Covering all aspects of gravitation in a contemporary style, this advanced textbook is ideal for graduate students and researchers in all areas of theoretical physics.

The ‘Foundations’ section develops the formalism in six chapters, and uses it in the next four chapters to discuss four key applications – spherical spacetimes, black holes, gravitational waves and cosmology. The six chapters in the ‘Frontiers’ section describe cosmological perturbation theory, quantum fields in curved spacetime, and the Hamiltonian structure of general relativity, among several other advanced topics, some of which are covered in-depth for the first time in a textbook.

The modular structure of the book allows different sections to be combined to suit a variety of courses. More than 225 exercises are included to test and develop the readers’ understanding. There are also over 30 projects to help readers make the transition from the book to their own original research.

T. PADMANABHAN is a Distinguished Professor and Dean of Core Academic Programmes at the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune. He is a renowned theoretical physicist and cosmologist with nearly 30 years of research and teaching experience both in India and abroad. Professor Padmanabhan has published over 200 research papers and nine books, including six graduate-level textbooks. These include the Structure Formation in the Universe and Theoretical Astrophysics, a comprehensive three-volume course. His research work has won prizes from the Gravity Research Foundation (USA) five times, including the First Prize in 2008. In 2007 he received the Padma Shri, the medal of honour from the President of India in recognition of his achievements.
GRAVITATION

Foundations and Frontiers

T. P A D M A N A B H A N

IUCAA, Pune,
India
Dedicated to the fellow citizens of India
Contents

List of exercises page xiii

List of projects xix

Preface xxi

How to use this book xxvii

1 **Special relativity** 1

1.1 Introduction 1

1.2 The principles of special relativity 1

1.3 Transformation of coordinates and velocities 6

1.3.1 Lorentz transformation 8

1.3.2 Transformation of velocities 10

1.3.3 Lorentz boost in an arbitrary direction .. 11

1.4 Four-vectors 13

1.4.1 Four-velocity and acceleration 17

1.5 Tensors 19

1.6 Tensors as geometrical objects 23

1.7 Volume and surface integrals in four dimensions 26

1.8 Particle dynamics 29

1.9 The distribution function and its moments . 35

1.10 The Lorentz group and Pauli matrices .. 45

2 **Scalar and electromagnetic fields in special relativity** 54

2.1 Introduction 54

2.2 External fields of force 54

2.3 Classical scalar field 55

2.3.1 Dynamics of a particle interacting with a scalar field 55

2.3.2 Action and dynamics of the scalar field . 57

2.3.3 Energy-momentum tensor for the scalar field 60

2.3.4 Free field and the wave solutions 62
Contents

2.3.5 Why does the scalar field lead to an attractive force? 64
2.4 Electromagnetic field 66
2.4.1 Charged particle in an electromagnetic field 67
2.4.2 Lorentz transformation of electric and magnetic fields 71
2.4.3 Current vector 73
2.5 Motion in the Coulomb field 75
2.6 Motion in a constant electric field 79
2.7 Action principle for the vector field 81
2.8 Maxwell’s equations 83
2.9 Energy and momentum of the electromagnetic field 90
2.10 Radiation from an accelerated charge 95
2.11 Larmor formula and radiation reaction 100

3 Gravity and spacetime geometry: the inescapable connection 107
3.1 Introduction 107
3.2 Field theoretic approaches to gravity 107
3.3 Gravity as a scalar field 108
3.4 Second rank tensor theory of gravity 113
3.5 The principle of equivalence and the geometrical description of gravity 125
3.5.1 Uniformly accelerated observer 126
3.5.2 Gravity and the flow of time 128

4 Metric tensor, geodesics and covariant derivative 136
4.1 Introduction 136
4.2 Metric tensor and gravity 136
4.3 Tensor algebra in curved spacetime 141
4.4 Volume and surface integrals 146
4.5 Geodesic curves 149
4.5.1 Properties of geodesic curves 154
4.5.2 Affine parameter and null geodesics 156
4.6 Covariant derivative 162
4.6.1 Geometrical interpretation of the covariant derivative 163
4.6.2 Manipulation of covariant derivatives 167
4.7 Parallel transport 170
4.8 Lie transport and Killing vectors 173
4.9 Fermi–Walker transport 181

5 Curvature of spacetime 189
5.1 Introduction 189
5.2 Three perspectives on the spacetime curvature 189
5.2.1 Parallel transport around a closed curve 189
5.2.2 Non-commutativity of covariant derivatives 192
Contents

5.2.3 Tidal acceleration produced by gravity

5.3 Properties of the curvature tensor
5.3.1 Algebraic properties
5.3.2 Bianchi identity
5.3.3 Ricci tensor, Weyl tensor and conformal transformations

5.4 Physics in curved spacetime
5.4.1 Particles and photons in curved spacetime
5.4.2 Ideal fluid in curved spacetime
5.4.3 Classical field theory in curved spacetime
5.4.4 Geometrical optics in curved spacetime

5.5 Geodesic congruence and Raychaudhuri’s equation
5.5.1 Timelike congruence
5.5.2 Null congruence
5.5.3 Integration on null surfaces

5.6 Classification of spacetime curvature
5.6.1 Curvature in two dimensions
5.6.2 Curvature in three dimensions
5.6.3 Curvature in four dimensions

6 Einstein’s field equations and gravitational dynamics
6.1 Introduction
6.2 Action and gravitational field equations
6.2.1 Properties of the gravitational action
6.2.2 Variation of the gravitational action
6.2.3 A digression on an alternative form of action functional
6.2.4 Variation of the matter action
6.2.5 Gravitational field equations
6.3 General properties of gravitational field equations
6.4 The weak field limit of gravity
6.4.1 Metric of a stationary source in linearized theory
6.4.2 Metric of a light beam in linearized theory
6.5 Gravitational energy-momentum pseudo-tensor

7 Spherically symmetric geometry
7.1 Introduction
7.2 Metric of a spherically symmetric spacetime
7.2.1 Static geometry and Birkoff’s theorem
7.2.2 Interior solution to the Schwarzschild metric
7.2.3 Embedding diagrams to visualize geometry
7.3 Vaidya metric of a radiating source
7.4 Orbits in the Schwarzschild metric
7.4.1 Precession of the perihelion

