
	8.1	Introduction	231
	8.2	Collision breakup of drops	232
	8.3	Parameterization of drop breakup	234
9	Auto	conversions and conversions	253
	9.1	Introduction	253
	9.2	Autoconversion schemes for cloud droplets to drizzle	
		and raindrops	255
	9.3	Self-collection of drizzle drops and conversion of drizzle	
		into raindrops	264
	9.4	Conversion of ice crystals into snow crystals and	
		snow aggregates	264
	9.5	Conversion of ice crystals and snow aggregates into	
		graupel by riming	267
	9.6	Conversion of graupel and frozen drops into small hail	270

Cambridge University Press	
978-0-521-88338-2 - Cloud and Precipitation Microphysic	s: Principles and Parameterizations
Jerry M. Straka	-
Frontmatter	
Moreinformation	

х		Contents	
	9.7	Conversion of three graupel species and frozen drops amongst each other owing to changes in density by collection of liquid particles	271
	9.8	Heat budgets used to determine conversions	272
		Probabilistic (immersion) freezing	278
		Immersion freezing	283
		Two- and three-body conversions	283
	9.12	Graupel density parameterizations and density prediction	289
	9.13	Density changes in graupel and frozen drops collecting cloud water	290
	9 14	Density changes in graupel and frozen drops collecting	270
	<i></i>	drizzle or rain water	290
	9.15	More recent approaches to conversion of ice	291
10			
10		growth	293
		Introduction Wat and an an av hail anouth	293 297
		Wet and spongy hail growth Heat-budget equation	297 298
		Temperature equations for hailstones	298 301
		Temperature equations for hailstones with heat storage	301
		Schumann–Ludlam limit for wet growth	302 304
		Collection efficiency of water drops for hail	304
		Hail microphysical recycling and low-density riming	307
11			312
11		ing of ice Introduction	312 312
		Snowflakes and snow aggregates	312 313
		Graupels and hailstones	313
		Melting of graupel and hail	315
		Soaking and liquid water on ice surfaces	326
		Shedding drops from melting hail or hail in wet growth	328
		Parameterization of shedding by hail particles	520
		of 9–19 mm	330
	11.8	Sensitivity tests with a hail melting model	333
12	Mici	ophysical parameterization problems and solutions	336
		Autoconversion of cloud to drizzle or rain development	336
		Gravitational sedimentation	338
		Collection and conversions	340
		Nucleation	343
		Evaporation	344
		-	

Cambridge University Press
978-0-521-88338-2 - Cloud and Precipitation Microphysics: Principles and Parameterizations
Jerry M. Straka
Frontmatter
More information

Contents	xi
12.6 Conversion of graupel and frozen drops to hail	344
12.7 Shape parameter diagnosis from precipitation equations	345
13 Model dynamics and finite differences	
13.1 One-and-a-half-dimensional cloud model	346
13.2 Two-dimensional dynamical models	348
13.3 Three-dimensional dynamical model	355
Appendix	
References	
Index	

Cambridge University Press 978-0-521-88338-2 - Cloud and Precipitation Microphysics: Principles and Parameterizations Jerry M. Straka Frontmatter More information

Preface

Through the experience of the author and his interaction with others that teach cloud and precipitation physics at the University of Oklahoma over the course of at least the past 17 years, it became apparent that there were no current reference books or textbooks on the specific topic of the principles of parameterization of cloud and precipitation microphysical processes. This is despite the knowledge that the research community in numerical simulation models of clouds regularly uses microphysical parameterizations. Moreover, the operational community would find that numerical weather prediction models are not possible without microphysical parameterizations. Therefore, it is hoped that this book will be one that begins to fill this niche and provides a reference for the research and operational communities, as well as a textbook for upper-level graduate students.

Researchers and students should have a prerequisite of a basic graduatelevel course in cloud and precipitation physics before using this book, though every effort has been made to make the book as self-contained as possible. The book provides a single source for a combination of the principles and parameterizations, where possible, of cloud and precipitation microphysics. It is not intended to be a comprehensive text on microphysical principles in the spirit of Pruppacher and Klett's book Microphysics of Clouds and Precipitation. Not every existing parameterization available is included in the book, as this would be an overwhelmingly daunting task, though every effort has been made to include the more common and modern parameterizations. There are some elegant, modern parameterizations that are not covered, though the reader will find references to them. Some simpler early parameterizations such as those used in one-moment parameterizations (mixing ratio of vapor or hydrometeor) are omitted for practical reasons, and because these are quickly becoming outdated. Some operational numerical weather-prediction modelers cling to these simpler microphysics parameterizations as their mainstay owing to their low memory overhead, Cambridge University Press 978-0-521-88338-2 - Cloud and Precipitation Microphysics: Principles and Parameterizations Jerry M. Straka Frontmatter More information

xiv

Preface

and computational cost. Furthermore, an appendix of symbols was deemed to be essentially impossible to make user-friendly, as characters and symbols are recycled time and time again throughout the literature, and thus, they are recycled in this book. Admittedly, this is unfortunate for the reader. Hopefully variables are defined in enough detail where used so that what they represent can be easily understood. Enough material is presented for readers to make educated choices about the types of parameterizations they might find necessary for their work or interest. Every attempt has been made to include state-of-the-art science on the topic by drawing heavily from the peerreviewed literature. Each chapter covers specific microphysical processes, and includes many theoretical principles on which the parameterization designs are based, where such principles exist. It should be interesting to the reader just how ad hoc some parameterizations actually are in reality and how poorly or well some of them perform.

Gratitude is extended to the publishers who have granted permission for the reproduction of figures throughout the text. Some of my own research is included in the book, and for the support of this work as well as time spent on this book, I acknowledge the National Science Foundation in the USA. First and foremost, however, this book would not have at all been possible without the contribution of various derivations and the often tedious and repeated editing provided by my wife and colleague, Dr. Katharine M. Kanak. Next I would like to thank Dr. Robert Ballentine for trusting in me as an undergraduate and graduate student and teaching me the finer points of numerical modeling. I also would like to thank my Ph.D. Advisor, Professor Pao K. Wang for stimulating my initial interest in cloud and precipitation physics, and in particular research on hail initiation and growth. In addition I extend a special thanks to Drs. Matthew Gilmore, Erik Rasmussen, Alan Shapiro, and Ted Mansell for many stimulating conversations about microphysics parameterizations, along with many others, too numerous to list, with whom I had various degrees of complex discussions on the principles and parameterizations presented in this book.

Special thanks are owed to Cambridge University Press Syndicate, and especially Dr. Susan Francis, Commissioning Editor, Earth and Planetary Science, for her guidance, assistance, and opinions in the production and the publication of this book. Diya Gupta, the assistant editor, was invaluable for guidance and help. Eleanor Collins, Production Editor, and Zoë Lewin, Copy Editor, were a pleasure to work with and helped tremendously with getting the book in its present form.

> J. M. Straka Norman, Oklahoma May 2008