This exciting textbook introduces students to the dynamic vibrant area of cognitive science – the scientific study of the mind and cognition. Cognitive science draws upon many academic disciplines, including psychology, computer science, philosophy, linguistics, and neuroscience. This is the first textbook to present a unified view of cognitive science as a discipline in its own right, with a distinctive approach to studying the mind. Students are introduced to the cognitive scientist’s “toolkit” – the vast range of techniques and tools that cognitive scientists can use to study the mind. The book presents the main theoretical models that cognitive scientists are currently using, and shows how those models are being applied to unlock the mysteries of the human mind. Cognitive Science is replete with examples, illustrations, and applications and draws on cutting-edge research and new developments to explore both the achievements that cognitive scientists have made, and the challenges that lie ahead.

JOSÉ LUIS BERMÚDEZ is Dean of the College of Liberal Arts and Professor of Philosophy at Texas A&M University. Until 2010 he was Professor of Philosophy and Director of the Philosophy-Neuroscience-Psychology program at Washington University in St. Louis. He has been involved in teaching and research in cognitive science for fifteen years, and is very much involved in bringing an interdisciplinary focus to cognitive science through involvement with conference organization and journals. His 100+ publications include the textbook Philosophy of Psychology: A Contemporary Introduction (2005) and a companion collection of readings, Philosophy of Psychology: Contemporary Readings (2007). He has authored the monographs The Paradox of Self-Consciousness (1998), Thinking without Words (2003), and Decision Theory and Rationality (2009) in addition to editing a number of collections including The Body and the Self (1995), Reason and Nature (2002), and Thought, Reference, and Experience (2005).
COGNITIVE SCIENCE

An Introduction to the Science of the Mind

José Luis Bermúdez
CONTENTS

List of boxes vii
List of figures viii
List of tables xvi
Preface xvii
Acknowledgments xxv

PART I Historical landmarks 2
Introduction to Part I 3
1 The prehistory of cognitive science 5
2 The discipline matures: Three milestones 29
3 The turn to the brain 59

PART II The integration challenge 86
Introduction to Part II 87
4 Cognitive science and the integration challenge 89
5 Tackling the integration challenge 117

PART III Information-processing models of the mind 142
Introduction to Part III 143
6 Physical symbol systems and the language of thought 145
7 Applying the symbolic paradigm 177
8 Neural networks and distributed information processing 215
9 Neural network models of cognitive processes 247

PART IV The organization of the mind 284
Introduction to Part IV 285
10 How are cognitive systems organized? 287
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Strategies for brain mapping</td>
<td>325</td>
</tr>
<tr>
<td>12</td>
<td>A case study: Exploring mindreading</td>
<td>363</td>
</tr>
<tr>
<td>PART V</td>
<td>New horizons</td>
<td>410</td>
</tr>
<tr>
<td></td>
<td>Introduction to Part V</td>
<td>411</td>
</tr>
<tr>
<td>13</td>
<td>New horizons: Dynamical systems and situated cognition</td>
<td>413</td>
</tr>
<tr>
<td>14</td>
<td>Looking ahead: Challenges and applications</td>
<td>457</td>
</tr>
<tr>
<td></td>
<td>Glossary</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>473</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>486</td>
</tr>
</tbody>
</table>
2.1 A conversation with ELIZA 32
3.1 What does each lobe do? 65
3.2 Brain vocabulary 66
4.1 The prisoner’s dilemma 107
6.1 Defining well-formed formulas in the propositional logic 149
7.1 Calculating entropy 186
7.2 Calculating information gain 187
7.3 Calculating baseline entropy 189
7.4 Calculating the information gain for Outlook? 190
13.1 Basins of attraction in state space 420
FIGURES