© in this web service Cambridge University Press
www.cambridge.org
Contents

7.4.2 Deflection of an ultra-relativistic particle 323
7.4.3 Precession of a gyroscope 326
7.5 Effective potential for orbits in the Schwarzschild metric 329
7.6 Gravitational collapse of a dust sphere 334

8 Black holes 340
8.1 Introduction 340
8.2 Horizons in spherically symmetric metrics 340
8.3 Kruskal–Szekeres coordinates 343
 8.3.1 Radial infall in different coordinates 350
 8.3.2 General properties of maximal extension 356
8.4 Penrose–Carter diagrams 358
8.5 Rotating black holes and the Kerr metric 365
 8.5.1 Event horizon and infinite redshift surface 368
 8.5.2 Static limit 372
 8.5.3 Penrose process and the area of the event horizon 374
 8.5.4 Particle orbits in the Kerr metric 378
8.6 Super-radiance in Kerr geometry 381
8.7 Horizons as null surfaces 385

9 Gravitational waves 399
9.1 Introduction 399
9.2 Propagating modes of gravity 399
9.3 Gravitational waves in a flat spacetime background 402
 9.3.1 Effect of the gravitational wave on a system of particles 409
9.4 Propagation of gravitational waves in the curved spacetime 413
9.5 Energy and momentum of the gravitational wave 416
9.6 Generation of gravitational waves 422
 9.6.1 Quadrupole formula for the gravitational radiation 427
 9.6.2 Back reaction due to the emission of gravitational waves 429
9.7 General relativistic effects in binary systems 434
 9.7.1 Gravitational radiation from binary pulsars 434
 9.7.2 Observational aspects of binary pulsars 438
 9.7.3 Gravitational radiation from coalescing binaries 443

10 Relativistic cosmology 452
10.1 Introduction 452
10.2 The Friedmann spacetime 452
10.3 Kinematics of the Friedmann model 457
 10.3.1 The redshifting of the momentum 458
 10.3.2 Distribution functions for particles and photons 461
 10.3.3 Measures of distance 462
Contents

10.4 Dynamics of the Friedmann model 466
10.5 The de Sitter spacetime 479
10.6 Brief thermal history of the universe 483
 10.6.1 Decoupling of matter and radiation 484
10.7 Gravitational lensing 487
10.8 Killing vectors and the symmetries of the space 493
 10.8.1 Maximally symmetric spaces 494
 10.8.2 Homogeneous spaces 496

11 Differential forms and exterior calculus 502
 11.1 Introduction 502
 11.2 Vectors and 1-forms 502
 11.3 Differential forms 510
 11.4 Integration of forms 513
 11.5 The Hodge duality 516
 11.6 Spin connection and the curvature 2-forms 519
 11.6.1 Einstein–Hilbert action and curvature 2-forms 523
 11.6.2 Gauge theories in the language of forms 526

12 Hamiltonian structure of general relativity 530
 12.1 Introduction 530
 12.2 Einstein’s equations in (1+3)-form 530
 12.3 Gauss–Codazzi equations 535
 12.4 Gravitational action in (1+3)-form 540
 12.4.1 The Hamiltonian for general relativity 542
 12.4.2 The surface term and the extrinsic curvature 545
 12.4.3 Variation of the action and canonical momenta 547
 12.5 Junction conditions 552
 12.5.1 Collapse of a dust sphere and thin-shell 554

13 Evolution of cosmological perturbations 560
 13.1 Introduction 560
 13.2 Structure formation and linear perturbation theory 560
 13.3 Perturbation equations and gauge transformations 562
 13.3.1 Evolution equations for the source 569
 13.4 Perturbations in dark matter and radiation 572
 13.4.1 Evolution of modes with $\lambda \gg d_H$ 573
 13.4.2 Evolution of modes with $\lambda \ll d_H$ in the radiation dominated phase 574
 13.4.3 Evolution in the matter dominated phase 577
 13.4.4 An alternative description of the matter–radiation system 578
 13.5 Transfer function for the matter perturbations 582
Contents

13.6 Application: temperature anisotropies of CMBR 584
 13.6.1 The Sachs–Wolfe effect 586

14 Quantum field theory in curved spacetime 591
 14.1 Introduction 591
 14.2 Review of some key results in quantum field theory 591
 14.2.1 Bogolyubov transformations and the particle concept 596
 14.2.2 Path integrals and Euclidean time 598
 14.3 Exponential redshift and the thermal spectrum 602
 14.4 Vacuum state in the presence of horizons 605
 14.5 Vacuum functional from a path integral 609
 14.6 Hawking radiation from black holes 618
 14.7 Quantum field theory in a Friedmann universe 625
 14.7.1 General formalism 625
 14.7.2 Application: power law expansion 628
 14.8 Generation of initial perturbations from inflation 631
 14.8.1 Background evolution 632
 14.8.2 Perturbations in the inflationary models 634

15 Gravity in higher and lower dimensions 643
 15.1 Introduction 643
 15.2 Gravity in lower dimensions 644
 15.2.1 Gravity and black hole solutions in \((1 + 2)\) dimensions 644
 15.2.2 Gravity in two dimensions 646
 15.3 Gravity in higher dimensions 646
 15.3.1 Black holes in higher dimensions 648
 15.3.2 Brane world models 648
 15.4 Actions with holoigraphy 653
 15.5 Surface term and the entropy of the horizon 663

16 Gravity as an emergent phenomenon 670
 16.1 Introduction 670
 16.2 The notion of an emergent phenomenon 671
 16.3 Some intriguing features of gravitational dynamics 673
 16.3.1 Einstein’s equations as a thermodynamic identity 673
 16.3.2 Gravitational entropy and the boundary term in the action 676
 16.3.3 Horizon thermodynamics and Lanczos–Lovelock theories 677
 16.4 An alternative perspective on gravitational dynamics 679

