Fleas are one of the most interesting and fascinating taxa of ectoparasites. All species in this relatively small order are obligatory haematophagous (blood-feeding) parasites of higher vertebrates. This book examines how functional, ecological and evolutionary patterns and processes of host–parasite relationships are realized in this particular system. As such it provides an in-depth case study of a host–parasite system, demonstrating how fleas can be used as a model taxon for testing ecological and evolutionary hypotheses. The book moves from basic descriptive aspects, to functional issues and finally to evolutionary explanations. It extracts several general principles that apply equally well to other host–parasite systems, so will appeal not only to flea biologists but also to mainstream parasitologists and ecologists.

BORIS R. KRASNOV is a senior research scientist in the Jacob Blaustein Institutes for Desert Research at Ben-Gurion University of the Negev. He has worked in the field of ecology for almost thirty years. He was awarded the Rector's Award for Outstanding Scientists by Ben-Gurion University in 2006.
Functional and Evolutionary Ecology of Fleas
A Model for Ecological Parasitology

BORIS R. KRASNOV
Marco and Louise Mitrani Department of Desert Ecology
Jacob Blaustein Institutes for Desert Research
Ben-Gurion University of the Negev
and
Ramon Science Center
Contents

Preface ix

Part I Brief descriptive ecology: what do fleas do?

1 Composition of the order 3
 1.1 Infraorders and families 3
 1.2 Temporal pattern of discovery of flea species 4

2 Hosts of Siphonaptera 9
 2.1 Avian and mammalian hosts 9
 2.2 ‘Realized’ and available hosts 10
 2.3 Number of flea species among host orders 15
 2.4 Fleas, small mammals and biogeography 16
 2.5 Concluding remark 17

3 Geographical distribution of fleas 18
 3.1 General patterns of geographical distribution 18
 3.2 Fleas on islands 21
 3.3 Size of geographical range 22
 3.4 Relationship between flea and host(s) geographical ranges 25
 3.5 Concluding remark 28

4 Origin and evolution of fleas 29
 4.1 Ancestral and sister taxa 29
 4.2 Origin of flea parasitism 32
 4.3 Phylogenetic relationships within Siphonaptera 33
 4.4 Cophylogeny of fleas and their hosts 34
10 Ecology of haematophagy 154
 10.1 Mouthparts and host skin 154
 10.2 Measures of feeding success 156
 10.3 Host-related effects 162
 10.4 Flea-related effects 173
 10.5 Environment-related effects 178
 10.6 Concluding remarks 181

11 Ecology of reproduction and pre-imaginal development 182
 11.1 Measures of reproductive success 182
 11.2 Host-related effects 185
 11.3 Flea-related effects 199
 11.4 Environment-related effects 206
 11.5 Concluding remarks 216

12 Ecology of flea virulence 217
 12.1 Host metabolic rate 218
 12.2 Host body mass and growth rate 223
 12.3 Host haematological parameters 227
 12.4 Host features related to sexual selection 228
 12.5 Host behaviour 229
 12.6 Host survival 232
 12.7 Host fitness 235
 12.8 Concluding remarks 237

13 Ecology of host defence 239
 13.1 First line of defence: avoidance 240
 13.2 Second line of defence: repelling or killing fleas 243
 13.3 Third line of defence: immune response against fleas 255
 13.4 Concluding remarks 278

Part III Evolutionary ecology: why do fleas do what they do?

