Oil, Water, and Climate: An Introduction

Today's oil and gas are at record prices, and yet global energy demand is increasing because of population and economic development pressures. Climate change, resulting in large part from the burning of fossil fuels, is exacerbating the impact of the accelerated exploitation of our natural resources. Therefore, anxieties over energy, water, and climate security are at an all-time high. Global action is needed now to address this set of urgent challenges and to avoid putting the future of our civilization at risk. This book examines the powerful interconnections that link energy, water, climate, and population, exploring viable options in addressing these issues collectively. Difficult political decisions and major reforms in resource governance, policies, market forces, and use are needed, and this book provides excellent introductory material to enable readers to begin to understand and address these problems.

CATHERINE GAUTIER Doctorat d'Etat en physique option Météorologie, Université Paris VI has been Professor of Geography at the University of California, Santa Barbara, since 1990. Gautier is the former Director and Principal Investigator at the Institute of Computational Earth System Science and current Head of the Earth Space Research Group at the University of California, Santa Barbara.
To my daughters, Kristen and Julie, my niece, Pascale, my nephews, and all my students and their generation.
Contents

Foreword xvii

Introduction 1

1 Overview 4

Oil, Water, Climate, and Population: An Interactive System of Immense Complexity 4
Coupled Unsustainable Use Of Energy and Water Resources 5
Role of Population and Economic Development in Oil and Water Use 5
Effects of Energy Demand and Use on Global Warming 6
Climate Change Can Exacerbate Water Scarcity 7
Oil and Water Resource Issues Share Many Features 7
Exhaustion of Easily Accessible Resources 7
Realization of Finiteness of Resources and New Strategies 8
Value of Efficiency Improvement 8
Oil and Water Security Concerns 9
Poor Management of Oil and Water Resources 9
Aging Infrastructure and Magnitude of the Needed Investments 10
Urgency and Window of Opportunity 10
Major Differences in Oil and Water Resource Issues 11
Strong Leadership Needed 12

2 Carbon Dioxide Emissions, Global Warming, and Water Resources 14

Introduction 14
Carbon Dioxide Emissions 15
Increasing Carbon Dioxide Concentration in the Atmosphere due to Human Activities 16
3 Population, Environmental Impacts, and Climate Change 36

Introduction 36
Current Population Projections and Characteristics of Future Population 37
Factors Influencing Population Predictions 40
 Fertility 42
 Mortality 43
 Migration 44
Tools for Analyzing Demographic Change 44
 Demographic Transition Model 44
 Population Pyramid 45
 Uncertainty of Demographic Projections 45
Geographic and Age Distribution of Population 46
 Population Concentration in Urban Areas 46
 Population Concentration in Coastal Regions 47
 An Aging Population 50
Development, Global Energy Use, and Demography 51
Population, Water, and Climate Change 51
Population Growth, Resources Use, and Vulnerability to Climate Change 52
 Per Capita Emissions Trends 53
Other Human Impacts on the Global Carbon Balance and Greenhouse Gases 55
Contents ix

Integrating Population Considerations into Climate Change Solutions 56
 Population and Emissions Limitation Agreements 56
 “Climate Refugees” 56
Conclusion 57

4 Carbon Cycle and the Human Impact 59
 Introduction 59
 Carbon and the Carbon Cycle 60
 Carbon Exchanges Affecting Atmospheric CO₂ Concentration 65
 Exchange between Rocks and the Atmosphere 65
 Biotic Fluxes: Photosynthesis and Respiration 66
 Phytoplankton Photosynthesis 67
 Net Carbon Uptake: Carbon Sinks 70
 Land as a Carbon Sink 70
 The Ocean as a Carbon Sink 72
 Partitioning Carbon Sinks between Land and Ocean 73
 Examples of Natural and Anthropogenic Impacts on the Carbon Cycle 74
 Land-Use Change: Deforestation and Agricultural Practices 74
 CO₂ Fertilization and Nutrient Deposition 75
 Fires 77
 Fossil Fuel Burning and the Carbon Cycle 78
 Coupling Between the Carbon Cycle and Climate: Carbon-Climate Feedback 78
Conclusion 79