Notes 689
Index 695
List of exercises

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Light clocks</td>
<td>9</td>
</tr>
<tr>
<td>1.2 Superluminal motion</td>
<td>11</td>
</tr>
<tr>
<td>1.3 The strange world of four-vectors</td>
<td>16</td>
</tr>
<tr>
<td>1.4 Focused to the front</td>
<td>16</td>
</tr>
<tr>
<td>1.5 Transformation of antisymmetric tensors</td>
<td>23</td>
</tr>
<tr>
<td>1.6 Practice with completely antisymmetric tensors</td>
<td>23</td>
</tr>
<tr>
<td>1.7 A null curve in flat spacetime</td>
<td>29</td>
</tr>
<tr>
<td>1.8 Shadows are Lorentz invariant</td>
<td>29</td>
</tr>
<tr>
<td>1.9 Hamiltonian form of action – Newtonian mechanics</td>
<td>34</td>
</tr>
<tr>
<td>1.10 Hamiltonian form of action – special relativity</td>
<td>34</td>
</tr>
<tr>
<td>1.11 Hitting a mirror</td>
<td>34</td>
</tr>
<tr>
<td>1.12 Photon–electron scattering</td>
<td>35</td>
</tr>
<tr>
<td>1.13 More practice with collisions</td>
<td>35</td>
</tr>
<tr>
<td>1.14 Relativistic rocket</td>
<td>35</td>
</tr>
<tr>
<td>1.15 Practice with equilibrium distribution functions</td>
<td>44</td>
</tr>
<tr>
<td>1.16 Projection effects</td>
<td>44</td>
</tr>
<tr>
<td>1.17 Relativistic virial theorem</td>
<td>44</td>
</tr>
<tr>
<td>1.18 Explicit computation of spin precession</td>
<td>52</td>
</tr>
<tr>
<td>1.19 Little group of the Lorentz group</td>
<td>52</td>
</tr>
<tr>
<td>2.1 Measuring the F_a^b</td>
<td>70</td>
</tr>
<tr>
<td>2.2 Schrödinger equation and gauge transformation</td>
<td>70</td>
</tr>
<tr>
<td>2.3 Four-vectors leading to electric and magnetic fields</td>
<td>70</td>
</tr>
<tr>
<td>2.4 Hamiltonian form of action – charged particle</td>
<td>71</td>
</tr>
<tr>
<td>2.5 Three-dimensional form of the Lorentz force</td>
<td>71</td>
</tr>
<tr>
<td>2.6 Pure gauge imposters</td>
<td>71</td>
</tr>
<tr>
<td>2.7 Pure electric or magnetic fields</td>
<td>74</td>
</tr>
<tr>
<td>2.8 Elegant solution to non-relativistic Coulomb motion</td>
<td>77</td>
</tr>
<tr>
<td>2.9 More on uniformly accelerated motion</td>
<td>80</td>
</tr>
<tr>
<td>Exercise Number</td>
<td>Exercise Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>2.10</td>
<td>Motion of a charge in an electromagnetic plane wave</td>
</tr>
<tr>
<td>2.11</td>
<td>Something to think about: swindle in Fourier space?</td>
</tr>
<tr>
<td>2.12</td>
<td>Hamiltonian form of action – electromagnetism</td>
</tr>
<tr>
<td>2.13</td>
<td>Eikonal approximation</td>
</tr>
<tr>
<td>2.14</td>
<td>General solution to Maxwell’s equations</td>
</tr>
<tr>
<td>2.15</td>
<td>Gauge covariant derivative</td>
</tr>
<tr>
<td>2.16</td>
<td>Massive vector field</td>
</tr>
<tr>
<td>2.17</td>
<td>What is c if there are no massless particles?</td>
</tr>
<tr>
<td>2.18</td>
<td>Conserving the total energy</td>
</tr>
<tr>
<td>2.19</td>
<td>Stresses and strains</td>
</tr>
<tr>
<td>2.20</td>
<td>Everything obeys Einstein</td>
</tr>
<tr>
<td>2.21</td>
<td>Practice with the energy-momentum tensor</td>
</tr>
<tr>
<td>2.22</td>
<td>Poynting–Robertson effect</td>
</tr>
<tr>
<td>2.23</td>
<td>Moving thermometer</td>
</tr>
<tr>
<td>2.24</td>
<td>Standard results about radiation</td>
</tr>
<tr>
<td>2.25</td>
<td>Radiation drag</td>
</tr>
<tr>
<td>3.1</td>
<td>Motion of a particle in scalar theory of gravity</td>
</tr>
<tr>
<td>3.2</td>
<td>Field equations of the tensor theory of gravity</td>
</tr>
<tr>
<td>3.3</td>
<td>Motion of a particle in tensor theory of gravity</td>
</tr>
<tr>
<td>3.4</td>
<td>Velocity dependence of effective charge for different spins</td>
</tr>
<tr>
<td>3.5</td>
<td>Another form of the Rindler metric</td>
</tr>
<tr>
<td>3.6</td>
<td>Alternative derivation of the Rindler metric</td>
</tr>
<tr>
<td>4.1</td>
<td>Practice with metrics</td>
</tr>
<tr>
<td>4.2</td>
<td>Two ways of splitting spacetimes into space and time</td>
</tr>
<tr>
<td>4.3</td>
<td>Hamiltonian form of action – particle in curved spacetime</td>
</tr>
<tr>
<td>4.4</td>
<td>Gravo-magnetic force</td>
</tr>
<tr>
<td>4.5</td>
<td>Flat spacetime geodesics in curvilinear coordinates</td>
</tr>
<tr>
<td>4.6</td>
<td>Gaussian normal coordinates</td>
</tr>
<tr>
<td>4.7</td>
<td>Non-affine parameter: an example</td>
</tr>
<tr>
<td>4.8</td>
<td>Refractive index of gravity</td>
</tr>
<tr>
<td>4.9</td>
<td>Practice with the Christoffel symbols</td>
</tr>
<tr>
<td>4.10</td>
<td>Vanishing Hamiltonians</td>
</tr>
<tr>
<td>4.11</td>
<td>Transformations that leave geodesics invariant</td>
</tr>
<tr>
<td>4.12</td>
<td>Accelerating without moving</td>
</tr>
<tr>
<td>4.13</td>
<td>Covariant derivative of tensor densities</td>
</tr>
<tr>
<td>4.14</td>
<td>Parallel transport on a sphere</td>
</tr>
<tr>
<td>4.15</td>
<td>Jacobi identity</td>
</tr>
<tr>
<td>4.16</td>
<td>Understanding the Lie derivative</td>
</tr>
<tr>
<td>4.17</td>
<td>Understanding the Killing vectors</td>
</tr>
<tr>
<td>4.18</td>
<td>Killing vectors for a gravitational wave metric</td>
</tr>
</tbody>
</table>
List of exercises

