Stochastic resonance occurs when random noise provides a signal processing benefit, and has been observed in many physical and biological systems. Many aspects have been hotly debated by scientists for nearly 30 years, with one of the main questions being whether biological neurons utilise stochastic resonance. This book addresses in detail various theoretical aspects of stochastic resonance with a focus on its extension to suprathreshold stochastic resonance, in the context of stochastic signal quantization theory. Models in which suprathreshold stochastic resonance occur support significantly enhanced “noise benefits”, and exploitation of the effect may prove extremely useful in the design of future engineering systems such as distributed sensor networks, nano-electronics, and biomedical prosthetics.

For the first time, this book reviews and systemizes the topic in a way that brings clarity to a range of researchers from computational neuroscientists through to electronic engineers. To set the scene, the initial chapters review stochastic resonance and outline some of the controversies and debates that have surrounded it. The book then discusses the suprathreshold stochastic resonance effect as a form of stochastic quantization. Next, it considers various extensions, such as optimization and tradeoffs for stochastic quantizers. On the topic of biomedical prosthetics, the book culminates in a chapter on the application of suprathreshold stochastic resonance to the design of cochlear implants. Each chapter ends with a review summarizing the main points, and open questions to guide researchers into finding new research directions.
STOCHASTIC RESONANCE

From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization

MARK D. McDONNELL
Research Fellow
University of South Australia
and
The University of Adelaide

NIGEL G. STOCKS
Professor of Engineering
University of Warwick

CHARLES E.M. PEARCE
Elder Professor of Mathematics
The University of Adelaide

DEREK ABBOTT
Professor of Electrical and Electronic Engineering
The University of Adelaide
To Juliet, Suzanne, Frances, and Camille.
Contents

List of figures
List of tables
Preface
Foreword
Acknowledgments

1 Introduction and motivation
 1.1 Background and motivation
 1.2 From stochastic resonance to stochastic signal quantization
 1.3 Outline of book

2 Stochastic resonance: its definition, history, and debates
 2.1 Introducing stochastic resonance
 2.2 Questions concerning stochastic resonance
 2.3 Defining stochastic resonance
 2.4 A brief history of stochastic resonance
 2.5 Paradigms of stochastic resonance
 2.6 How should I measure thee? Let me count the ways . . .
 2.7 Stochastic resonance and information theory
 2.8 Is stochastic resonance restricted to subthreshold signals?
 2.9 Does stochastic resonance occur in vivo in neural systems?
 2.10 Chapter summary

3 Stochastic quantization
 3.1 Information and quantization theory
 3.2 Entropy, relative entropy, and mutual information
 3.3 The basics of lossy source coding and quantization theory
 3.4 Differences between stochastic quantization and dithering
 3.5 Estimation theory
 3.6 Chapter summary
4 Suprathreshold stochastic resonance: encoding
 4.1 Introduction 59
 4.2 Literature review 61
 4.3 Suprathreshold stochastic resonance 67
 4.4 Channel capacity for SSR 101
 4.5 SSR as stochastic quantization 112
 4.6 Chapter summary 117

5 Suprathreshold stochastic resonance: large N encoding
 5.1 Introduction 120
 5.2 Mutual information when $f_s(x) = f_\eta(\theta - x)$ 125
 5.3 Mutual information for uniform signal and noise 131
 5.4 Mutual information for arbitrary signal and noise 135
 5.5 A general expression for large N channel capacity 150
 5.6 Channel capacity for ‘matched’ signal and noise 158
 5.7 Chapter summary 163

6 Suprathreshold stochastic resonance: decoding
 6.1 Introduction 167
 6.2 Averaging without thresholding 172
 6.3 Linear decoding theory 174
 6.4 Linear decoding for SSR 179
 6.5 Nonlinear decoding schemes 195
 6.6 Decoding analysis 206
 6.7 An estimation perspective 213
 6.8 Output signal-to-noise ratio 225
 6.9 Chapter summary 230

7 Suprathreshold stochastic resonance: large N decoding
 7.1 Introduction 233
 7.2 Mean square error distortion for large N 234
 7.3 Large N estimation perspective 241
 7.4 Discussion on stochastic resonance without tuning 244
 7.5 Chapter summary 246