5 Peak Oil, Energy, Water, and Climate 81
 Introduction 81
 The Concept of Peak Oil 82
 Conventional and Unconventional Oil 84
 Reserves 85
 Why Production and Reserve Estimates Differ 87
 Consumption 88
 Estimating Peak Oil 90
 Oil Production, Distribution, and Use 93
 Energy Consumption Needed for Oil Production 93
 Water Used in Oil Production 94
 Oil Production and Greenhouse Gas Emissions 94
 Oil Transport and Water Pollution 95
 Potential Consequences of Peak Oil 95
 Peak Oil and Energy Policy Choices 95
 Peak Oil and Market Economies 96
 Peak Oil and Climate 97
Conclusion 99
6 Oil Consumption and CO₂ Emissions from Transportation

Introduction 100
Present and Future Global Oil Consumption 101
Oil Consumption by the Transportation Sector 103
CO₂ Emissions by the Transportation Sector 104
Gasoline Consumption Standards 105
Crude Oil and Gasoline Prices 109
Private Car Ownership Trends 111
Distillates and Oil Use by Other Transportation Vehicles 113
Reducing CO₂ Emissions from Transportation 114
Government Regulatory Actions 114
Raising Fuel Economy Standards 114
Establishing Environmental Regulations 115
Increasing Fuel Taxes 116
Establishing Tradable Fuel Economy Credits 117
Offering Technology Incentives 117
Reducing Traffic Congestion and Average Annual Mileage Driven 117
Developing Rapid and Carbon-Light Mass Transit Systems 118
The Case of Air Transportation 119
Marine Transportation 119
CO₂ Impacts and Related Emissions Costs 120
The Role of the Public: Influence of Personal Behavior 120
Conclusion 121

7 Oil, Economy, Power, and Conflicts

Introduction 123
Oil Consumption, Economics, and Politics 123
The Geopolitics of Oil 127
Oil Prices and Financial Markets 127
Petroleum-Rich Economies 130
Oil Security 133
China’s Geopolitical Outlook Regarding Oil 134
Impact of Climate on Oil Production and Price 135
Conclusion 137

8 Energy Alternatives and Their Connection to Water and Climate

Introduction 138
Coal 140
Natural Gas 143
Nuclear Energy 147
Wind Energy 151
Solar Energy 153
Contents xi

Hydrogen Cells 155
Hydroelectric Power 159
Biomass: Ethanol 160
Geothermal Energy 162
Conclusion 164

9 The Water Cycle and Global Warming 167
Introduction 167
Water Cycle and the Water Budget 168
Elements of the Water Cycle 169
Evaporation, Condensation, and Precipitation 169
Land Surface Hydrology 174
Snow and Ice 176
Water Cycle and Climate 176
Water Vapor Greenhouse Effect 176
Clouds and Climate 176
Precipitation and Climate 177
Evapotranspiration and Climate 179
Snow/Ice and Climate 179
Weathering Effect of Water and Climate 179
Predicted Changes in the Water Cycle 180
Predictive Abilities of Climate Models 180
Changes in Water Vapor and Clouds 181
Precipitation 181
Evaporation 182
Changes in the Land Water Budget 182
Other Effects of Human Activities on the Water Cycle 184
Conclusion 185

10 Fresh Water Availability, Sanitation Deficit, and Water Usage: Connection to Energy and Global Warming 186
Introduction 186
Global Distribution of Fresh Water Availability 188
Sanitation Deficit 188
The Water-Sanitation Gap 188
Lack of Sanitation: Poverty Link 190
The Future of Sanitation 190
Cities and Water 191
Water Usage: Global Inequality and Irrigation Needs 193
Global Inequality 193
Irrigation Needs 193
Future of Irrigation: Where Will the Water Come From? 195
Ecosystem Needs 197
xii Contents

Blue and Green Water 198
 Overview and Definition 198
 Water Returning to the Atmosphere, Green Water Needs, and Blue
 Water Waste 198
Energy and Water Connection 199
 Energy Needs for Irrigation and Crops Water Delivery 199
 Energy for Water Supply, Sanitation, and Wastewater Treatment 200
 Water for Energy Generation 200
Water Availability and Global Warming 201
 Overall Trends 201
 Managing Water in a Changing Climate 202
Water Needs of Alternative Energy Sources 202
Conclusion 203