14 Ecology and evolution of host specificity 283
 14.1 Measures of host specificity 283
 14.2 Variation in host specificity among flea species 285
 14.3 Host specificity and evolutionary success 295
 14.4 Host specificity and host features 303
 14.5 Evolution of host specificity: direction, reversibility and conservatism 308
 14.6 Applicative aspects of host specificity studies 314
 14.7 Concluding remarks 320
Contents

15 Ecology of flea populations 321
 15.1 Measuring abundance and distribution 322
 15.2 Is abundance a flea species character? 324
 15.3 Aggregation of fleas among host individuals 328
 15.4 Biases in flea infestation 338
 15.5 Relationship between flea abundance and prevalence 352
 15.6 Factors affecting flea abundance and distribution 356
 15.7 Concluding remarks 374

16 Ecology of flea communities 375
 16.1 Are flea communities structured? 377
 16.2 Local versus regional processes governing flea communities 386
 16.3 Inferring patterns of interspecific interactions 391
 16.4 Negative interspecific interactions 401
 16.5 Similarity in flea communities: geographical distance or similarity in host composition? 405
 16.6 Concluding remarks 408

17 Patterns of flea diversity 410
 17.1 Flea diversity and host body 411
 17.2 Flea diversity and host gender 415
 17.3 Flea diversity and host population 415
 17.4 Flea diversity and host community 417
 17.5 Flea diversity and host geographical range 424
 17.6 Flea diversity and the off-host environment 425
 17.7 Flea diversity and parasites of other taxa 431
 17.8 Concluding remarks 435

18 Fleas, hosts, habitats 436
 18.1 The Middle East 437
 18.2 Central Europe 443
 18.3 Other examples 451
 18.4 Concluding remarks 454

19 What further efforts are needed? 455
 19.1 Where we are now and what do we have? 456
 19.2 What do we lack? 458
 19.3 Not only a pure science . . . 463

References 466

Index 583
Preface

I was privileged to be introduced to the study of zoology in the Department of Zoology and Comparative Anatomy of Terrestrial Vertebrates at the Moscow State University in Russia. I began my scientific career studying behavioural mechanisms that influence the spatial structure of rodent populations in different landscapes, from the tundra and the Arctic shore of the Chukchi Peninsula to the rainforests of southern Vietnam. At the time, academic staff members and students of the department under the leadership of Professor Nikolai Naumov were working intensively on rodent ecology, aiming to understand their role in infectious zoonoses, mainly the plague. Consequently, every student who studied rodent ecology was introduced to fleas, as they are the principal vectors of the plague.

In the beginning of the 1990s, I started to work at Ben-Gurion University of the Negev and continued to study rodents and other desert-dwelling animals (tenebrionid beetles and lizards) in the Negev Desert. These studies resulted in a book, Spatial Ecology of Desert Rodent Communities, written together with my colleagues Georgy Shenbrot and Konstantin Rogovin, and published by Springer-Verlag in 1999 (Shenbrot et al., 1999a). However, I also subliminally continued to collect fleas from every captured rodent, not being sure at that time why exactly I was doing this. In the mid 1990s, I read several papers by Robert Poulin, Serge Morand and Jean-François Guégan, which opened my eyes to an enthralling new world of parasites. I was so fascinated with the ideas and findings of ecological and evolutionary parasitology that, in the middle of my scientific career, I abruptly switched from studying behaviour and spatial ecology to studying the ecology of host–parasite relationships. Naturally, fleas and rodents were a familiar and very convenient model association that allowed me to combine the ecology of free-living organisms and parasitology, two parallel worlds, wherein scientists too often are not aware of each others’ achievements.
Preface

Parasites are becoming increasingly important in studies of ecology and evolution. This is mainly due to the numerous advantages of using parasites to examine patterns and processes in animal communities because of, for example, the relative ease of obtaining replicated samples (e.g. host individuals or host species) and the fact that parasites of the same taxon share a trophic level. Another advantage of studying parasite communities is that most hosts are usually parasitized by several closely and/or distantly related parasite species that use the same resource. Thus, the study of the community organization of parasites allows a better understanding of the processes of competition and facilitation in biological communities. Ecological and evolutionary studies of parasites, in turn, are powerful tools for understanding the spread of dangerous zoonotic diseases and provide a theoretical basis for their control and prevention. All these issues have led to a sharp increase in empirical, comparative and theoretical studies of host–parasite relationships. Patterns and processes in host–parasite systems have been documented and studied at a variety of levels, across various habitats, in different biogeographical regions and for various parasite taxa. The goal of this book is to examine how functional, ecological and evolutionary patterns and processes of host–parasite relationships are realized in one particular host–parasite system. I attempt to demonstrate how Siphonaptera can be used as a model for testing ecological and evolutionary hypotheses.