8 Optimal stochastic quantization
 8.1 Introduction 248
 8.2 Optimal quantization model 252
 8.3 Optimization solution algorithms 258
 8.4 Optimal quantization for mutual information 260
 8.5 Optimal quantization for MSE distortion 268
 8.6 Discussion of results 271
 8.7 Locating the final bifurcation 286
 8.8 Chapter summary 289
Contents

9 SSR, neural coding, and performance tradeoffs 291
 9.1 Introduction 291
 9.2 Information theory and neural coding 296
 9.3 Rate–distortion tradeoff 309
 9.4 Chapter summary 321
10 Stochastic resonance in the auditory system 323
 10.1 Introduction 323
 10.2 The effect of signal distribution on stochastic resonance 324
 10.3 Stochastic resonance in an auditory model 330
 10.4 Stochastic resonance in cochlear implants 344
 10.5 Chapter summary 356
11 The future of stochastic resonance and suprathreshold stochastic resonance 358
 11.1 Putting it all together 358
 11.2 Closing remarks 360
Appendix 1 Suprathreshold stochastic resonance 362
 A1.1 Maximum values and modes of $P_{y|x}(n|x)$ 362
 A1.2 A proof of Equation (4.38) 363
 A1.3 Distributions 363
 A1.4 Proofs that $f_Q(\tau)$ is a PDF, for specific cases 370
 A1.5 Calculating mutual information by numerical integration 371
Appendix 2 Large N suprathreshold stochastic resonance 373
 A2.1 Proof of Eq. (5.14) 373
 A2.2 Derivation of Eq. (5.18) 374
 A2.3 Proof that $f_S(x)$ is a PDF 375
Appendix 3 Suprathreshold stochastic resonance decoding 377
 A3.1 Conditional output moments 377
 A3.2 Output moments 378
 A3.3 Correlation and correlation coefficient expressions 380
 A3.4 A proof of Prudnikov’s integral 382
 A3.5 Minimum mean square error distortion decoding 385
 A3.6 Fisher information 388
 A3.7 Proof of the information and Cramer–Rao bounds 390
References 392
List of abbreviations 417
Index 419
Biographies 421
Figures

2.1 Frequency of stochastic resonance papers by year page 7
2.2 Typical stochastic resonance plot 8
2.3 Quartic bistable potential 22
2.4 Quartic bistable potential: fixed points 23
2.5 Qualitative illustration of SR occurring in a simple threshold-based system 26
2.6 Generic noisy nonlinear system 38
2.7 Thresholding a periodic signal at its mean 40
2.8 Threshold SR for a periodic but not sinusoidal signal 42
2.9 Ensemble averages of thresholded and unthresholded signals 43
4.1 Array of N noisy threshold devices 60
4.2 Mutual information for the case of $f_x(x) = f_\eta(\theta - x)$ 76
4.3 Various probability distributions 79
4.4 $f_Q(\tau)$ for various even PDFs and $\theta = 0$ 81
4.5 Relative entropy between $f_x(x)$ and $f_\eta(x)$ 82
4.6 PDF of a random phase sine wave 84
4.7 Exact $I(x, y)$, $H(y|x)$, and $H(y)$ for uniform signal and noise and $\sigma \leq 1$ 88
4.8 $I(x, y)$, $H(y|x)$, and $H(y)$ for Gaussian signal and noise 91
4.9 $I(x, y)$, $H(y|x)$, and $H(y)$ for uniform signal and noise 92
4.10 $I(x, y)$, $H(y|x)$, and $H(y)$ for Laplacian signal and noise 93
4.11 $I(x, y)$, $H(y|x)$, and $H(y)$ for logistic signal and noise 94
4.12 $I(x, y)$, $H(y|x)$, and $H(y)$ for Cauchy signal and noise 95
4.13 $I(x, y)$, $H(y|x)$, and $H(y)$ for $N = 127$ and five signal and noise pairs with even PDFs 96
4.14 $I(x, y)$, $H(y|x)$, and $H(y)$ for Rayleigh signal and noise 97
4.15 $I(x, y)$, $H(y|x)$, and $H(y)$ for exponential signal and noise 98
4.16 $I(x, y)$, $H(y|x)$, and $H(y)$ for $N = 127$ and the Rayleigh and exponential cases 99
4.17 $I(x, y)$, $H(y|x)$, and $H(y)$ for a uniform signal and Gaussian noise 100
4.18 $I(x, y)$, $H(y|x)$, and $H(y)$ for a Laplacian signal and Gaussian noise 101
4.19 $I(x, y)$, $H(y|x)$, and $H(y)$ for a logistic signal and Gaussian noise 102
4.20 $I(x, y)$, $H(y|x)$, and $H(y)$ for a Cauchy signal and Gaussian noise 103
4.21 $I(x, y)$, $H(y|x)$, and $H(y)$ for a Rayleigh signal and Gaussian noise 104
List of figures