11 Rivers, Lakes, Aquifers, and Dams: Relation to Energy
and Climate 205
Introduction 205
Surface Water 205
 Rivers and Streams 206
 Lakes 208
 Wetlands 209
Groundwater 210
Fresh Water Ecosystem 211
 Ecosystem Functions 211
 Human Pressures on Ecosystems 212
Dams 213
 Major Functions of Dams 213
 Environmental Effects of Dams 214
 Dam Siltation 216
 Dams and Greenhouse Gas Emissions 217
 Social Impacts 218
Potential Effects of Global Warming on Dams, Rivers, and Lakes 218
Conclusion 221

12 Water Contamination, Energy, and Climate 222
Introduction 222
Water Pollution and Water Quality 223
Water Contaminants 223
Sources of Water Contamination 226
 Agriculture 226
 Fertilizer Contamination 226
 Irrigation-Induced Salinization and Waterlogging 229
 Livestock Pollution 229
13 Geopolitics of Water and the International Situation 245

Introduction 245
Water Rights and Water Regimes 246
Definition of Water Rights 246
Water Rights and Security 248
Water Regimes 248
Transboundary Waters 248
Hydrological Interdependence 248
Transboundary Water Governance Challenges 249
International Water Rights 250
Water Allocation 250
International Water Laws 251
Delimitation of International Boundaries 252
Roots and Types of Water Conflicts 252
Potential for Cooperation around Water Resources 253
Water and Poverty 255
Two-Way Relationship 255
Public Finance, Access, and Price 255
Conditions for Empowerment 257
Women and Water 257
Development and Environmental Protection: Water in the Middle 258
UN Millennium Development Goals, Millennium Project and Water, and Others 258
The World Bank and Water 259
Nongovernmental Organizations 259
World Water Forum 259
Opposition to Large-Scale Water Initiatives 260
Opposition to Huge Dams 260
Privatization of Water and Water Systems 261
Water Alternatives 270

Introduction 270
Water Saving 271
 Water Conservation and Efficiency 271
 Water Distribution Infrastructure Maintenance, Repair, and Replacement 272
Water Productivity Increase: "More Crop per Drop" 273
 Raising Irrigation Water Efficiency and Productivity 273
 Rainwater Harvesting 274
 Water Diversions and Transfer Among Basins 276
 Technological Solutions 276
Water Trading and the Concept of Virtual Water 277
 Water Trading 277
 Virtual Water 280
Land-Use Change for Increased Rainfed Agriculture 281
Desalination 282
 Desalination Process and Technology 282
 Desalinated Water Production 283
 Energy Needs of Desalination 283
 Cost of Desalinated Water 284
 Environmental Impacts and Health Risks 284
Conclusion 286

Global Climate Change: Observations, Modeling, and Predictions 288

Introduction 288
Present Observational Evidence of Climate Change 289
 Global Temperature Changes 289
 Changes in Temperature Extremes 290
 Stratospheric Cooling 290
 Polar Amplification of Anthropogenic Warming 290
 Changes in Hurricanes and Oceans 291
 Hurricanes 291
 Storage of Heat in the Oceans 292
 Ocean Salinity and Density in a Warmer Climate 293
<table>
<thead>
<tr>
<th>Changes in Sea Level</th>
<th>293</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forcings, Radiative Forcing, and Climate Sensitivity</td>
<td>294</td>
</tr>
<tr>
<td>Forcings</td>
<td>294</td>
</tr>
<tr>
<td>Radiative Forcing</td>
<td>296</td>
</tr>
<tr>
<td>Climate Sensitivity</td>
<td>296</td>
</tr>
<tr>
<td>Future Climate Change</td>
<td>298</td>
</tr>
<tr>
<td>Tools</td>
<td>298</td>
</tr>
<tr>
<td>Predicted Changes under Various Scenarios</td>
<td>300</td>
</tr>
<tr>
<td>Natural Variability and Anthropogenic Effects</td>
<td>302</td>
</tr>
<tr>
<td>Climate Oscillations</td>
<td>303</td>
</tr>
<tr>
<td>Monsoons</td>
<td>306</td>
</tr>
<tr>
<td>Climate Inertia and Abrupt Climate Change</td>
<td>307</td>
</tr>
<tr>
<td>Climate Inertia</td>
<td>307</td>
</tr>
<tr>
<td>Abrupt Climate Change</td>
<td>307</td>
</tr>
<tr>
<td>Conclusion</td>
<td>308</td>
</tr>
</tbody>
</table>

