
1

Introduction

Program analysis is a problem area concernedwithmethodical extraction
of information from programs. It has attracted a great deal of attention
from computer scientists since the inception of computer science as an
academic discipline. Earlier research efforts were mostly motivated by
problems encountered in compiler construction (Aho and Ullman, 1973).
Subsequently, the problem area was expanded to include those that arise
from development of computer-aided software engineering tools, such
as the question of how to detect certain programming errors through
static analysis (Fosdick and Osterweil, 1976).

By themid-1980s, the scope of research inprogramanalysis hadgreatly
expanded to include, among others, investigation of problems in data-
flow equations, type inference, and closure analysis. Each of these prob-
lem areas was regarded as a separate research domain with its own ter-
minology, problems, and solutions.

Gradually, efforts to extend the methods started to emerge and to pro-
duce interesting results. It is now understood that those seemingly dis-
parate problems are related, and we can gain much by studying them in
a unified conceptual framework. As the result, there has been a dramatic

1

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88286-6 - Path-Oriented Program Analysis
J. C. Huang
Excerpt
More information

http://www.cambridge.org/0521882869
http://www.cambridge.org
http://www.cambridge.org

Path-Oriented Program Analysis

shift in the research directions in recent years. A great deal of research
effort has been directed to investigate the possibilities of extending and
combining existent results [see, e.g., Aiken (1999); Amtoft et al. (1999);
Cousot and Cousot (1977); Flanagan and Qadeer (2003); and Jones and
Nielson (1995)].

In the prevailing terminology, we can say that there are four major
approaches to program analysis, viz., data-flow analysis, constraint-
based analysis, abstract interpretation, and type-and-effect system
(Nielson et al., 2005).

The definition of data-flow analysis appears to have been broadened
considerably. In the classical sense, data-flow analysis is a process of
collecting data-flow information about a program. Examples of data-
flow information include facts about where a variable is assigned a value,
where that value is used, andwhether or not that valuewill be used again
downstream. Compilers use such information to perform transformations
like constant folding and dead-code elimination (Aho et al., 1986). In the
recent publications one can now find updated definitions of data-flow
analysis, such as “data-flow analysis computes its solutions over the
paths in a control-flow graph” (Ammons and Larus, 1998) and the like.

Constraint-based analysis consists of two parts: constraint generation
and constraint resolution. Constraint generation produces constraints
from the program text. The constraints give a declarative specification
of the desired information about the program. Constraint resolution then
computes this desired information (Aiken, 1999).

Abstract interpretation is a theory of sound approximation of the
semantics of computer programs.As aptly explained in the lecture note of
Patrick Cousot atMIT, the concrete mathematical semantics of a program
is an infinite mathematical object that is not computable. All nontrivial
questions on concrete program semantics are undecidable.

A type system defines how a programming language classifies values
and expressions into types, how it can manipulate those types, and how
they interact. It can be used to detect certain kinds of errors during pro-
gram development. A type-and-effect system builds on, and extends,
the notion of types by incorporating behaviors that are able to track
information flow in the presence of procedures, channels based on com-
munication, and the dynamic creation of network topologies (Amtoft
et al., 1999).

2

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88286-6 - Path-Oriented Program Analysis
J. C. Huang
Excerpt
More information

http://www.cambridge.org/0521882869
http://www.cambridge.org
http://www.cambridge.org

Introduction

This book presents a path-oriented method for program analysis. The
property to be determined in this case is the computation performed
by the program and prescribed in terms of assignment statements, con-
ditional statements, and loop constructs. The method is path oriented1

in that the desired information is to be extracted from the execution
paths of the program. We explicate the computation performed by the
program by representing each execution path as a subprogram, and then
using the rules developed in this work to simplify the subprogram or to
rewrite it into a different form.

Because the execution paths are to be extracted by the insertion of
constraints into the program to be analyzed, this book may appear to
be yet another piece of work in constraint-based analysis in light of the
current research directions just outlined. But that is purely coincidental.
The intent of this book is simply to present an analysis method that
the reader may find it useful in some way. No attempt has been made
to connect it to, or fit it into, the grand scheme of current theoretical
research in program analysis.