4.22 $I(x, y), H(y|x),$ and $H(y)$ for $N=127$, various signals and Gaussian noise 105
4.23 Optimal noise intensity for Gaussian, Laplacian, and logistic signal and noise 107
4.24 Channel capacity for matched signal and noise 108
4.25 Coding efficiency for matched signal and noise 112
4.26 Random threshold distributions for Gaussian signal and noise 114
4.27 Average transfer function, and its variance, for SSR 116
5.1 Mutual information for $\sigma=1$ and large N 129
5.2 Error in large N approximations to $I(x, y)$ for $\sigma=1$ 129
5.3 Error comparison for large N approximations to $I(x, y)$ for $\sigma=1$ 131
5.4 Mutual information for uniform signal and noise and large N 133
5.5 Error in mutual information for uniform signal and noise and large N 134
5.6 Error in the large N approximation to $\hat{H}(y|x)$ 138
5.7 Approximate $H(y|x)$ for large N 139
5.8 Large N approximation to $P_\gamma(n)$ 144
5.9 Absolute error in output entropy using large N approximation to $P_\gamma(n)$ 145
5.10 Large N approximation to output entropy 147
5.11 Large N approximation to mutual information 149
5.12 Optimal signal PDF for Gaussian noise 154
5.13 Exact expressions for $I(x, y)$ and $H(y)$ at channel capacity 157
5.14 Approximation to $g(\sigma) = -\int_{x=-\infty}^{x=\infty} f_i(x) \log_2(P_{1|x})dx$ 160
5.15 Finding channel capacity for large N 162
6.1 Quantities for linear decoding 187
6.2 Linear decoding correlation coefficient 188
6.3 Linear decoding correlation coefficient for $N=127$ 189
6.4 Constant decoding MSE distortion for uniform signal and noise 191
6.5 MSE distortion for matched-moments decoding 192
6.6 Reconstruction points for matched-moments linear decoding, $N=15$ 193
6.7 MSE distortion for optimal linear (Wiener) decoding 194
6.8 Reconstruction points for optimal linear (Wiener) decoding, $N=15$ 195
6.9 MSE distortion for maximum a posteriori decoding 198
6.10 Reconstruction points for maximum a posteriori decoding, $N=15$ 199
6.11 MSE distortion for MMSE decoding 202
6.12 Reconstruction points for MMSE decoding, $N=15$ 203
6.13 Correlation coefficient for MMSE decoding 204
6.14 MMSE decoding for uniform signal and noise 207
6.15 Comparison of MSE distortion for various decoding schemes, $N=127$ 208
6.16 Comparison of correlation coefficients for $N=127$ 209
6.17 Decoding comparison for uniform signal and noise, $N=127$ 210
6.18 SQNR for each decoding for $N=127$ 211
6.19 Decoding transfer functions and variance 212
6.20 Average information bound 222
6.21 Percentage difference between MMSE distortion and average information bound 223
6.22 Mean square bias term 224
6.23 Average error variance term 225
7.1 MSE distortion and correlation coefficient for Wiener decoding and large N 237
List of figures