1.1 A rat in a Skinner box
Adapted from Spivey 2007. By permission of Oxford University Press, Inc 8

1.2 A 14-unit T-Alley maze
Adapted from Elliott (1928) 9

1.3 A cross-maze, as used in Tolman, Ritchie, and Kalish (1946) 11

1.4 Schematic representation of a Turing machine
Adapted from Cutland (1980) 15

1.5 A sample phrase structure tree for the sentence “John has hit the ball” 18

1.6 Donald Broadbent’s 1958 model of selective attention
Adapted by courtesy of Derek Smith 22

2.1 A question for SHRDLU about its virtual micro-world
Adapted from Winograd (1972) 33

2.2 An algorithm for determining whether a given input is a sentence or not
Adapted from Winograd (1972) 35

2.3 Algorithms for identifying noun phrases and verb phrases
Adapted from Winograd (1973) 36

2.4 Procedure for applying the concept CLEARTOP
Adapted from Winograd (1972) 37

2.5 SHRDLU acting on the initial command to pick up a big red block
Adapted from Winograd (1972: 8) 38

2.6 Instruction 3 in the SHRDLU dialog
Adapted from Winograd (1972: fig. 3) 39

2.7 Examples of the three-dimensional figures used in Shepard and Metzler’s 1971 studies of mental rotation.
Adapted from Shepard and Metzler (1971) 42

2.8 Examples of vertically and horizontally oriented objects that subjects were asked to visualize in Kosslyn’s 1973 scanning study
Adapted from Kosslyn, Thompson, and Ganis (2006) 46
List of Figures

2.9 A table illustrating Marr’s three different levels for explaining information-processing systems
 From Marr (1982) 48

2.10 Two examples of Marr’s primal sketch, the first computational stage in his analysis of the early visual system
 Adapted from Marr (1982) 51

2.11 An example of part of the 2.5D sketch
 Adapted from Marr (1982) 52

2.12 An illustration of Marr’s 3D sketch, showing how the individual components are constructed
 Adapted from Marr (1982) 53

2.13 The place of the implementational level within Marr’s overall theory
 Adapted from Marr (1982) 54

3.1 The large-scale anatomy of the brain, showing the forebrain, the midbrain, and the hindbrain
 Adapted by courtesy of The Huntington’s Disease Outreach Project for Education, at Stanford University 63

3.2 A vertical slice of the human brain, showing the cerebrum
 © TISSUEPIX/SCIENCE PHOTO LIBRARY 64

3.3 The division of the left cerebral hemisphere into lobes 64

3.4 The primary visual pathway 65

3.5 Image showing ventral stream and dorsal stream in the human brain visual system 67

3.6 Design and results of Ungerleider and Mishkin’s cross-lesion disconnection studies
 Adapted from Ungerleider and Mishkin (1982) 69

3.7 A generic three-layer connectionist network
 Adapted from McLeod, Plunkett, and Rolls (1998) 74

3.8 Gorman and Sejnowski’s mine/rock detector network

3.9 Images showing the different areas of activation (as measured by blood flow) during the four different stages in Petersen et al.’s lexical access studies
 From Posner and Raichle (1994) 81

3.10 A flowchart relating different areas of activation in Petersen et al.’s study to different levels of lexical processing
 From Petersen et al. (1988) 82