16 Energy and Water Challenges and Solutions in a Changing Climate Framework: Commonality, Differences, and Connections 310

<table>
<thead>
<tr>
<th>Introduction</th>
<th>310</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Frame for Action</td>
<td>312</td>
</tr>
<tr>
<td>Population</td>
<td>312</td>
</tr>
<tr>
<td>Energy</td>
<td>313</td>
</tr>
<tr>
<td>Water</td>
<td>313</td>
</tr>
<tr>
<td>Climate</td>
<td>314</td>
</tr>
<tr>
<td>The Scope of the Challenge</td>
<td>314</td>
</tr>
<tr>
<td>Energy and Climate</td>
<td>314</td>
</tr>
<tr>
<td>Water</td>
<td>316</td>
</tr>
<tr>
<td>Electricity Production</td>
<td>317</td>
</tr>
<tr>
<td>Clean Coal</td>
<td>317</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>317</td>
</tr>
<tr>
<td>Solar and Wind Power</td>
<td>318</td>
</tr>
<tr>
<td>Nuclear Power</td>
<td>318</td>
</tr>
<tr>
<td>Improved Water Management</td>
<td>318</td>
</tr>
<tr>
<td>Resource and Demand Management</td>
<td>319</td>
</tr>
<tr>
<td>Addressing Urbanization Issues</td>
<td>319</td>
</tr>
<tr>
<td>Water Treatment and Reuse</td>
<td>320</td>
</tr>
<tr>
<td>Development of Indicators of Global Water Trends</td>
<td>320</td>
</tr>
<tr>
<td>Common Characteristics of Solutions</td>
<td>320</td>
</tr>
<tr>
<td>Efficiency and Conservation</td>
<td>320</td>
</tr>
<tr>
<td>Energy Savings in the Building Sector</td>
<td>321</td>
</tr>
<tr>
<td>Transport Sector Energy Savings</td>
<td>321</td>
</tr>
<tr>
<td>Irrigation Water Savings</td>
<td>321</td>
</tr>
<tr>
<td>Urban Water Savings</td>
<td>322</td>
</tr>
</tbody>
</table>
Adaptation to Change 322
Technology Breakthroughs and Research and Development (R&D) Programs 323
Addressing Externalities 324
Assigning a Cost to Emitting CO₂ 324
Assigning a Cost to Water 324
Respect for the Environment 325
Reasonable Use of Resources 325
Environmental Ethics 325
Sustainability 326
Addressing Needs of Future Generations 327
Intergenerational Equity 327
Climate Discounting Across Generation versus the Precautionary Principle 328
Empowerment and Education in Support of Poverty Eradication 329
Education and Adaptability to Change 330
The Security Issue 330
Conflict versus Cooperation 331
Massive Infrastructure and Research & Development Investments Needed 331
Leadership and Behavior Changes 331
Final Thoughts 335

References 337
Index 345
Foreword

This is a remarkable and timely book by a scientist who is well known internationally both for her research on climate and for her innovations in education. In straightforward and accessible language, Catherine Gautier introduces the reader to a complex variety of interlinked issues. The theme that unifies this book is that the seemingly disparate topics of oil, water, climate, and population are in fact inexorably bound together by powerful interconnections. As a result, at the dawn of the 21st century, humanity is confronted with a set of urgent challenges. It is no exaggeration to say that these challenges put the very future of civilization at risk.

It is paradoxical that these challenges should arrive at a time when the human race has made remarkable strides in overcoming long-standing obstacles. For millennia, humanity struggled to maintain population growth in the face of the ancient threats of starvation, disease, and war. Recent decades, however, have seen an explosion in human numbers and, in some countries, extraordinary increases in prosperity.