8.1 Optimal thresholds for mutual information, $N = 2$ 263
8.2 Optimal thresholds for mutual information, $N = 3$ 264
8.3 Optimal thresholds for mutual information, $N = 4$ 265
8.4 Optimal thresholds for mutual information, $N = 5$ 266
8.5 Optimal reconstruction points for mutual information, $N = 5$ 267
8.6 Optimal thresholds for mutual information, Gaussian signal and noise, $N = 15$ 268
8.7 Optimal thresholds for linear decoding MSE distortion, $N = 5$ 272
8.8 Optimal thresholds for MMSE distortion, $N = 2$ 273
8.9 Optimal thresholds for MMSE distortion, $N = 5$ 274
8.10 Optimal reconstruction points for minimized MMSE, $N = 5$ 275
8.11 Optimal mutual information threshold clusters for various σ, $N = 5$ 277
8.12 Locally optimal thresholds for maximum mutual information, $N = 3$ 282
8.13 Locally optimal mutual information, $N = 3$ 283
8.14 Difference in mutual information between local optima 284
8.15 Average information bound (AIB), Gaussian signal and noise, $N = 3$ 287
8.16 Final bifurcation point, mutual information 288
8.17 Final bifurcation point, MMSE distortion 288
9.1 Information efficiency as a function of σ, all thresholds equal 301
9.2 Information efficiency as a function of θ / σ_x, all thresholds equal 302
9.3 Information efficiency for fixed energy 304
9.4 Information efficiency for optimized thresholds 305
9.5 Optimal energy constrained thresholds 306
9.6 Minimizing N subject to an information constraint 308
9.7 Operational rate–distortion tradeoff for SSR 316
9.8 Operational rate–distortion tradeoff for SSR, in dB 317
9.9 Comparison of $I(x, y)$ with $R_L(D)$ for SSR 318
9.10 Rate–distortion tradeoff for uniform signal and noise 319
9.11 Operational rate–distortion tradeoff for optimized thresholds 320
10.1 Correlation coefficient and mutual information against noise intensity for a Gaussian signal 325
10.2 Correlation coefficient and mutual information against noise intensity for a Laplacian signal 326
10.3 Noise-induced performance gains 327
10.4 Correlation coefficient and mutual information against noise intensity for a Laplacian signal and 15 threshold devices 329
10.5 Schematic diagram of the Meddis hair cell model 331
10.6 Neurotransmitter dynamics 333
10.7 Basic architecture of DRNL filter 335
10.8 Complete auditory model 336
10.9 Coherence against displacement noise amplitude for a 500 Hz sinusoidal signal 338
10.10 Coherence estimation against displacement noise amplitude for the complete auditory model 339
10.11 Coherence against displacement noise amplitude for various stimulus levels 340
10.12 Histogram of the speech signal of the word ‘phonetician’ 341
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.13</td>
<td>Coherence against displacement noise amplitude for a speech signal</td>
<td>342</td>
</tr>
<tr>
<td>10.14</td>
<td>Coherence against displacement noise amplitude for a speech signal after DRNL filtering</td>
<td>343</td>
</tr>
<tr>
<td>10.15</td>
<td>Coherence against displacement noise amplitude for a speech signal without preprocessing</td>
<td>343</td>
</tr>
<tr>
<td>10.16</td>
<td>Schematic diagram of a cochlear implant</td>
<td>345</td>
</tr>
<tr>
<td>10.17</td>
<td>Simulated cochlear implant coding strategy</td>
<td>347</td>
</tr>
<tr>
<td>10.18</td>
<td>Information vs. noise curves</td>
<td>351</td>
</tr>
<tr>
<td>10.19</td>
<td>Altering the current spread space-constant</td>
<td>353</td>
</tr>
<tr>
<td>10.20</td>
<td>Information vs. noise curves for 16 BKB sentences</td>
<td>354</td>
</tr>
<tr>
<td>10.21</td>
<td>The effect of noise intensity on information rate</td>
<td>355</td>
</tr>
</tbody>
</table>
Tables

4.1 List of probability distributions and corresponding PDFs, CDFs, and ICDFs
4.2 List of ratios of signal PDF to noise PDF, $f_Q(\tau)$, for $\theta = 0$
5.1 Large N channel capacity and optimal σ for matched signal and noise
8.1 Parameters for point density function, $N = 5$, Gaussian signal and noise, and maximized mutual information
9.1 The PDF, variance, entropy, and Shannon lower bound for various distributions
10.1 Passbands of filters used to mimic sound processing by the Clarion cochlear implant