My hope is that, on the one hand, this book will be of specific interest for biologists studying fleas, providing them with an up-to-date review of the biology of their study animals. On the other hand, I hope that the book will serve a much greater audience and be relevant to both parasitologists and ecologists. The book provides an in-depth case study of a model host–parasite system, looking at it from many angles, and extracting from it several general principles that apply equally well to other host–parasite systems. Often, a book with detailed information on one taxon inspires research on other taxa, and this book could become a guideline for further research into both parasitism and animal population and community organization.

Fleas represent one of the most fascinating taxa of ectoparasites. All species in this relatively small monophyletic order are obligatory haematophagous parasites of mammals and birds. From the ecological and evolutionary perspectives, fleas represent an interesting model. In particular, this is related to the characteristic *modus vivendi* of these insects. On the one hand, in contrast to endoparasites and permanent ectoparasites such as lice, they spend much time off their hosts and are therefore affected, not only by factors linked to the host per se, but also by the off-host abiotic environment. On the other hand, in contrast to temporary ectoparasites such as mosquitoes and ticks, they spend more time on their hosts than is required merely to obtain a blood meal. This creates a causal chain of
flea–host–environment interactions, which in itself is an important and interesting subject for investigation. Another advantage of using fleas as a model taxon is the opportunity to manipulate flea infestation on living hosts both in the field and in the laboratory and to monitor changes in an individual host over time. Indeed, fleas, in contrast to many other parasites, can be counted on a live animal that itself than can be marked, released, recaptured and examined again.

Fleas serve as the vectors of many diseases dangerous to humans. Apart from this, the veterinary aspect of flea parasitism is also very important, with flea-bite allergies and hypersensitivity being serious problems for both livestock and pets. However, in spite of the importance of fleas and their convenience as models for ecological and evolutionary studies, there is a lack of literature dealing with flea bionomics from modern ecological and evolutionary perspectives. Although there have been several brilliant reviews dealing with flea life history (e.g. Marshall, 1981a; Traub, 1985; Vashchenok, 1988), most ecological and evolutionary approaches that have been developed during the last two decades have not been applied to these animals. This book is aimed at filling the gap between the descriptive biology of fleas and current ecological and evolutionary theory.

An additional issue of note is that fleas have been, and are being, extensively studied in countries of the former USSR; thus much flea literature is in Russian. Moreover, these papers were published in exotic journals, periodicals and collective volumes, making them difficult to obtain and to understand for the Western scientific community. Two reviews of Russian flea literature (Bibikova, 1977; Bibikova & Zhovty, 1980) were published in English, but both are outdated. Given that Western flea-related sources, at least, up to the late 1970s, were carefully reviewed by Adrian Marshall (1981a) and Robert Traub (1980, 1985), I tried to include as many examples as possible from studies done in the former USSR and post-USSR countries as well as in Eastern Europe. Many studies of fleas were done in China. I regret that the Chinese literature has not been as thoroughly reviewed as it should have been. Nevertheless, I did my best to use Chinese sources as well. In this endeavour I obtained help from one of my colleagues and collaborators, Dr Liang Lu, from the Chinese Centre for Disease Control and Prevention in Beijing.

I intentionally avoided the purely applied aspects such as, for example, the control of fleas on domestic animals, as this book is not meant to be either a medical or a veterinary text. Instead, the book moves from basic descriptive aspects, to functional issues and finally to evolutionary explanations. Part I provides a brief description of flea taxonomy, life cycles, and flea–host associations, addressing the question: what do fleas do? Part II addresses the functional
ecology of fleas. It deals with proximate causes of flea responses to their hosts and environment and, thus, addresses the question: how do fleas do what they do? Finally, Part III deals with the evolutionary ecology of fleas and the ultimate explanations of observed patterns, addressing the question: why do fleas do what they do? In addition, (a) in contrast to many earlier texts on parasitology and (b) following Claude Combes’s (2001) idea of a parasite and a host being involved in a durable and intimate interaction, I consider both fleas and their hosts together as two partners in the same game.