Two thousand years ago, the entire earth supported a population of only about 300 million people. It took until about 1800 for global population to pass 1 billion, and the doubling of that figure to reach 2 billion was not achieved until around 1930. In retrospect, we can now see that, at about that time, a dramatic population surge began to occur, and the global population rose to about 6.5 billion people by 2006. There was thus more than a three-fold increase in worldwide population in only about 75 years, roughly one human lifetime.

In the United States, a country with an exceptionally high level of prosperity and also of resource consumption per capita, the nation’s population reached the 300 million mark in 2006, as contrasted with 200 million only about 40 years earlier. These rates of increase, both in the United States and globally, are unprecedented and unsustainable. Population is a potent multiplier for the issues treated in this wide-ranging book.
The prosperity that has characterized developed countries in the modern era has been fueled by abundant and cheap energy. In modern times, about 80% of that energy has been generated by the combustion of coal, oil, and natural gas, the so-called fossil fuels. These fuels constitute a finite resource, and that fact itself has many implications explored in this book. Furthermore, we have begun to realize that the exploitation of these ancient stores of energy, found buried in the earth’s crust and extracted in immense quantities, has come at great cost.

Part of that cost occurs in the form of environmental degradation, and an especially important aspect of the environment is the climate system. Our climate is the product of many delicate balances, and one of these in particular has turned out to be vulnerable to the unintended consequences of fossil fuel use. This, of course, is the famous “greenhouse effect,” a natural phenomenon in which heat-trapping gases in the atmosphere have warmed the climate since early in our planet’s history, creating the conditions necessary for evolving and maintaining the abundant variety of life on Earth, including ourselves.

Now, however, humankind has unwittingly modified that natural greenhouse effect by adding large amounts of carbon dioxide and other greenhouse gases to the atmosphere. Carbon dioxide, the most significant climatically of these gases affected by human activities, is a natural byproduct of the combustion of fossil fuels and also is produced by deforestation and other human activities. The atmospheric abundance of this gas has increased so much that today about one out of every four molecules of carbon dioxide in the atmosphere is there because we humans put it there. We have thus dramatically altered the chemical composition of the global atmosphere.

The Fossil Fuel Age will surely end, and it will end sooner rather than later, if we are wise. Sheikh Yamani, a former Saudi oil minister, was fond of saying, “The Stone Age did not end because we ran out of stones.” Science has clearly shown that continuing to generate 80% of the world’s energy from fossil fuel, and using the atmosphere as a free dump for waste products, will ultimately produce a different and damaged planet, a bitter legacy for our children. Catherine Gautier demonstrates in this book that the complex story of humanity’s addiction to oil and other fossil fuels has profound consequences through the intricate interdependence of oil, water, and climate.

The story of the depletion of the ozone layer by man-made chemicals has many useful parallels to the story told in this book. F. Sherwood Rowland, later a Nobel laureate, was frustrated in 1984 that humankind was so slow in dealing with the ozone issue. He said, “After all, what’s the use of having developed a science well enough to make predictions, if in the end all we’re willing to do is stand around and wait for them to come true!” Science and business and governments worked together then, and the ozone layer is on track to heal.
Rowland’s remark is apt for the topics treated in this book. Once again, powerful technology with unanticipated side effects has brought us a Faustian bargain: great economic and societal benefits, but at a steep environmental price. Once again, the world finds itself at a point where difficult decisions must be made. Once again, doing nothing, or too little, will lead to dire consequences. Refusing to recognize what scientists have learned about climate change, its causes, and its linkages to water and the environment, in the vain and naive hope that the problem will somehow solve itself, is simply irresponsible. Action is needed, meaningful action, and soon.

We already have impeccable settled science that demonstrates the reality of global warming and its origin in human activities. We fully understand the fundamental physics behind the greenhouse effect. We also have persuasive observational evidence of the dramatic changes now taking place in the climate system. These changes are not small. Humankind’s fingerprints on the climate can now be distinguished clearly from natural variability.