The need for a method like this may arise when a software engineer
attempts to determine if a program will do what it is intended to do.
A practical way to accomplish this is to test-execute the program for
a properly chosen set of test cases (inputs). If the test fails, i.e., if the
program produces at least one incorrect result, we know for sure that
the program is in error. On the other hand, if all test results produced
are correct, we can conclude only that the program works correctly for
the test cases used. The strength of this conclusion may prove to be
inadequate in some applications. The question then is, what can we do
to reinforce our confidence in the program? One possible answer is to
read the source code. Other than an elegant formal proof of correctness,
probably nothing else is more reassuring than the fact that the source
code is clearly understood and test-executes correctly.

It is a fact of life that most of a real-world program is not that difficult
to read. But occasionally even a competent software engineer will find

1 This is not to be confused with the term “path sensitive.” In some computer
science literature (see, e.g., WIKIPEDIA in references), a program analysis
method is characterized as being path sensitive if the results produced are
valid only on feasible execution paths. In that sense, the present method is
not path sensitive, as will become obvious later.

3

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88286-6 - Path-Oriented Program Analysis
J. C. Huang
Excerpt
More information

http://www.cambridge.org/0521882869
http://www.cambridge.org
http://www.cambridge.org

Path-Oriented Program Analysis

a segment of code that defies his or her effort to comprehend. That is
when the present method may be called on to facilitate the process.

Apiece of source code canbe difficult to understand formanydifferent
reasons, one of which is the reader’s inability to see clearly how the
function was decomposed when the code was written to implement it.
The present method is designed to help the reader to recover that piece
of information.

To understand the basic ideas involved, it is useful to think of a pro-
gram as an artifact that embodies a mathematical function. As such, it
can be decomposed in three different ways.

The first is to decompose f into subfunctions, say, f1 and f2, such that
f(x) = f1(f2(x)). In a program, f, f1, and f2 are often implemented as
assignment statements. The computation it prescribes can be explicated
by use of the technique of symbolic execution (King, 1976; Khurshid
et al., 2003).

The second is to decompose f into subfunctions, say, f3, f4, and f5,
such that

f(x, y, z) = f3(f4(x, y), f5(y, z)).

In a real program, the code segments that implement f4 and f5 can be
identified by using the technique of program slicing (Weiser, 1984).

The third way of decomposition is to decompose f into a set of n
subfunctions such that

f = {f1, f2, . . . , fn},
f : X → Y,
X = X1 ∪ X2 ∪ . . . ∪ Xn,
fi : Xi → Y for all 1 ≤ i ≤ n.

An execution path in the program embodies one of the subfunctions.
The presentmethod is designed to identify, manipulate, and exploit code
segments that embody such subfunctions.

Examples are now used to show the reader some of the tasks that can
be performed with the present method.

Two comments about the examples used here and throughout this
book first.

4

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88286-6 - Path-Oriented Program Analysis
J. C. Huang
Excerpt
More information

http://www.cambridge.org/0521882869
http://www.cambridge.org
http://www.cambridge.org

Introduction

Programs in C++ are used as examples because C++ is currently one
of the most, if not the most, commonly used programming languages at
present.

Furthermore, some example programs have been chosen that are con-
trived and unnecessarily difficult to understand. The reason to keep
example programs small is to save space, and the reason to make them
difficult to understand is so that the advantages of using the present
method can be decisively demonstrated.

Consider the C++ program listed below.

Program 1.1

#include <iostream>
#include <string>
using namespace std
int atoi(string& s)
{

int i, n, sign;
i = 0;
while (isspace(s[i]))

i = i + 1;
if (s[i] == ‘–’)

sign = –1;
else

sign = 1;
if (s[i] == ‘+’ || s[i] == ‘–’)

i = i + 1;
n = 0;
while (isdigit(s[i])) {

n = 10 * n + (s[i] –– ‘0’);
i = i + 1;

}
return sign * n;

}

This is a C++ version of a standard library function that accepts a
string of digits as input and returns the integer value represented by
that string.

5

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88286-6 - Path-Oriented Program Analysis
J. C. Huang
Excerpt
More information

http://www.cambridge.org/0521882869
http://www.cambridge.org
http://www.cambridge.org

Path-Oriented Program Analysis

Now suppose we test-execute this program with input string, say,
“7,” and the program returns 7 as the value of function atoi. This
test result is obviously correct. From this test result, however, we can
conclude only that this piece of source code works correctly for this par-
ticular input string. As mentioned before, we can bolster our confidence
in the correctness of this programbyfinding the execution path traversed
during the test-execution and the answers to the following questions:
(1) What is the condition under which this execution path will be
traversed? and (2) what computation is performed in the process?