4.1 Connections among the cognitive sciences, as depicted in the Sloan Foundation’s 1978 report
 Adapted from Gardner (1985) 91
4.2 Some of the principal branches of scientific psychology 95
4.3 Levels of organization and levels of explanation in the nervous system
 Adapted from Shepherd (1994) 96
4.4 The spatial and temporal resolution of different tools and techniques
 in neuroscience
 Adapted from Churchland and Sejnowski (1992) 98
4.5 The integration challenge and the “space” of contemporary
 cognitive science
 Adapted by courtesy of David Kaplan 100
4.6 A version of the Wason selection task 104
4.7 Griggs and Cox’s deontic version of the selection task 105
4.8 A microelectrode making an extracellular recording
 Reproduced by courtesy of Dwight A. Burkhardt, University
 of Minnesota 110
4.9 Simultaneous microelectrode and fMRI recordings from a cortical site showing the
 neural response to a pulse stimulus of 24 seconds
 Adapted from Bandettini and Ungerleider (2001) 112
5.1 Two illustrations of the neural damage suffered by the amnesic patient HM
 Figure 1, What’s new with the amnesic patient H.M.? Nature Neuroscience 2002 Feb.,
 3(2): 153–60. 123
5.2 Baddeley’s model of working memory 125
5.3 The initial stages of a functional decomposition of memory 126
5.4 A mechanism for detecting oriented zero-crossing segments
 Adapted from Marr and Hilldreth (1980) 130
6.1 Allen Newell and Herbert Simon studying a search-space
 Reproduced by courtesy of Carnegie Mellon University Library 150
6.2 A typical traveling salesman problem 151
6.3 The structure of Fodor’s argument for the language of thought hypothesis 164
6.4 Inside and outside the Chinese room
 Courtesy of Robert E. Horn, Visiting Scholar, Stanford University 167
7.1 A decision tree illustrating a mortgage expert system
 From Friedenberg and Silverman (2006). 180
7.2 A graph illustrating the relation between entropy and probability in the context
 of drawing a ball from an urn 185
7.3 The first node on the decision tree for the tennis problem 191
7.4 The complete decision tree generated by the ID3 algorithm 192
7.5 A sample completed questionnaire used as input to an ID3-based
 expert system for diagnosing diseases in soybean crops
 Adapted from Michalski and Chilauski (1980) 193
7.6 Classifying different information-processing models of cognition 195
7.7 The basic architecture of WHISPER
 From Funt (1980) 196
7.8 The starting diagram for the chain reaction problem
 From Funt (1980) 198
7.9 The result of applying WHISPER’s rotation algorithm in order
 to work out the trajectory of block B
 From Funt (1980) 199
7.10 The first solution snapshot output by WHISPER
 From Funt (1980) 200
7.11 The final snapshot representing WHISPER’s solution to the chain reaction problem
 From Funt (1980) 201
7.12 A map of SHAKEY’s physical environment
 From Nilsson (1984) 203
7.13 A labeled photograph of SHAKEY the robot
 Reproduced by courtesy of SRI International, Menlo Park, California 204
8.1 Schematic illustration of a typical neuron 219
8.2 An artificial neuron 220
8.3 Four different activation functions
 Adapted from McLeod, Plunkett, and Rolls (1998) 221
8.4 Illustration of a mapping function 223
8.5 A single-layer network representing the Boolean function AND 225
8.6 A single-layer network representing the Boolean function NOT 226
8.7 The starting configuration for a single-layer network being trained
 to function as a NOT-gate through the perceptron convergence rule 229
8.8 Graphical representations of the AND and XOR (exclusive-OR)
 functions, showing the linear separability of AND 230
8.9 A multilayer network representing the XOR (exclusive-OR) function
 Adapted from McLeod, Plunkett, and Rolls (1998) 232
8.10 The computational operation performed by a unit in a connectionist model
 Adapted from McLeod, Plunkett, and Rolls (1998) 235
9.1 Pinker and Prince’s dual route model of past tense learning in English 257
9.2 Rumelhart and McClelland’s model of past tense acquisition
 Adapted from Rumelhart, David E., James L. McClelland and PDP Research Group,
 *Parallel Distributed Processing: Explorations in the Microstructures of Cognition:
 Volume 1: Foundations*, figure 4, page 242, © 1986 Massachusetts Institute of
 Technology, by permission of the MIT Press 258
9.3 Performance data for Rumelhart and McClelland’s model of past tense learning
 Adapted from Rumelhart, David E., James L. McClelland and PDP Research Group,
 *Parallel Distributed Processing: Explorations in the Microstructures of Cognition:
 Volume 1: Foundations*, figure 1, page 22, © 1986 Massachusetts Institute of
 Technology, by permission of the MIT Press 260
9.4 The network developed by Plunkett and Marchman to model children’s
 learning of the past tense
 Adapted from Plunkett and Marchman (1993) 261
9.5 A comparison of the errors made by a child and by the Plunkett–Marchman neural network model of tense learning
Adapted from McLeod, Plunkett, and Rolls (1998) 262

