
Path-Oriented Program Analysis

This book presents a unique method for decomposing a computer pro-
gram along its execution paths, for simplifying the subprograms so
produced, and for recomposing a program from its subprograms. This
method enables us to divide and conquer the complexity involved in
understanding the computation performed by a program by decompos-
ing it into a set of subprograms and then simplifying them to the furthest
extent possible. The resulting simplified subprograms are generallymore
understandable than the original program as a whole. The method may
also be used to simplify a piece of source code by following the path-
oriented method of decomposition, simplification, and recomposition.
The analysis may be carried out in such a way that the derivation of the
analysis result constitutes a correctness proof. Themethod canbe applied
to any source code (or portion thereof) that prescribes the computation to
be performed in terms of assignment statements, conditional statements,
and loop constructs, regardless of the language or paradigm used.

J. C. Huang received a Ph.D. in electrical engineering from the University
of Pennsylvania in 1969. He is a Professor Emeritus in the Department
of Computer Science at the University of Houston, where he served as
chair from 1992 to 1996.

His practical experience in computer software includes serving as the
chief architect of a software validation and verification system developed
for the U.S. Army’s Ballistic Missile Defense Command, and as a senior
consultant to the U.S. Naval Underwater Systems Center on submarine
software problems.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88286-6 - Path-Oriented Program Analysis
J. C. Huang
Frontmatter
More information

http://www.cambridge.org/0521882869
http://www.cambridge.org
http://www.cambridge.org


Path-Oriented Program
Analysis

J. C. Huang
University of Houston, Houston, Texas

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88286-6 - Path-Oriented Program Analysis
J. C. Huang
Frontmatter
More information

http://www.cambridge.org/0521882869
http://www.cambridge.org
http://www.cambridge.org


cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press
32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org
Information on this title: www.cambridge.org/9780521882866

c© J. C. Huang 2008

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2008

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Huang, J. C., 1935–
Path-oriented program analysis / J. C. Huang

p. cm.
Includes bibliographical references and index.
ISBN-978-0-521-88286-6 (hardback)
1. Computer software – Development. 2. Computer software –
Development – Computer programs. I. Title.
QA76.76.D47H83 2008
005.1 – dc22 2007026404

ISBN 978-0-521-88286-6 hardback

Cambridge University Press has no responsibility for
the persistence or accuracy of URLs for external or
third-party Internet Web sites referred to in this publication
and does not guarantee that any content on such
Web sites is, or will remain, accurate or appropriate.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88286-6 - Path-Oriented Program Analysis
J. C. Huang
Frontmatter
More information

http://www.cambridge.org/0521882869
http://www.cambridge.org
http://www.cambridge.org


To my wife

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88286-6 - Path-Oriented Program Analysis
J. C. Huang
Frontmatter
More information

http://www.cambridge.org/0521882869
http://www.cambridge.org
http://www.cambridge.org


Contents

Preface page ix

1 � Introduction 1

2 � State constraints 15

3 � Subprogram simplification 21

4 � Program set 31

5 � Pathwise decomposition 39

6 � Tautological constraints 55

7 � Program recomposition 69

8 � Discussion 87

9 � Automatic generation of symbolic traces 95

vii

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88286-6 - Path-Oriented Program Analysis
J. C. Huang
Frontmatter
More information

http://www.cambridge.org/0521882869
http://www.cambridge.org
http://www.cambridge.org


Contents

Appendix A: Examples 109

Appendix B: Logico-mathematical background 169

References 193

Index 197

viii

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88286-6 - Path-Oriented Program Analysis
J. C. Huang
Frontmatter
More information

http://www.cambridge.org/0521882869
http://www.cambridge.org
http://www.cambridge.org


Preface

Many years ago, I was given the responsibility of leading a large software
project. The aspect of the project that worried me the most was the
correctness of the programs produced. Whenever a part of the product
became suspect, I could not put my mind to rest until the product was
tested successfullywith awell-chosen set of test cases and until Iwas able
to understand the source code in question clearly and completely. It was
not always easy to understand. That was when I started to search for
ways to facilitate program understanding.

A program can be difficult to understand for many reasons. The dif-
ficulty may stem, for example, from the reader’s unfamiliarity with the
application area, from the obscurity of the algorithm implemented, or
from the complex logic used in organizing the source code. Given the dif-
ferent reasons that difficulty may arise, a single comprehensive solution
to this problem may never be found.