4.19 Tetrad for a uniformly accelerated observer 183
5.1 Curvature in the Newtonian approximation 195
5.2 Non-geodesic deviation 199
5.3 Measuring the curvature tensor 199
5.4 Spinning body in curved spacetime 199
5.5 Explicit transformation to the Riemann normal coordinates 202
5.6 Curvature tensor in the language of gauge fields 203
5.7 Conformal transformations and curvature 206
5.8 Splitting the spacetime and its curvature 207
5.9 Matrix representation of the curvature tensor 207
5.10 Curvature in synchronous coordinates 208
5.11 Pressure gradient needed to support gravity 215
5.12 Thermal equilibrium in a static metric 216
5.13 Weighing the energy 216
5.14 General relativistic Bernoulli equation 216
5.15 Conformal invariance of electromagnetic action 219
5.16 Gravity as an optically active media 219
5.17 Curvature and Killing vectors 220
5.18 Christoffel symbols and infinitesimal diffeomorphism 220
5.19 Conservation of canonical momentum 220
5.20 Energy-momentum tensor and geometrical optics 224
5.21 Ray optics in Newtonian approximation 224
5.22 Expansion and rotation of congruences 231
5.23 Euler characteristic of two-dimensional spaces 233
6.1 Palatini variational principle 246
6.2 Connecting Einstein gravity with the spin-2 field 247
6.3 Action with Gibbons–Hawking–York counterterm 250
6.4 Electromagnetic current from varying the action 252
6.5 Geometrical interpretation of the spin-2 field 256
6.6 Conditions on the energy-momentum tensor 257
6.7 Pressure as the Lagrangian for a fluid 257
6.8 Generic decomposition of an energy-momentum tensor 257
6.9 Something to think about: disaster if we vary g_{ab} rather than g^{ab}? 260
6.10 Newtonian approximation with cosmological constant 260
6.11 Wave equation for F_{mn} in curved spacetime 265
6.12 Structure of the gravitational action principle 268
6.13 Deflection of light in the Newtonian approximation 277
6.14 Metric perturbation due to a fast moving particle 277
6.15 Metric perturbation due to a non-relativistic source 278
6.16 Landau–Lifshitz pseudo-tensor in the Newtonian approximation 284
List of exercises

6.17 More on the Landau–Lifshitz pseudo-tensor 284
6.18 Integral for the angular momentum 285
6.19 Several different energy-momentum pseudo-tensors 285
6.20 Alternative expressions for the mass 288
7.1 A reduced action principle for spherical geometry 295
7.2 Superposition in spherically symmetric spacetimes 301
7.3 Reissner–Nordstrom metric 302
7.4 Spherically symmetric solutions with a cosmological constant 302
7.5 Time dependent spherically symmetric metric 303
7.6 Schwarzschild metric in a different coordinate system 304
7.7 Variational principle for pressure support 309
7.8 Internal metric of a constant density star 310
7.9 Clock rates on the surface of the Earth 310
7.10 Metric of a cosmic string 310
7.11 Static solutions with perfect fluids 311
7.12 Model for a neutron star 312
7.13 Exact solution of the orbit equation in terms of elliptic functions 322
7.14 Contribution of nonlinearity to perihelion precession 322
7.15 Perihelion precession for an oblate Sun 322
7.16 Angular shift of the direction of stars 324
7.17 Time delay for photons 324
7.18 Deflection of light in the Schwarzschild–de Sitter metric 325
7.19 Solar corona and the deflection of light by the Sun 325
7.20 General expression for relativistic precession 328
7.21 Hafele–Keating experiment 328
7.22 Exact solution of the orbital equation 331
7.23 Effective potential for the Reissner–Nordstrom metric 332
7.24 Horizons are forever 332
7.25 Redshift of the photons 333
7.26 Going into a shell 333
7.27 You look fatter than you are 334
7.28 Capture of photons by a Schwarzschild black hole 334
7.29 Twin paradox in the Schwarzschild metric? 334
7.30 Spherically symmetric collapse of a scalar field 337
8.1 The weird dynamics of an eternal black hole 349
8.2 Dropping a charge into the Schwarzschild black hole 355
8.3 Painlevé coordinates for the Schwarzschild metric 355
8.4 Redshifts of all kinds 356
8.5 Extreme Reissner–Nordstrom solution 363
8.6 Multisource extreme black hole solution 364
8.7 A special class of metric 368
<table>
<thead>
<tr>
<th>Exercise</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8</td>
<td>Closed timelike curves in the Kerr metric</td>
</tr>
<tr>
<td>8.9</td>
<td>Zero angular momentum observers (ZAMOs)</td>
</tr>
<tr>
<td>8.10</td>
<td>Circular orbits in the Kerr metric</td>
</tr>
<tr>
<td>8.11</td>
<td>Killing tensor</td>
</tr>
<tr>
<td>8.12</td>
<td>Practice with null surfaces and local Rindler frames</td>
</tr>
<tr>
<td>8.13</td>
<td>Zeroth law of black hole mechanics</td>
</tr>
<tr>
<td>9.1</td>
<td>Gravity wave in the Fourier space</td>
</tr>
<tr>
<td>9.2</td>
<td>Effect of rotation on a TT gravitational wave</td>
</tr>
<tr>
<td>9.3</td>
<td>Not every perturbation can be TT</td>
</tr>
<tr>
<td>9.4</td>
<td>Nevertheless it moves – in a gravitational wave</td>
</tr>
<tr>
<td>9.5</td>
<td>The optics of gravitational waves</td>
</tr>
<tr>
<td>9.6</td>
<td>The $R_{abmn}^{(1)}$ is not gauge invariant, but . . .</td>
</tr>
<tr>
<td>9.7</td>
<td>An exact gravitational wave metric</td>
</tr>
<tr>
<td>9.8</td>
<td>Energy-momentum tensor of the gravitational wave from the spin-2 field</td>
</tr>
<tr>
<td>9.9</td>
<td>Landau–Lifshitz pseudo-tensor for the gravitational wave</td>
</tr>
<tr>
<td>9.10</td>
<td>Gauge dependence of the energy of the gravitational waves</td>
</tr>
<tr>
<td>9.11</td>
<td>The TT part of the gravitational radiation from first principles</td>
</tr>
<tr>
<td>9.12</td>
<td>Flux of gravitational waves</td>
</tr>
<tr>
<td>9.13</td>
<td>Original issues</td>
</tr>
<tr>
<td>9.14</td>
<td>Absorption of gravitational waves</td>
</tr>
<tr>
<td>9.15</td>
<td>Lessons from gravity for electromagnetism</td>
</tr>
<tr>
<td>9.16</td>
<td>Eccentricity matters</td>
</tr>
<tr>
<td>9.17</td>
<td>Getting rid of eccentric behaviour</td>
</tr>
<tr>
<td>9.18</td>
<td>Radiation from a parabolic trajectory</td>
</tr>
<tr>
<td>9.19</td>
<td>Gravitational waves from a circular orbit</td>
</tr>
<tr>
<td>9.20</td>
<td>Pulsar timing and the gravitational wave background</td>
</tr>
<tr>
<td>10.1</td>
<td>Friedmann model in spherically symmetric coordinates</td>
</tr>
<tr>
<td>10.2</td>
<td>Conformally flat form of the metric</td>
</tr>
<tr>
<td>10.3</td>
<td>Particle velocity in the Friedmann universe</td>
</tr>
<tr>
<td>10.4</td>
<td>Geodesic equation in the Friedmann universe</td>
</tr>
<tr>
<td>10.5</td>
<td>Generalized formula for photon redshift</td>
</tr>
<tr>
<td>10.6</td>
<td>Electromagnetism in the closed Friedmann universe</td>
</tr>
<tr>
<td>10.7</td>
<td>Nice features of the conformal time</td>
</tr>
<tr>
<td>10.8</td>
<td>Tracker solutions for scalar fields</td>
</tr>
<tr>
<td>10.9</td>
<td>Horizon size</td>
</tr>
<tr>
<td>10.10</td>
<td>Loitering and other universes</td>
</tr>
<tr>
<td>10.11</td>
<td>Point particle in a Friedmann universe</td>
</tr>
<tr>
<td>10.12</td>
<td>Collapsing dust ball revisited</td>
</tr>
<tr>
<td>10.13</td>
<td>The anti-de Sitter spacetime</td>
</tr>
</tbody>
</table>
List of exercises