9.6 Schematic representation of the habituation and test conditions in Baillargeon's drawbridge experiments

9.7 Schematic representation of an experiment used to test infants' understanding of Spelke's principle of cohesion
Adapted from Spelke and Van de Walle (1993) 266

9.8 Schematic representation of an experiment testing infants’ understanding of the principle that only surfaces in contact can move together
Adapted from Spelke and Van de Walle (1993) 267

9.9 Schematic depiction of events that accord with, or violate, the continuity or solidity constraints
Adapted from Spelke and Van de Walle (1993) 268

9.10 A series of inputs to the network as a barrier moves in front of a ball and then back to its original location
Adapted from Munakata, Y., McClelland, J. L., Johnson, M. H., Siegler, R. S. (1997)
Copyright © 1997 by the American Psychological Association. Adapted with permission 272

9.11 Recurrent network for learning to anticipate the future position of objects
Adapted from Munakata et al. (1997) 273

9.12 A balance beam 275

9.13 The architecture of the McClelland and Jenkins network for the balance beam problem

10.1 The architecture of a simple reflex agent
Adapted from Russell and Norvig (2009) 290

10.2 The architecture of a goal-based agent
Adapted from Russell and Norvig (2009) 291

10.3 The architecture of a learning agent

10.4a Franz Joseph Gall (1758–1828)
Courtesy of Smithsonian Institution Libraries, Washington, DC. 294
List of Figures

10.4b A three-dimensional model of Gall’s phrenological map developed by the American phrenologist Lorenzo Niles Fowler (1811–96)
Reproduced courtesy of the Science Museum/Science & Society Picture Library 295

10.4c Jerry Fodor (1935–) 296

10.5 The evolutionary biologist W. D. Hamilton (1936–2000)
© Jeffrey Joy 308

10.6 The ACT-R/PM cognitive architecture
Courtesy of Lorin Hochstein, University of Southern California 316

11.1 Luria’s 1970 diagram of the functional organization of the brain
Adapted from Luria (1970) 328

11.2 Map of the anatomy of the brain showing the four lobes and the Brodmann areas
Reproduced courtesy of Applied Neuroscience Inc. 330

11.3 A connectivity matrix for the visual system of the macaque monkey
Adapted from Felleman and Van Essen (1991) 332

11.4 An anatomical wiring diagram of the visual system of the macaque monkey
Adapted from Felleman and Van Essen (1991) 333

11.5 The results of single-neuron recordings of a mirror neuron in area F5 of the macaque inferior frontal cortex
Adapted from Iacoboni and Dapretto (2006) 337

11.6 Typical patterns of EEG waves, together with where/when they are typically found
Courtesy of Jaakko Malmivuo and Robert Plonsey, Bioelectromagnetism: Principles and Applications of Biomagnetic and Bioelectric Fields, OUP 1995 338

11.7a Common experimental design for neurophysiological studies of attention 343

11.7b Example of occipital ERPs recorded in a paradigm of this nature 343

11.7c Single-unit responses from area V4 in a similar paradigm 343

11.7d Single-unit responses from area V1 showing no effect of attention
Adapted from Luck and Ford (1998), with permission from Neuroimaging for Human Brain Function (1998) by the National Academy of Sciences, courtesy of the National Academies Press, Washington DC 344