I realized, however, that the creator of a program must always decom-
pose the task to be performed by the program to the extent that it
can be prescribed in terms of the programming language used. If the

ix

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88286-6 - Path-Oriented Program Analysis
J. C. Huang
Frontmatter
More information

http://www.cambridge.org/0521882869
http://www.cambridge.org
http://www.cambridge.org


Preface

reader could see exactly how the task was decomposed, the difficulty of
understanding the code would be eased because the reader could sep-
arately process each subprogram, which would be smaller in size and
complexity than the program as a whole.

The problem is that the decomposition scheme deployed in any pro-
gram may not be immediately obvious from the program text. This is so
because programmers use code sharing to make source code compact and
avoid unnecessary repetition. Code sharing, together with certain syn-
tactic constraints imposed by programming languages, tends to obscure
the decomposition scheme embodied in any program. Some analysis is
required to recover this information.

Mathematically speaking, there are three basic ways to decompose a
function. The first way is to divide the computation to be performed into
a sequence of smaller steps. The second way is to compute a function
with many arguments in terms of functions of fewer arguments. The
third way is to partition the input domain into a number of subdomains
and prescribe the computation to be performed for each subdomain
separately. Methods already exist to recover and exploit information
relevant to the first two decomposition schemes: They are known as
the techniques of symbolic execution and program slicing, respec-
tively. This book presents an analysis method that allows us to extract,
analyze, and exploit information relevant to the third decomposition
scheme.

Do not be intimidated by the formalisms found in the text. The theo-
rems and corollaries are simply rules designed to manipulate programs.
To be precise and concise, formulas in first-order predicate calculus are
used to describe the rules. Only elementary knowledge of symbolic logic
is needed to interpret those rules.

Typically, the method described in this book is to be used as follows.
The program in question is test-executed with an input. If the program
produces an incorrect result, it is a definite indication that the program
is faulty, and appropriate action must be taken to locate and correct the
fault. On the other hand, if the programproduces a correct result, one can
conclude with certainty only that the program is correct for that partic-
ular input. One can broaden the significance of the test result, however,
by finding the execution path traversed during the test-execution and
then applying the analysis method presented in this book to determine

x

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88286-6 - Path-Oriented Program Analysis
J. C. Huang
Frontmatter
More information

http://www.cambridge.org/0521882869
http://www.cambridge.org
http://www.cambridge.org


Preface

(1) the conditions under which the same path will be traversed, and (2)
the exact nature of the computation performed during execution. This
information about execution paths in the program can then be integrated
to obtain a better understanding of the program as a whole. This method
is illustrated in Appendix A with example programs in C++.

This book contains enough information for the reader to apply the
method manually. Manual application of this method, however, is inevi-
tably tedious and error prone. To use the method in a production envi-
ronment, the method must be mechanized. Software tool designers will
find the formal basis presented in this work useful in creating a detailed
design.

Being able to understand programs written by others is of practical
importance. It is a skill that is fundamental to anyonewho reuses software
or who is responsible for software quality assurance and beneficial to
anyone who designs programs, because it allows designers to learn from
others. It is a skill that is not easy to acquire. I am not aware of any aca-
demic institution that offers a course on the subject. Typically, students
learn to understand programs by studying small examples found in pro-
gramming textbooks, and theymay never be challenged,while in school,
to understand a real-world program. Indeed, I have often heard it said –
and not only by students – that if a program is difficult to understand,
it must be badly written and thus should be rewritten or discarded.
Program analysis is normally covered in a course on compiler cons-
truction. The problem is that what is needed to make a compiler com-
pile is not necessarily the same as what is needed to make a programmer
understand. We need methods to facilitate program understanding. I
hope that publication of this book will motivate further study on the
subject.

I would like to take this opportunity to thank William E. Howden for
his inspiration; Raymond T. Yeh for giving me many professional oppor-
tunities that allowed this method to develop from conception, through
various stages of experimentation, and finally to the present state of
maturity; and John L. Bear and Marc Garbey for giving me the time
needed to complete the writing of this book. I would also like to thank
Heather Bergman for seeking me out and encouraging me to publish this
work and Pooja Jain for her able editorial assistance in getting the book
produced. Finally, my heartfelt thanks go to my daughter, Joyce, for her

xi

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88286-6 - Path-Oriented Program Analysis
J. C. Huang
Frontmatter
More information

http://www.cambridge.org/0521882869
http://www.cambridge.org
http://www.cambridge.org


Preface

active and affectionate interest in my writing, and for her invaluable
help in the use of the English language, and to my wife, Shihwen, for
her support, and for allowing me to neglect her while getting this work
done.

J. C. Huang
Houston

xii

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88286-6 - Path-Oriented Program Analysis
J. C. Huang
Frontmatter
More information

http://www.cambridge.org/0521882869
http://www.cambridge.org
http://www.cambridge.org