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>List of probability distributions and corresponding PDFs, CDFs, and ICDFs</td>
<td>78</td>
</tr>
<tr>
<td>4.2</td>
<td>List of ratios of signal PDF to noise PDF, $f_Q(\tau)$, for $\theta = 0$</td>
<td>80</td>
</tr>
<tr>
<td>5.1</td>
<td>Large N channel capacity and optimal σ for matched signal and noise</td>
<td>162</td>
</tr>
<tr>
<td>8.1</td>
<td>Parameters for point density function, $N = 5$, Gaussian signal and noise, and maximized mutual information</td>
<td>279</td>
</tr>
<tr>
<td>9.1</td>
<td>The PDF, variance, entropy, and Shannon lower bound for various distributions</td>
<td>314</td>
</tr>
<tr>
<td>10.1</td>
<td>Passbands of filters used to mimic sound processing by the Clarion cochlear implant</td>
<td>348</td>
</tr>
</tbody>
</table>
Preface

Quantization of a signal or data source refers to the division or classification of that source into a discrete number of categories or states. It occurs, for example, when analogue electronic signals are converted into digital signals, or when data are binned into histograms. By definition, quantization is a lossy process, which compresses data into a more compact representation, so that the number of states in a quantizer’s output is usually far fewer than the number of possible input values.

Most existing theory on the performance and design of quantization schemes specifies only deterministic rules governing how data are quantized. By contrast, stochastic quantization is a term intended to pertain to quantization where the rules governing the assignment of input values to output states are stochastic rather than deterministic. One form of stochastic quantization that has already been widely studied is a signal processing technique called dithering. However, the stochastic aspect of dithering is usually restricted so that it is equivalent to adding random noise to a signal prior to quantization. The term stochastic quantization is intended to be far more general, and applies to the situation where the rules of the quantization process are stochastic.

The inspiration for this study comes from a phenomenon known as stochastic resonance, which is said to occur when the presence of noise in a system provides a better performance than the absence of noise. Specifically, this book discusses a particular form of stochastic resonance – discovered by Stocks – known as suprathreshold stochastic resonance, and demonstrates how and why this effect is a form of stochastic quantization.

The motivation is two-fold. First, stochastic resonance has been observed in many forms of neuron and neural systems, both in models and in real physiological experiments. The model in which suprathreshold stochastic resonance occurs – sometimes called a pooling network – was designed to model a population of neurons, rather than a single neuron. Unlike single neurons, the suprathreshold stochastic resonance model supports stochastic resonance for input signals that are
not entirely or predominantly subthreshold. Hence, it has been conjectured that the suprathreshold stochastic resonance effect is utilized by populations of neurons to encode noisy sensory information, for example in the cochlear nerve.

Second, although stochastic resonance has been observed in many different systems, in a wide variety of scientific fields, to date very few applications inspired by stochastic resonance have been proposed. One of the reasons for this is that in many circumstances utilizing stochastic resonance to improve a system is dismissed as suboptimal when compared with optimizing that system to operate without requiring stochastic resonance. This is because, given a system or device that is a priori nonlinear, a designer has the choice of (i) trying to operate it in a quasi-linear regime by locking operation to a near-linear part of the input–output transfer function, or (ii) allowing the system to be operated throughout its full nonlinear characteristic. The first alternative has historically been preferred, because linear systems are far easier to understand and analyse. However, if the system is allowed to run freely, then it is possible to utilize stochastic resonance, in a very carefully controlled manner, to enhance performance. Although adjusting certain parameters in the nonlinear system other than noise may be the preferred option, sometimes this cannot be achieved, and utilizing noise via stochastic resonance can provide a benefit. Given that stochastic resonance is so widespread in nature, and that many new technologies have been inspired by natural systems – particularly biological systems – new applications incorporating aspects of stochastic resonance may yet prove revolutionary in fields such as distributed sensor networks, nano-electronics, and electronic biomedical prosthetics.