11.8 Frontoparietal cortical network during peripheral visual attention

11.9 Peripheral attention vs. spatial working memory vs. saccadic eye movement across studies
List of Figures

12.1 An example of metarepresentation 367
12.2 The general outlines of Leslie's model of pretend play
 Adapted from Leslie (1987) 368
12.3 Leslie's Decoupler model of pretense
 Adapted from Leslie (1987) 370
12.4 The task used by Baron-Cohen, Leslie, and Frith to test for children's
 understanding of false belief
 Adapted from Baron-Cohen, Leslie, and Frith (1985) 374
12.5 The connection between pretend play and success on the false belief task
 Adapted from the Open University OpenLearn Unit DSE232_1, courtesy
 of the Open University 376
12.6 Baron-Cohen's model of the mindreading system 379
12.7 What goes on in representing belief 388
12.8 What goes on in representing perception 388
12.9 A schematic version of standard simulationism
 Adapted from Nichols et al. (1996) 392
12.10 Schematic representation of brain regions associated with the
 attribution of mental states
 Adapted from Saxe, Carey, and Kanwisher (2004) 397
12.11 Schematic overview of the frontoparietal mirror neuron system (MNS)
 and its main visual input in the human brain
 Adapted from Iacoboni and Dapretto (2006) 403
13.1 The trajectory through state space of an idealized swinging pendulum
 By permission of M. Casco Associates 416
13.2 The state space of a swinging pendulum in a three-dimensional phase space
 By permission of M. Casco Associates 417
13.3 Illustration of the Watt governor, together with a schematic
 representation of how it works
 Adapted from Bechtel 1998, Representations and Cognitive Explanations: Assessing
 Vol 22, Issue 3, page 302, figure 2 419
13.4 An example of a computational model of motor control
 Adapted from Shadmehr and Krakauer (2008) 424
13.5 The stage IV search task, which typically gives rise to the
 A-not-B-error in infants at around 9 months
 Adapted from Bremner (1994) 426
13.6 An infant sitting for an A trial (left) and standing for a B trial (right)
 Adapted from Smith and Thelen (2003) 428
13.7 Applying the dynamical field model to the A-not-B error
 Figure 2 in Smith and Thelen, Development as a Dynamic System,
 Elsevier 2003 430
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Source/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.8</td>
<td>The organizing principles of biorobotics</td>
<td>Reproduced courtesy of Dimitrios Lambrinos, University of Zurich 436</td>
</tr>
<tr>
<td>13.9</td>
<td>The anatomy of a cricket, showing the different routes that a sound can take to each ear</td>
<td>Adapted from Clark (2001) 437</td>
</tr>
<tr>
<td>13.10</td>
<td>A robot fish called WANDA</td>
<td>Reproduced courtesy of Marc Ziegler, University of Zurich 439</td>
</tr>
<tr>
<td>13.12</td>
<td>Yokoi's robot hand</td>
<td>Reproduced courtesy of Gabriel Gómez, Alejandro Hernandez Arieta, Hiroshi Yokoi, and Peter Eggenberger Hotz, University of Zurich 441</td>
</tr>
<tr>
<td>13.13</td>
<td>The Yokoi hand grasping two very different objects</td>
<td>From Pfeifer, Iida, and Gómez (2006) 442</td>
</tr>
<tr>
<td>13.15</td>
<td>The layers of Allen's subsumption architecture</td>
<td>From Brooks (1997) 445</td>
</tr>
<tr>
<td>13.16</td>
<td>The Nerd Herd, together with the pucks that they can pick up with their grippers</td>
<td>Reproduced courtesy of Maja J. Matarić, University of Southern California 450</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>7.1</td>
<td>SHAKEY’S five levels</td>
<td>206</td>
</tr>
<tr>
<td>7.2</td>
<td>How SHAKEY represents its own state</td>
<td>207</td>
</tr>
<tr>
<td>7.3</td>
<td>SHAKEY’s intermediate-level actions</td>
<td>208</td>
</tr>
<tr>
<td>9.1</td>
<td>The stages of past tense learning according to verb type</td>
<td>256</td>
</tr>
<tr>
<td>10.1</td>
<td>Why we cannot use the language of thought hypothesis to understand central processing: A summary of Fodor’s worries</td>
<td>303</td>
</tr>
<tr>
<td>10.2</td>
<td>Comparing the symbolic and subsymbolic dimensions of knowledge representation in the hybrid ACT-R/PM architecture</td>
<td>320</td>
</tr>
<tr>
<td>From Lovett and Anderson (2005)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Comparing techniques for studying connectivity in the brain</td>
<td>340</td>
</tr>
<tr>
<td>12.1</td>
<td>The three groups studied in Baron-Cohen, Leslie, and Frith 1985</td>
<td>373</td>
</tr>
<tr>
<td>13.1</td>
<td>The five basis behaviors programmed into Matarić’s Nerd Herd robots</td>
<td>451</td>
</tr>
</tbody>
</table>
There are few things more fascinating to study than the human mind. And few things that are more difficult to understand. Cognitive science is the enterprise of trying to make sense of this most complex and baffling natural phenomenon.