We scientists have constructed computer models that are powerful tools to predict the future climate with considerable confidence. We take into account the other important factors, including the sun, volcanoes, and pollution particles. Some of our forecasts have already come true. The Intergovernmental Panel on Climate Change (IPCC), in a series of authoritative reports published in 2007, summarized key aspects of climate science, as follows. Warming of the climate system is unequivocal, based on many kinds of observations. Our knowledge of ancient climates tells us the warmth of the last half-century is unusual in at least the previous 1,300 years.

Most of the observed increase in globally averaged temperatures in recent decades is “very likely” due to the observed increase in human-caused greenhouse gas concentrations in the atmosphere. Here “very likely” is calibrated language that means the odds are better than 9 chances in 10 that this conclusion is correct. A continued warming at the current rate or slightly higher is inevitable for about the next 25 years. Beyond that, the future course of climate change depends strongly on how much more carbon dioxide humanity dumps into the atmosphere.

Global warming since the 1800s has already produced an increase of about three-quarters of a degree Celsius or more than a degree Fahrenheit. Of the 12 warmest years since the 19th century, 11 of them have occurred in the most recent 12 years. Globally, 2006 was the sixth warmest year in this period. For the United States, 2006 was the warmest year on record.

Arctic temperatures in the last 100 years increased twice as much as the global average. Since 1950, the number of heat waves globally has increased. The heat wave in Europe in 2003 that killed more than 30,000 people was unprecedented
Foreword

in modern times. Intense tropical cyclone activity has increased in the North Atlantic region since about 1970.

The global ocean down to a depth of about 3,000 meters or 10,000 feet has been warming since the early 1960s. This warming contributes to sea-level rise. Sea level rose some 7 inches (or 18 centimeters) over the 20th century, and the rate of rise has apparently increased recently. Water vapor in the atmosphere is increasing as the world warms. This additional water vapor is itself a greenhouse gas that feeds back and amplifies the warming. Snow cover and mountain glaciers are decreasing markedly. These sobering conclusions of the IPCC illustrate the bedrock science that should inform the making of wise public policy.

None of these observed climate changes has been a great surprise to the scientists who study climate. They are just about what we had predicted. We have long been expecting measurements like these. The question is simply, How much worse do we intend to let these trends become? The science warns us that continuing to fuel the world using present technology will bring dangerous and possibly surprising climate changes by the end of this century, if not sooner. Business as usual implies more heat waves, higher sea levels, disrupted rainfall patterns, vanishing glaciers, and much more.

Limiting atmospheric carbon dioxide amounts to any reasonable level will take large cuts in human-caused emissions of carbon dioxide into the atmosphere. At present, however, these emissions are increasing, not decreasing. It takes time to change the gigantic and expensive global energy infrastructure based on fossil fuels. To have a meaningful effect by mid-century, we will need to start soon. The question is whether we, all six-and-a-half billion of us, can muster the collective determination to act. The economic case can be made convincingly, once people understand the cost of doing nothing, or too little. Technology can accomplish great things, once society is committed to a goal. Humanity has already increased atmospheric carbon dioxide by some 35% above natural levels. Humanity will now decide, either intentionally or by neglect, what level it wants to tolerate. Then nature will have its say, and the climate system will change in response to the level of greenhouse gases in the atmosphere. Nature is supremely indifferent to politics and spin. Nature will have the last word.

Climate and its dependence on the greenhouse effect are not the only issues confronting humankind, and they are not the only ones treated in this book. The entire world indeed has a number of critical choices to make in the immediate future. One of them – in many ways the paradigm decision – is whether to continue on the present path of adding more and more carbon dioxide and other greenhouse gases to the atmosphere, or whether to seek and find another path. Science tells us that the path we choose will largely determine the kind of Earth
that our children and grandchildren will inherit. A key aspect of the solution is a well-informed population. Making sound choices will require critical thinking and a basic familiarity with the issues and what science can teach us about them. We are all entitled to our own opinions, but we are not entitled to our own facts. Learning the facts and understanding their consequences pose fundamentally an educational challenge. In writing this book, Catherine Gautier has made an important contribution to educating those who will confront these issues and make these choices.

Richard C. J. Somerville
Scripps Institution of Oceanography
University of California, San Diego