The execution path can be precisely and concisely described by the
symbolic trace subsequently listed. The symbolic trace of an execution
path is defined to be the linear listing of the statements and true predi-
cates encountered on the path (Howden and Eichorst, 1977).

Trace 1.2

i = 0;
/ \!(isspace(s[i]));
/ \!(s[i] == ‘–’);
sign = 1;
/ \!(s[i] == ‘+’ || s[i] == ‘–’);
n = 0;
/ \ (isdigit(s[i]));
n = 10 * n + (s[i] – ‘0’);
i = i + 1;
/ \!(isdigit(s[i]));
return sign * n;

Note that every true path-predicate in the preceding trace is prefixed
with a digraph “/\” and terminated with a semicolon.

In comparison with the whole program (Program 1.1), the symbolic
trace is simpler in logical structure and smaller in size because all state-
ments irrelevant to this execution are excluded. This symbolic trace con-
tains answers to the two questions previously posed, but the answers
are not immediately obvious.

It turns out that we can obtain the desired answers by treating the
true predicates on the path as state constraints (see Chapter 2) and by

6

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88286-6 - Path-Oriented Program Analysis
J. C. Huang
Excerpt
More information

http://www.cambridge.org/0521882869
http://www.cambridge.org
http://www.cambridge.org

Introduction

using the rules developed in the following chapters to rewrite the trace
into the form that directly reveal the answers.

In particular, we develop a set of rules that can be used to move a
constraint up or down the control flow without changing the semantics
of the program (see Chapter 3). By repeatedly applying this set of rules
to the subprogram, we can obtain an equivalent subprogram with all
constraints on the top and all assignment statements at the bottom.

If we apply this step to Trace 1.2, it becomes the following program.

Program 1.3

int atoi(string& s)
{

int i, n, sign;
/ \!(isspace(s[0])) &&!(s[0] == ‘–’);
/ \!(s[0] == ‘+’ || s[0] == ‘–’);
/ \ (isdigit(s[0]));
/ \!(isdigit(s[0+1]));
i = 0;
sign = 1;
n = 0;
n = 10 * n + (s[i] –– ‘0’);
i = i + 1;
return sign * n;

}

Note that when constraints are placed immediately next to one
another, their relationship becomes that of a logical conjunction. This
conjunction of constraints on the upper half of the subprogram often can
be greatly simplified because most constraints in the same program are
not entirely independent of one another. The most common relationship
among constraints is that one is implied by the other. This afford the
possibility of simplification because, if A implies B, “A and B” is reduced
to B.

Also note that the long sequence of assignment statements at the
bottom of the subprogram can also be simplified by use of the technique
of symbolic execution (King, 1975; Khurshid et al., 2003) and the rules
developed in this book (Huang, 1990).

7

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88286-6 - Path-Oriented Program Analysis
J. C. Huang
Excerpt
More information

http://www.cambridge.org/0521882869
http://www.cambridge.org
http://www.cambridge.org

Path-Oriented Program Analysis

Program 1.3 can thus be simplified to Program 1.4.2

Program 1.4

/\ (isdigit(s[0])) && !(isdigit(s[1]));
return s[0] – ‘0’;

Program 1.4 says that the computation performed by Program 1.1
can be reduced to a single statement return s[0] - ‘0’ if its
definition is constrained by the predicate (isdigit(s[0])) &&
!(isdigit(s[1])). In words, this simplified subprogram says that
this subprogram is defined for all input strings consisting of a single
digit, and it computes the difference between the ASCII representation
of the input digit and that of digit ‘0’.

In a quality-related software process, such as testing, understanding,
walkthrough, and constructing correctness proof, it is essential that we
be able to describe an execution path precisely and concisely, to deter-
mine the condition under which it will be traversed, and to determine
the computation it performs while the path is being traversed. As just
illustrated, we can use the present method to accomplish this effectively.

It is important to understand clearly that Program 1.4 is not equivalent
to the statement

if ((isdigit(s[0])) && !(isdigit(s[1])))

return s[0] – ‘0’;

Although this conditional statement will do exactly the
same as Program 1.4 if the condition (isdigit(s[0])) &&
!(isdigit(s[1])) is satisfied, it will act differently when the
condition is not satisfied: This conditional statement would do nothing
(i.e., will maintain status quo) whereas Program 1.4 would become
undefined, i.e., it would give no information whatsoever!