The very things that make cognitive science so fascinating make it very difficult to study and to teach. Many different disciplines study the mind. Neuroscientists study the mind’s biological machinery. Psychologists directly study mental processes such as perception and decision-making. Computer scientists explore how those processes can be simulated and modeled in computers. Evolutionary biologists and anthropologists speculate about how the mind evolved. In fact, there are very few academic areas that are not relevant to the study of the mind in some way. The job of cognitive science is to provide a framework for bringing all these different perspectives together.

This enormous range of information out there about the mind can be overwhelming, both for students and for instructors. I have had direct experience of how challenging this can be, as Director of the Philosophy-Neuroscience-Psychology program at Washington University in St. Louis. The challenge is to give students a broad enough base while at the same time bringing home that cognitive science is a field in its own right, separate and distinct from the disciplines on which it draws. I set out to write this book because my colleagues and I have not yet found a book that really succeeds in doing this.

Different textbooks have approached this challenge in different ways. Some have concentrated on being as comprehensive as possible, with a chapter covering key ideas in each of the relevant disciplines – a chapter on psychology, a chapter on neuroscience, and so on. These books are often written by committee – with each chapter written by an expert in the relevant field. These books can be very valuable, but they
really give an introduction to the cognitive sciences (in the plural), rather than to cognitive science as an interdisciplinary enterprise.

Other textbook writers take a much more selective approach, introducing cognitive science from the perspective of the disciplines that they know best – from the perspective of philosophy, for example, or of computer science. Again, I have learnt much from these books and they can be very helpful. But I often have the feeling that students need something more general.

This book aims for a balance between these two extremes. Cognitive science has its own problems and its own theories. The book is organized around these. They are all ways of working out the fundamental idea at the heart of cognitive science – which is that the mind is an information processor. What makes cognitive science so rich is that this single basic idea can be (and has been) worked out in many different ways. In presenting these different models of the mind as an information processor I have tried to select as wide a range of examples as possible, in order to give students a sense of cognitive science’s breadth and range.

Cognitive science has only been with us for forty or so years. But in that time it has changed a lot. At one time cognitive science was associated with the idea that we can understand the mind without worrying about its biological machinery – we can understand the software without understanding the hardware, to use a popular image. But this is now really a minority view. Neuroscience is now an absolutely fundamental part of cognitive science. Unfortunately this has not really been reflected in textbooks on cognitive science. This book presents a more accurate picture of how central neuroscience is to cognitive science.

How the book is organized

This book is organized into five parts.

Part I: Historical overview

Cognitive science has evolved considerably in its short life. Priorities have changed as new methods have emerged – and some fundamental theoretical assumptions have changed with them. The three chapters in Part I introduce students to some of the highlights in the history of cognitive science. Each chapter is organized around key discoveries and/or theoretical advances.

Part II: The integration challenge

The two chapters in Part II bring out what is distinctive about cognitive science. They do this in terms of what I call the integration challenge. This is the challenge of
developing a unified framework that makes explicit the relations between the different disciplines on which cognitive science draws and the different levels of organization that it studies. In Chapter 4 we look at two examples of local integration. The first example explores how evolutionary psychology has been used to explain puzzling data from human decision-making, while the second focuses on what exactly it is that is being studied by techniques of neuro-imaging such as functional magnetic resonance imaging (fMRI).