<table>
<thead>
<tr>
<th>Exercise Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.14</td>
<td>Geodesics in de Sitter spacetime</td>
<td>482</td>
</tr>
<tr>
<td>10.15</td>
<td>Poincaré half-plane</td>
<td>495</td>
</tr>
<tr>
<td>10.16</td>
<td>The Godel universe</td>
<td>495</td>
</tr>
<tr>
<td>10.17</td>
<td>Kasner model of the universe</td>
<td>499</td>
</tr>
<tr>
<td>10.18</td>
<td>CMBR in a Bianchi Type I model</td>
<td>500</td>
</tr>
<tr>
<td>11.1</td>
<td>Frobenius theorem in the language of forms</td>
<td>512</td>
</tr>
<tr>
<td>11.2</td>
<td>The Dirac string</td>
<td>516</td>
</tr>
<tr>
<td>11.3</td>
<td>Simple example of a non-exact, closed form</td>
<td>516</td>
</tr>
<tr>
<td>11.4</td>
<td>Dirac equation in curved spacetime</td>
<td>523</td>
</tr>
<tr>
<td>11.5</td>
<td>Bianchi identity in the form language</td>
<td>525</td>
</tr>
<tr>
<td>11.6</td>
<td>Variation of Einstein–Hilbert action in the form language</td>
<td>525</td>
</tr>
<tr>
<td>11.7</td>
<td>The Gauss–Bonnet term</td>
<td>525</td>
</tr>
<tr>
<td>11.8</td>
<td>Landau–Lifshitz pseudo-tensor in the form language</td>
<td>526</td>
</tr>
<tr>
<td>11.9</td>
<td>Bianchi identity for gauge fields</td>
<td>528</td>
</tr>
<tr>
<td>11.10</td>
<td>Action and topological invariants in the gauge theory</td>
<td>528</td>
</tr>
<tr>
<td>12.1</td>
<td>Extrinsic curvature and covariant derivative</td>
<td>535</td>
</tr>
<tr>
<td>12.2</td>
<td>Gauss–Codazzi equations for a cone and a sphere</td>
<td>540</td>
</tr>
<tr>
<td>12.3</td>
<td>Matching conditions</td>
<td>557</td>
</tr>
<tr>
<td>12.4</td>
<td>Vacuole in a dust universe</td>
<td>557</td>
</tr>
<tr>
<td>13.1</td>
<td>Synchronous gauge</td>
<td>567</td>
</tr>
<tr>
<td>13.2</td>
<td>Gravitational waves in a Friedmann universe</td>
<td>568</td>
</tr>
<tr>
<td>13.3</td>
<td>Perturbed Einstein tensor in an arbitrary gauge</td>
<td>568</td>
</tr>
<tr>
<td>13.4</td>
<td>Meszaros solution</td>
<td>577</td>
</tr>
<tr>
<td>13.5</td>
<td>Growth factor in an open universe</td>
<td>582</td>
</tr>
<tr>
<td>13.6</td>
<td>Cosmic variance</td>
<td>585</td>
</tr>
<tr>
<td>14.1</td>
<td>Path integral kernel for the harmonic oscillator</td>
<td>602</td>
</tr>
<tr>
<td>14.2</td>
<td>Power spectrum of a wave with exponential redshift</td>
<td>604</td>
</tr>
<tr>
<td>14.3</td>
<td>Casimir effect</td>
<td>608</td>
</tr>
<tr>
<td>14.4</td>
<td>Bogolyubov coefficients for (1+1) Rindler coordinates</td>
<td>615</td>
</tr>
<tr>
<td>14.5</td>
<td>Bogolyubov coefficients for (1+3) Rindler coordinates</td>
<td>615</td>
</tr>
<tr>
<td>14.6</td>
<td>Rindler vacuum and the analyticity of modes</td>
<td>616</td>
</tr>
<tr>
<td>14.7</td>
<td>Response of an accelerated detector</td>
<td>617</td>
</tr>
<tr>
<td>14.8</td>
<td>Horizon entropy and the surface term in the action</td>
<td>624</td>
</tr>
<tr>
<td>14.9</td>
<td>Gauge invariance of \mathcal{R}</td>
<td>640</td>
</tr>
<tr>
<td>14.10</td>
<td>Coupled equations for the scalar field perturbations</td>
<td>640</td>
</tr>
<tr>
<td>15.1</td>
<td>Field equations in the Gauss–Bonnet theory</td>
<td>659</td>
</tr>
<tr>
<td>15.2</td>
<td>Black hole solutions in the Gauss–Bonnet theory</td>
<td>659</td>
</tr>
<tr>
<td>15.3</td>
<td>Analogue of Bianchi identity in the Lanczos–Lovelock theories</td>
<td>660</td>
</tr>
<tr>
<td>15.4</td>
<td>Entropy as the Noether charge</td>
<td>667</td>
</tr>
<tr>
<td>16.1</td>
<td>Gauss–Bonnet field equations as a thermodynamic identity</td>
<td>678</td>
</tr>
</tbody>
</table>
List of projects