In abstract, if f is the function implemented by Program 1.1, f is
decomposed by the programmer into many subfunctions, each of which
is implemented by an execution path in the program. The path described
by Trace 1.2 implements one of those. The present method allows us to
treat each trace as a subprogram and to transform it to explicate the
properties of that subprogram.

2 Details are given in Appendix A.

8

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88286-6 - Path-Oriented Program Analysis
J. C. Huang
Excerpt
More information

http://www.cambridge.org/0521882869
http://www.cambridge.org
http://www.cambridge.org

Introduction

Two possible relationships among programs are now introduced.
Given two programs S1 and S2, we say “S1 is (logically) equivalent to
S2” and write S1 ⇔ S2 if and only if S1 and S2 have the same input
domain and compute the same function. We say “S2 is a subprogram of
S1” and write S1 ⇒ S2 if and only if the input domain of S2 is a subset
of that of S1, and, within the input domain of S2, S1 and S2 compute the
same function. The formal definitions are given in Chapter 2.

Evidently, Program 1.1 ⇒ Program 1.4.
Different constraints canbe inserted into Program1.1 in differentways

to create different subprograms. For instance, consider the execution
path subsequently listed. It is similar to Trace 1.2 except that the last
loop construct in Program 1.1 is iterated one more time.

Program 1.5

i = 0;
/\ ! (isspace(s[i]));
/\ ! (s[i] == ‘–’);
sign = 1;
/\ ! (s[i] == ‘+’ || s[i] == ‘–’);
n = 0;
/\ (isdigit(s[i]));
n = 10 * n + (s[i] – ‘0’);
i = i + 1;
/\ (isdigit(s[i]));
n = 10 * n + (s[i] – ‘0’);
i = i + 1;
/\ ! (isdigit(s[i]));
return sign * n;

This trace, when treated as a subprogram of Program 1.1, can be
similarly simplified to Program 1.6.

Program 1.6

/\ (isdigit(s[0])) && (isdigit(s[1]))
&& !(isdigit(s[2]));

return 10 * (s[0] – ‘0’) + (s[1] – ‘0’);

9

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88286-6 - Path-Oriented Program Analysis
J. C. Huang
Excerpt
More information

http://www.cambridge.org/0521882869
http://www.cambridge.org
http://www.cambridge.org

Path-Oriented Program Analysis

The first line says that this pathwill be traversed if the input is a string
of two, and only two, digits. The function will return an integer value
equal to that of the first digit times 10, plus that of the second digit.
Again, that is precisely what atoi is designed to do.

State constraints can be used to decompose a program pathwise into
subprograms, each of which is smaller and less capable than the original.
A program set is a construct (as defined in Chapter 4) designed to “glue”
two or more programs together to form a new program that is more
complex and capable than each of its constituent components.

In abstract, we use ordinary set notation to denote a program set.
Thus if we have two programs P1 and P2, we can form a program set {P1,
P2}, the formal semantics of which are given in Chapter 4. For now it
suffices to say that, if program P = {P1, P2}, P is not only defined in the
subdomain in which P1 is defined, it is also defined in the subdomain in
which P2 is defined as well. Furthermore, it has the capability of P1 as
well as that of P2.

Because the curly braces “{“, ”}”, and comma “,” used in ordinary
set notation have special meanings in many programming languages, the
trigraphs “{{{“, ”}}}” and “,,,” are used instead to prevent possible
confusion when those symbols are used in a real program.

Thus a singleton program set consisting of Program 1.4 as its element
is written as

{{{
/\ (isdigit(s[0])) &&!(isdigit(s[1]));
return s[0] – ‘0’;

}}}

We can add Program 1.6 into this program set to form a new one:

{{{
/\ (isdigit(s[0])) &&!(isdigit(s[1]));
return s[0] – ‘0’;

,,,
/\ (isdigit(s[0])) && (isdigit(s[1])) &&!(isdigit(s[2]
return 10 * (s[0] – ‘0’) + (s[1] – ‘0’);

}}}

10

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88286-6 - Path-Oriented Program Analysis
J. C. Huang
Excerpt
More information

http://www.cambridge.org/0521882869
http://www.cambridge.org
http://www.cambridge.org