In Chapter 5 I propose that one way of answering the integration challenge is through developing models of mental architecture. A model of mental architecture includes

1. an account of how the mind is organized into different cognitive systems, and
2. an account of how information is processed in individual cognitive systems.

This approach to mental architecture sets the agenda for the rest of the book.

Part III: Information-processing models of the mind

The four chapters in Part III explore the two dominant models of information processing in contemporary cognitive science. The first model is associated with the physical symbol system hypothesis originally developed by the computer scientists Allen Newell and Herbert Simon. According to the physical symbol system hypothesis, all information processing involves the manipulation of physical structures that function as symbols. The theoretical case for the physical symbol system hypothesis is discussed in Chapter 6, while Chapter 7 gives three very different examples of research within that paradigm – from data mining, artificial vision, and robotics.

The second model of information processing derives from models of artificial neurons in computational neuroscience and connectionist artificial intelligence. Chapter 8 explores the motivation for this approach and introduces some of the key concepts, while Chapter 9 shows how it can be used to model aspects of language learning and object perception.

Part IV: How is the mind organized?

A mental architecture includes a model both of information processing and of how the mind is organized. The three chapters in Part IV look at different ways of tackling this second problem. Chapter 10 examines the idea that some forms of information processing are carried out by dedicated cognitive modules. It looks also at the radical claim, proposed by evolutionary psychologists, that the mind is simply a collection of specialized modules. In Chapter 11 we look at how some recently developed techniques such as functional neuroimaging can be used to study the organization of the mind. Chapter 12 shows how the theoretical and methodological issues come together by working through an issue that has received much attention in contemporary
cognitive science – the issue of whether there is a dedicated cognitive system response for our understanding of other people (the so-called mindreading system).

Part V: New horizons

As emerges very clearly in the first four parts of the book, cognitive science is built around some very basic theoretical assumptions – and in particular around the assumption that the mind is an information-processing system. In Chapter 13 we look at two ways in which cognitive scientists have proposed extending and moving beyond this basic assumption. One of these research programs is associated with the dynamical systems hypothesis in cognitive science. The second is opened up by the situated/embodied cognition movement.

Using this book in courses

This book has been designed to serve as a self-contained text for a single semester (12–15 weeks) introductory course on cognitive science. Students taking this course may have taken introductory courses in psychology and/or philosophy, but no particular prerequisites are assumed. All the necessary background is provided for a course at the freshman or sophomore level (first or second year). The book could also be used for a more advanced introductory course at the junior or senior level (third or fourth year). In this case the instructor would most likely want to supplement the book with additional readings. There are suggestions on the instructor website (see below).

Text features

I have tried to make this book as user-friendly as possible. Key text features include:

- Part-openers and chapter overviews
 The book is divided into five parts, as described above. Each part begins with a short introduction to give the reader a broad picture of what lies ahead. Each chapter begins with an overview to orient the reader.
Preface

INTRODUCTION

This book is about the cognitive science. The term cognitive science includes the study of the mind itself, but it is also about understanding how minds work in a world of knowledge and information. The field is concerned with the fundamental questions of how minds are organized and how they represent, process, and store information. This book provides an overview of the key concepts and methods of cognitive science, with a focus on the questions of how the mind works and how it represents knowledge.

HISTORICAL LANDMARKS

PART I

These have been inserted at various points within each chapter. They are placed in the flow of the text to encourage the reader to take a break from reading and engage with the material. They are typically straightforward, but for a few I have placed suggested solutions on the instructor website (see below).

Exercises

The examples are taken from various sources, such as experiments on various systems, but are not intended to be a comprehensive survey of all the major ideas in cognitive science. The examples are intended to illustrate the key concepts and methods of cognitive science, and to provide a context for understanding the field as a whole.