1.1 Energy-momentum tensor of non-ideal fluids 52
2.1 Third rank tensor field 104
2.2 Hamilton–Jacobi structure of electrodynamics 104
2.3 Does a uniformly accelerated charge radiate? 105
3.1 Self-coupled scalar field theory of gravity 131
3.2 Is there hope for scalar theories of gravity? 132
3.3 Attraction of light 132
3.4 Metric corresponding to an observer with variable acceleration 133
3.5 Schwinger’s magic 133
4.1 Velocity space metric 186
4.2 Discovering gauge theories 187
5.1 Parallel transport, holonomy and curvature 236
5.2 Point charge in the Schwarzschild metric 237
6.1 Scalar tensor theories of gravity 288
6.2 Einstein’s equations for a stationary metric 290
6.3 Holography of the gravitational action 291
7.1 Embedding the Schwarzschild metric in six dimensions 338
7.2 Poor man’s approach to the Schwarzschild metric 338
7.3 Radiation reaction in curved spacetime 339
8.1 Noether’s theorem and the black hole entropy 394
8.2 Wave equation in a black hole spacetime 396
8.3 Quasi-normal modes 397
9.1 Gauge and dynamical degrees of freedom 446
9.2 An exact gravitational plane wave 447
9.3 Post-Newtonian approximation 448
10.1 Examples of gravitational lensing 500
12.1 Superspace and the Wheeler–DeWitt equation 557
13.1 Nonlinear perturbations and cosmological averaging 588
List of projects

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Detector response in stationary trajectories</td>
<td>641</td>
</tr>
<tr>
<td>14.2</td>
<td>Membrane paradigm for the black holes</td>
<td>641</td>
</tr>
<tr>
<td>14.3</td>
<td>Accelerated detectors in curved spacetime</td>
<td>642</td>
</tr>
<tr>
<td>15.1</td>
<td>Boundary terms for the Lanczos–Lovelock action</td>
<td>668</td>
</tr>
</tbody>
</table>
There is a need for a comprehensive, advanced level, textbook dealing with all aspects of gravity, written for the physicist in a contemporary style. The italicized adjectives in the above sentence are the key: most of the existing books on the market are either outdated in emphasis, too mathematical for a physicist, not comprehensive or written at an elementary level. (For example, the two unique books – L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, and C. W. Misner, K. S. Thorne and J. A. Wheeler (MTW), Gravitation – which I consider to be masterpieces in this subject are more than three decades old and are out of date in their emphasis.) The current book is expected to fill this niche and I hope it becomes a standard reference in this field. Some of the features of this book, including the summary of chapters, are given below.

As the title implies, this book covers both Foundations (Chapters 1–10) and Frontiers (Chapters 11–16) of general relativity so as to cater for the needs of different segments of readership. The Foundations acquaint the readers with the basics of general relativity while the topics in Frontiers allow one to ‘mix-and-match’, depending on interest and inclination. This modular structure of the book will allow it to be adapted for different types of course work.

For a specialist researcher or a student of gravity, this book provides a comprehensive coverage of all the contemporary topics, some of which are discussed in a textbook for the first time, as far as I know. The cognoscenti will find that there is a fair amount of originality in the discussion (and in the Exercises) of even the conventional topics.

While the book is quite comprehensive, it also has a structure which will make it accessible to a wide target audience. Researchers and teachers interested in theoretical physics, general relativity, relativistic astrophysics and cosmology will find it useful for their research and adaptable for their course requirements. (The section How to use this book, just after this Preface, gives more details of this aspect.) The discussion is presented in a style suitable for physicists, ensuring that it caters
Preface

for the current interest in gravity among physicists working in related areas. The large number (more than 225) of reasonably nontrivial Exercises makes it ideal for self-study.

Another unique feature of this book is a set of Projects at the end of selected chapters. The Projects are advanced level exercises presented with helpful hints to show the reader a direction of attack. Several of them are based on research literature dealing with key open issues in different areas. These will act as a bridge for students to cross over from textbook material to real life research. Graduate students and grad school teachers will find the Exercises and Projects extremely useful. Advanced undergraduate students with a flair for theoretical physics will also be able to use parts of this book, especially in combination with more elementary books.

Here is a brief description of the chapters of the book and their inter-relationship.

Chapters 1 and 2 of this book are somewhat unique and serve an important purpose, which I would like to explain. A student learning general relativity often finds that she simultaneously has to cope with (i) conceptual and mathematical issues which arise from the spacetime being curved and (ii) technical issues and concepts which are essentially special relativistic but were never emphasized adequately in a special relativity course! For example, manipulation of four-dimensional integrals or the concept and properties of the energy-momentum tensor have nothing to do with general relativity a priori – but are usually not covered in depth in conventional special relativity courses. The first two chapters give the student a rigorous training in four-dimensional techniques in flat spacetime so that she can concentrate on issues which are genuinely general relativistic later on. These chapters can also usefully serve as modular course material for a short course on advanced special relativity or classical field theory.