During my studies on fleas, and while writing this book, I was helped by many people. Robert Poulin, Allan Degen and Berry Pinshow (in chronological order) were the very first persons with whom I shared the idea of writing this book. It would not have been written without their encouragement. I would like to thank my collaborators and co-authors in publications (in alphabetical order): Zvika Abramsky, Allan Degen, Laura Fielden, Kevin Gaston, Michael Hastriter, Michael Kam, Irina Khokhlova, Tatiana Knyazeva, Natalia Korallo, Carmi Korine, Liang Lu, Sergei Medvedev, Dana Miklisova, Serge Morand, Ladislav Mošanský, David Mouillot, Berry Pinshow, Robert Poulin, David Saltz, Georgy Shenbrot, Marina Spinu, Michal Stanko, Valentin Vashchenok, Diego Vázquez and Maxim Vinarski. These people represent countries from Russia to New Zealand and from China to Canada. Members of my team in the Mitrani Department of Desert Ecology (Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev), Sergei Burdelov and Nadezhda Burdelova, have worked with me during the past 12 years, in the field and in the laboratory, and I am very grateful for their help. I thank my research students and postdoctorate fellows (in alphabetical order): Marine Arakelyan, Dikla Bashary, Tatiana Demidova, Lusine Ghazaryan, Joëlle Goüy de Bellocq, Hadas Hawlena, Ana Hovhanyan, Mariela Leiderman, Maria Lizurume, Natella Mirzoyan, Isik Oguzoglu, Luis Rios, Michal Sarfati, Pirchia Sinai and Kelly Still. They represent not only Israel, but also (in alphabetical order) Argentina, Armenia, Guatemala, France, Russia, Turkey and the USA. I hope they learned not only to study fleas, but also to view them as interesting and charming animals rather than repulsive and aggravating pests. The ideas in this book were discussed over the years with colleagues who helped with their suggestions. They are (in alphabetical order): Vladimir Ageyev, Michael Begon, Frank Clark, Claude Combes, Natalia Darskaya, Katharina Dittmar de la Cruz, Lance Durden, Kenneth Gage, Terry Galloway, Heikki Henttonen, Matthias Kiefer, Michael Kosoy, Marcela Lareschi, Kim Larsen, Herwig Leirs, Douglas Morris, Kosta Mumcuoglu, Robert Pilgrim, Yigal Rechav, Michael Rosenzweig, Lajos Rózsa, Uriel Safriel, Arkady Savinetsky, Svetlana Shilova, Albert Survillo, Viktor Suntsov, Andrey Tchabovsky, David Ward and Michael Whiting, Omar Amin, Daniel Frynta, Ryszard Haitlinger, Liang Lu, Elena Naumova, Michal
Stanko and Elena Zharikova provided me with some rare literature. My colleagues (in alphabetical order): Allan Degen, Kirill Eskov, Megan Griffiths, Michael Hastriter, Irina Khokhlova, Burt Kotler, Serge Morand, Berry Pinshow, Robert Poulin and David Ward read earlier versions of chapters of this book and made helpful comments. Zoe Grabinar and Marcia Chertok improved the English prose. I thank Cambridge University Press and, in particular, Jacqueline Garget for the opportunity to publish this book with a leading scientific publisher. Finally, I thank Irina Khokhlova, who is not only my collaborator of many years, but also my spouse, and our children Helena and Alexander for their continuous support and patience.

For taxonomy and names, I followed Medvedev et al. (2005) for fleas, Clements (2007) for birds and Wilson & Reeder (2005) for mammals. Consequently, some species names differ from those in the original sources.