The source of the information is the book Cognitive Science: An Introduction to the Science of the Mind by José Luis Bermúdez. The book provides an overview of the key concepts and methods of cognitive science, with a focus on the questions of how the mind works and how it represents knowledge. The examples are taken from various sources, such as experiments on various systems, but are not intended to be a comprehensive survey of all the major ideas in cognitive science. The examples are intended to illustrate the key concepts and methods of cognitive science, and to provide a context for understanding the field as a whole.

The source of the information is the book Cognitive Science: An Introduction to the Science of the Mind by José Luis Bermúdez. The book provides an overview of the key concepts and methods of cognitive science, with a focus on the questions of how the mind works and how it represents knowledge. The examples are taken from various sources, such as experiments on various systems, but are not intended to be a comprehensive survey of all the major ideas in cognitive science. The examples are intended to illustrate the key concepts and methods of cognitive science, and to provide a context for understanding the field as a whole.
Boxes and optional material

Boxes have been included to provide further information about the theories and research discussed in the text. Some of the more encouraged material has been placed in boxes that are marked optional. Readers are encouraged to work through these, but the material is not essential to flow of the text.

Summaries, checklists, and further reading

These can be found at the end of each chapter. The summary shows how the chapter relates to the other chapters in the book. The checklist allows students to review the key points of the chapter, and also serves as a reference point for instructors. Suggestions of additional books and articles are provided to guide students’ further reading on the topics covered in the chapter.

References

Cambridge University Press
978-0-521-88200-2 - Cognitive Science: An Introduction to the Science of the Mind
José Luis Bermúdez
Frontmatter
More information

© in this web service Cambridge University Press www.cambridge.org
Course website

There is a course website accompanying the book. It can be found at www.cambridge.org/bermudez. This website contains:

- links to useful learning resources, videos, and experimental demonstrations
- links to online versions of relevant papers and online discussions for each chapter
- study questions for each chapter that students can use to structure their reading and that instructors can use for class discussion topics

Instructors can access a password-protected section of the website. This contains:

- sample syllabi for courses of different lengths and different level
- PowerPoint slides
- electronic versions of figures from the text
- suggested solutions for the more challenging exercises and problems

The website is a work in progress. Students and instructors are welcome to contact me with suggestions, revisions, and comments. Contact details are on the website.
Many friends and colleagues associated with the Philosophy-Neuroscience-Psychology program at Washington University in St. Louis have commented on sections of this book. I would particularly like to thank Maurizio Corbetta, Frederick Eberhardt, David Kaplan, Clare Palmer, Gualtiero Piccinnini, Marc Raichle, Philip Robbins, David Van Essen, and Jeff Zacks. Josef Perner kindly read a draft of Chapter 12.

I have benefited from the comments of many referees while working on this project. Most remain anonymous, but some have revealed their identity. My thanks to Kirsten Andrews, Gary Bradshaw, Rob Goldstone, Paul Humphreys, and Michael Spivey.

Drafts of this textbook have been used four times to teach PNP 200 Introduction to Cognitive Science here at Washington University in St. Louis – twice by me and once each by David Kaplan and Jake Beck. Feedback from students both inside and outside the classroom was extremely useful. I hope that other instructors who use this text have equally motivated and enthusiastic classes. I would like to record my thanks to the teaching assistants who have worked with me on this course: Juan Montaña, Tim Oakberg, Adam Shriver, and Isaac Wiegman. And also to Kimberly Mount, the PNP administrative assistant, whose help with the figures and preparing the manuscript is greatly appreciated.

A number of students from my Spring 2009 PNP 200 class contributed to the glossary. It was a pleasure to work with Olivia Frosch, Katie Lewis, Juan Manfredi, Eric Potter, and Katie Sadow.

Work on this book has been made much easier by the efforts of the Psychology textbook team at Cambridge University Press – Raihanah Begum, Catherine Flack, Hetty Reid, Sarah Wightman, and Rachel Willsher (as well as to Andy Peart, who signed this book up but has since moved on). They have been very patient and very helpful. My thanks also to Anna Oxbury for her editing and to Liz Davey for coordinating the production process.