Chapter 1 introduces special relativity using four-vectors and the action principle right from the outset. Chapter 2 introduces the electromagnetic field through the four-vector formalism. I expect the student to have done a standard course in classical mechanics and electromagnetic theory but I do not assume familiarity with the relativistic (four-vector) notation. Several topics that are needed later in general relativity are introduced in these two chapters in order to familiarize the reader early on. Examples include the use of the relativistic Hamilton–Jacobi equation, precession of Coulomb orbits, dynamics of the electromagnetic field obtained from an action principle, derivation of the field of an arbitrarily moving charged particle, radiation reaction, etc. Chapter 2 also serves as a launch pad for discussing spin-0 and spin-2 interactions, using electromagnetism as a familiar example.

Chapter 3 attempts to put together special relativity and gravity and explains, in clear and precise terms, why it does not lead to a consistent picture. Most textbooks I know (except MTW) do not explain the issues involved clearly and with adequate
detail. For example, this chapter contains a detailed discussion of the spin-2 tensor field which is not available in textbooks. It is important for a student to realize that the description of gravity in terms of curvature of spacetime is inevitable and natural. This chapter will also lay the foundation for the description of the spin-2 tensor field \(h_{ab} \), which will play an important role in the study of gravitational waves and cosmological perturbation theory later on.

Having convinced the reader that gravity is related to spacetime geometry, Chapter 4 begins with the description of general relativity by introducing the metric tensor and extending the ideas of four-vectors, tensors, etc., to a nontrivial background. There are two points that I would like to highlight about this chapter. First, I have introduced every concept with a physical principle rather than in the abstract language of differential geometry. For example, direct variation of the line interval leads to the geodesic equation through which one can motivate the notion of Christoffel symbols, covariant derivative, etc., in a simple manner. During the courses I have taught over years, students have found this approach attractive and simpler to grasp. Second, I find that students sometimes confuse issues which arise when curvilinear coordinates are used in flat spacetime with those related to genuine curvature. This chapter clarifies such issues.

Chapter 5 introduces the concept of the curvature tensor from three different perspectives and describes its properties. It then moves on to provide a complete description of electrodynamics, statistical mechanics, thermodynamics and wave propagation in curved spacetime, including the Raychaudhuri equation and the focusing theorem.

Chapter 6 starts with a clear and coherent derivation of Einstein’s field equations from an action principle. I have provided a careful discussion of the surface term in the Einstein–Hilbert action (again not usually found in textbooks) in a manner which is quite general and turns out to be useful in the discussion of Lanczos–Lovelock models in Chapter 15. I then proceed to discuss the general structure of the field equations, the energy-momentum pseudo-tensor for gravity and the weak field limit of gravity.

After developing the formalism in the first six chapters, I apply it to discuss four key applications of general relativity – spherically symmetric spacetimes, black hole physics, gravitational waves and cosmology – in the next four chapters. (The only other key topic I have omitted, due to lack of space, is the physics of compact stellar remnants.)

Chapter 7 deals with the simplest class of exact solutions to Einstein’s equations, which are those with spherical symmetry. The chapter also discusses the orbits of particles and photons in these spacetimes and the tests of general relativity. These are used in Chapter 8, which covers several aspects of black hole physics, concentrating mostly on the Schwarzschild and Kerr black holes. It also introduces
important concepts like the maximal extension of a manifold, Penrose–Carter diagrams and the geometrical description of horizons as null surfaces. A derivation of the zeroth law of black hole mechanics and illustrations of the first and second laws are also provided. The material developed here forms the backdrop for the discussions in Chapters 13, 15 and 16.

Chapter 9 takes up one of the key new phenomena that arise in general relativity, viz. the existence of solutions to Einstein’s equations which represent disturbances in the spacetime that propagate at the speed of light. A careful discussion of gauge invariance and coordinate conditions in the description of gravitational waves is provided. I also make explicit contact with similar phenomena in the case of electromagnetic radiation in order to help the reader to understand the concepts better. A detailed discussion of the binary pulsar is included and a Project at the end of the chapter explores the nuances of the post-Newtonian approximation.

Chapter 10 applies general relativity to study cosmology and the evolution of the universe. Given the prominence cosmology enjoys in current research and the fact that this interest will persist in future, it is important that all general relativists are acquainted with cosmology at the same level of detail as, for example, with the Schwarzschild metric. This is the motivation for Chapter 10 as well as Chapter 13 (which deals with general relativistic perturbation theory). The emphasis here will be mostly on the geometrical aspects of the universe rather than on physical cosmology, for which several other excellent textbooks (e.g. mine!) exist. However, in order to provide a complete picture and to appreciate the interplay between theory and observation, it is necessary to discuss certain aspects of the evolutionary history of the universe – which is done to the extent needed.

The second part of the book (Frontiers, Chapters 11–16) discusses six separate topics which are reasonably independent of each other (though not completely). While a student or researcher specializing in gravitation should study all of them, others could choose the topics based on their interest after covering the first part of the book.

Chapter 11 introduces the language of differential forms and exterior calculus and translates many of the results of the previous chapters into the language of forms. It also describes briefly the structure of gauge theories to illustrate the generality of the formalism. The emphasis is in developing the key concepts rapidly and connecting them up with the more familiar language used in the earlier chapters, rather than in maintaining mathematical rigour.

Chapter 12 describes the \((1 + 3)\)-decomposition of general relativity and its Hamiltonian structure. I provide a derivation of Gauss–Codazzi equations and Einstein’s equations in the \((1 + 3)\)-form. The connection between the surface term in the Einstein–Hilbert action and the extrinsic curvature of the boundary is also
spelt out in detail. Other topics include the derivation of junction conditions which are used later in Chapter 15 while discussing the brane world cosmologies.

Chapter 13 describes general relativistic linear perturbation theory in the context of cosmology. This subject has acquired major significance, thanks to the observational connection it makes with cosmic microwave background radiation. In view of this, I have also included a brief discussion of the application of perturbation theory in deriving the temperature anisotropies of the background radiation.