As a necessary step towards confirming the above two hypotheses, this book addresses in detail for the first time various theoretical aspects of stochastic quantization, in the context of the suprathreshold stochastic resonance effect. The original work on suprathreshold stochastic resonance considers the effect from the point of view of an information channel. This book comprehensively reviews all such previous work. It then makes several extensions: first, it considers the suprathreshold stochastic resonance effect as a form of stochastic quantization; second, it considers stochastic quantization in a model where all threshold devices are not necessarily identical, but are still independently noisy; and, third, it considers various constraints and tradeoffs in the performance of stochastic quantizers. To set the scene, the initial chapters review stochastic resonance and outline some of the controversies and debates that have surrounded it.
Due to the multidisciplinary nature of stochastic resonance the Foreword begins with a commentary from Bart Kosko representing the engineering field and ends with comments from Sergey M. Bezrukov representing the biophysics field. Both are distinguished researchers in the area of stochastic resonance and together they bring in a wider perspective that is demanded by the nature of the topic.

The authors have produced a breakthrough treatise with their new book *Stochastic Resonance*. The work synthesizes and extends several threads of noise-benefit research that have appeared in recent years in the growing literature on stochastic resonance. It carefully explores how a wide variety of noise types can often improve several types of nonlinear signal processing and communication. Readers from diverse backgrounds will find the book accessible because the authors have patiently argued their case for nonlinear noise benefits using only basic tools from probability and matrix algebra.

Stochastic Resonance also offers a much-needed treatment of the topic from an engineering perspective. The historical roots of stochastic resonance lie in physics and neural modelling. The authors reflect this history in their extensive discussion of stochastic resonance in neural networks. But they have gone further and now present the exposition in terms of modern information theory and statistical signal processing. This common technical language should help promote a wide range of stochastic resonance applications across engineering and scientific disciplines. The result is an important scholarly work that substantially advances the state of the art.

Professor Bart Kosko

Department of Electrical Engineering, Signal and Image Processing Institute, University of Southern California, December 2007
Foreword

A book on stochastic resonance (SR) that covers the field from suprathreshold stochastic resonance (SSR) to stochastic signal quantization is a long-anticipated major event in the world of signal processing.

Written by leading experts in the field, it starts with a didactic introduction to the counterintuitive phenomenon of stochastic resonance – the noise-induced increase of order – complete with a historical review and list of controversies and debates. The book then quickly advances to the hot areas of signal quantization, decoding, and optimal reconstruction.

The book will be indispensable for both students and established researchers who need to navigate through the modern sea of stochastic resonance literature. With the significance of the subject growing as we advance in the direction of nanotechnologies, wherein ambient fluctuations play an ever-increasing role, this book is bound to become an influential reference for many years to come.

Sergey M. Bezrukov
National Institutes of Health (NIH)
Bethesda, Washington DC, USA
July 2007
Putting this book together was a lengthy process and there are many people to thank. The field of stochastic resonance (SR) is one that has been rapidly evolving in recent years and has often been immersed in hot debate. Therefore we must thank all our colleagues in the SR community for providing the springboard for this book.

Many discussions have been influential in crystallizing various matters, and we especially would like to acknowledge Andrew G. Allison, Pierre-Olivier (Bidou) Amblard, David Allingham, Said F. Al-Sarawi, Matthew Bennett, Sergey M. Bezrukov, Robert E. Bogner, A. N. (Tony) Burkitt, Aruneema Das, Paul C. W. Davies, Bruce R. Davis, Simon Durrant, Alex Grant, Doug Gray, David Grayden, Leonard T. Hall, Priscilla (Cindy) Greenwood, Greg P. Harmer, David Haley, Laszlo B. Kish, Bart Kosko, Riccardo Mannella, Ferran Martorell, Robert P. Morse, Alexander Nikitin, Thinh Nguyen, David O’Carroll, Al Parker, Juan M. R. Parrondo, Antonio Rubio, Aditya Saha, John Tsimbinos, Lawrence M. Ward, and Steeve Zozor.

Special thanks must go to Adi R. Bulsara and Matthew J. Berryman who read early drafts and provided comments that greatly improved clarity. Also a special thanks is due to Withawat Withayachumnankul for his wonderful graphics skills and assistance with some of the figures.

Finally, we would like to thank Simon Capelin, our editor at Cambridge University Press, for his patience and overseeing this project through to completion, and assistant editor Lindsay C. Barnes for taking care of the manuscript.