Chapter 14 describes some interesting results which arise when one studies standard quantum field theory in a background spacetime with a nontrivial metric. Though the discussion is reasonably self-contained, some familiarity with simple ideas of quantum theory of free fields will be helpful. The key result which I focus on is the intriguing connection between thermodynamics and horizons. This connection can be viewed from very different perspectives not all of which can rigorously be proved to be equivalent to one another. In view of the importance of this result, most of this chapter concentrates on obtaining this result using different techniques and interpreting it physically. In the latter part of the chapter, I have added a discussion of quantum field theory in the Friedmann universe and the generation of perturbations during the inflationary phase of the universe.

Chapter 15 discusses a few selected topics in the study of gravity in dimensions other than $D = 4$. I have kept the discussion of models in $D < 4$ quite brief and have spent more time on the $D > 4$ case. In this context – after providing a brief, but adequate, discussion of brane world models which are enjoying some popularity currently – I describe the structure of Lanczos–Lovelock models in detail. These models share several intriguing features with Einstein’s theory and constitute a natural generalization of Einstein’s theory to higher dimensions. I hope this chapter will fill the need, often felt by students working in this area, for a textbook discussion of Lanczos–Lovelock models.

The final chapter provides a perspective on gravity as an emergent phenomenon. (Obviously, this chapter shows my personal bias but I am sure that is acceptable in the last chapter!) I have tried to put together several peculiar features in the standard description of gravity and emphasize certain ideas which the reader might find fascinating and intriguing.

Because of the highly pedagogical nature of the material covered in this textbook, I have not given detailed references to original literature except on rare occasions when a particular derivation is not available in the standard textbooks. The annotated list of Notes given at the end of the book cites several other text books which I found useful. Some of these books contain extensive bibliographies and references to original literature. The selection of books and references cited here clearly reflects the bias of the author and I apologize to anyone who feels their work or contribution has been overlooked.
Discussions with several people, far too numerous to name individually, have helped me in writing this book. Here I shall confine myself to those who provided detailed comments on earlier drafts of the manuscript. Donald Lynden-Bell and Aseem Paranjape provided extensive and very detailed comments on most of the chapters and I am very thankful to them. I also thank A. Das, S. Dhurandar, P. P. Divakaran, J. Ehlers, G. F. R. Ellis, Rajesh Gopakumar, N. Kumar, N. Mukunda, J. V. Narlikar, Maulik Parikh, T. R. Seshadri and L. Sriramkumar for detailed comments on selected chapters.

Vince Higgs (CUP) took up my proposal to write this book with enthusiasm. The processing of this volume was handled by Laura Clark (CUP) and I thank her for the effort she has put in.

This project would not have been possible without the dedicated support from Vasanthi Padmanabhan, who not only did the entire TEXing and formatting but also produced most of the figures. I thank her for her help. It is a pleasure to acknowledge the library and other research facilities available at IUCAA, which were useful in this task.
How to use this book

This book can be adapted by readers with varying backgrounds and requirements as well as by teachers handling different courses. The material is presented in a fairly modular fashion and I describe below different sub-units that can be combined for possible courses or for self-study.

1 Advanced special relativity

Chapter 1 along with parts of Chapter 2 (especially Sections 2.2, 2.5, 2.6, 2.10) can form a course in advanced special relativity. No previous familiarity with four-vector notation (in the description of relativistic mechanics or electrodynamics) is required.

2 Classical field theory

Parts of Chapter 1 along with Chapter 2 and Sections 3.2, 3.3 will give a comprehensive exposure to classical field theory. This will require familiarity with special relativity using four-vector notation which can be acquired from specific sections of Chapter 1.

3 Introductory general relativity

Assuming familiarity with special relativity, a basic course in general relativity (GR) can be structured using the following material: Sections 3.5, Chapter 4 (except Sections 4.8, 4.9), Chapter 5 (except Sections 5.2.3, 5.3.3, 5.4.4, 5.5, 5.6), Sections 6.2.5, 6.4.1, 7.2.1, 7.4.1, 7.4.2, 7.5. This can be supplemented with selected topics in Chapters 8 and 9.

4 Relativistic cosmology

Chapter 10 (except Sections 10.6, 10.7) along with Chapter 13 and parts of Sections 14.7 and 14.8 will constitute a course in relativistic cosmology and perturbation theory from a contemporary point of view.

5 Quantum field theory in curved spacetime

Parts of Chapter 8 (especially Sections 8.2, 8.3, 8.7) and Chapter 14 will constitute a first course in this subject. It will assume familiarity with GR but not with detailed properties of black holes or quantum field theory. Parts of Chapter 2 can supplement this course.
6 Applied general relativity

For students who have already done a first course in GR, Chapters 6, 8, 9 and 12 (with parts of Chapter 7 not covered in the first course) will provide a description of advanced topics in GR.

Exercises and Projects

None of the Exercises in this book is trivial or of simple ‘plug-in’ type. Some of them involve extending the concepts developed in the text or understanding them from a different perspective; others require detailed application of the material introduced in the chapter. There are more than 225 exercises and it is strongly recommended that the reader attempts as many as possible. Some of the nontrivial exercises contain hints and short answers.

The Projects are more advanced exercises linking to original literature. It will often be necessary to study additional references in order to comprehensively grasp or answer the questions raised in the projects. Many of them are open-ended (and could even lead to publishable results) but all of them are presented in a graded manner so that a serious student will be able to complete most parts of any project. They are included so as to provide a bridge for students to cross over from the textbook material to original research and should be approached in this light.

Notation and conventions

Throughout the book, the Latin indices \(a, b, \ldots i, j \ldots \), etc., run over 0, 1, 2, 3 with the 0-index denoting the time dimension and (1, 2, 3) denoting the standard space dimensions. The Greek indices, \(\alpha, \beta, \ldots \), etc., will run over 1, 2, 3. Except when indicated otherwise, the units are chosen with \(c = 1 \).

We will use the vector notation for both three-vectors and four-vectors by using different fonts. The four-momentum, for example, will be denoted by \(p \) while the three-momentum will be denoted by \(p \).

The signature is \((- , +, +, +)\) and curvature tensor is defined by the convention

\[
R^a_{\ bcd} \equiv \partial_c \Gamma^a_{bd} - \cdots \quad \text{with} \quad R_{bd} = R^a_{bad}.
\]

The symbol \(\equiv \) is used to indicate that the equation defines a new variable or notation.