The human hand can take on a huge variety of shapes and functions, providing its owner with a powerful hammer at one time or a delicate pair of forceps at another. The universal utility of the hand is even more enhanced by the ability to amplify the function of the hand by using tools. To understand and appreciate how the human brain controls movements of the hand, it is important to investigate both the healthy motor behavior and dysfunction during everyday manipulative tasks. This book provides a contemporary summary of the physiology and pathophysiology of the manipulative and exploratory functions of the human hand. With contributions from scientists and clinical researchers of biomechanics, kinesiology, neurophysiology, psychology, physical medicine and rehabilitation, it covers the development of healthy human grasping over the lifespan, the wide spectrum of disability in the pathological state and links basic motor research with modern brain sciences.

Dennis Nowak is a Neurologist and Neuroscientist based at the Hospital for Neurosurgery and Neurology, Kipfenberg, and the Department of Neurology, University of Cologne, Germany.

Joachim Hermsdörfer is an Engineer and Neuroscientist based at the Clinical Neuropsychology Research Group, Hospital München-Bogenhausen, in Munich, Germany.

Together, their research centers around physiological and pathophysiological sensorimotor processes, particularly during hand use.
SENSORIMOTOR CONTROL OF GRASPING: PHYSIOLOGY AND PATHOPHYSIOLOGY

Edited by

DENNIS A. NOWAK
Klinik Kipfenberg, Kipfenberg
Germany

JOACHIM HERMSDÖRFER
Hospital Munich-Bogenhausen,
Munich, Germany
Contents

<table>
<thead>
<tr>
<th>List of contributors</th>
<th>page viii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
</tbody>
</table>

Part I Methodology

<table>
<thead>
<tr>
<th>1</th>
<th>Analysis of grip forces during object manipulation</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Joachim Hermsdörfer</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Kinematic assessment of grasping</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Umberto Castiello and Caterina Ansuini</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Digit forces in multi-digit grasps</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Vladimir M. Zatsiorsky and Mark L. Latash</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Recordings from the motor cortex during skilled grasping</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Thomas Brochier and Roger N. Lemon</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Recording of electromyogram activity in the monkey during skilled grasping</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Thomas Brochier, Rachel L. Spinks, Maria A. Umilta and Roger N. Lemon</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Transcranial magnetic stimulation investigations of reaching and grasping movements</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Giacomo Koch and John C. Rothwell</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Neuroimaging of grasping</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>H. Henrik Ehrsson</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Functional magnetic resonance imaging studies of the basal ganglia and precision grip</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Matthew B. Spraker, Daniel M. Corcos and David E. Vaillancourt</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Models for the control of grasping</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>Erhan Oztop and Mitsuo Kawato</td>
<td></td>
</tr>
</tbody>
</table>

Part II The physiology of grasping

<p>| 10 | The study of hand movements during grasping. A historical perspective | 127|
| | Marc Jeannerod | |
| 11 | Sensory control of object manipulation | 141|
| | Roland S. Johansson and J. Randall Flanagan | |</p>
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Predictive mechanisms and object representations used in object</td>
<td>J. Randall Flanagan, Kyle Merritt and Roland S. Johansson</td>
</tr>
<tr>
<td></td>
<td>manipulation</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>The neurohaptic control of the hand</td>
<td>Allan M. Smith</td>
</tr>
<tr>
<td>14</td>
<td>Points for precision grip</td>
<td>Alan M. Wing and Susan J. Lederman</td>
</tr>
<tr>
<td>15</td>
<td>Two hands in object-oriented action</td>
<td>Satoshi Endo, Alan M. Wing and R. Martyn Bracewell</td>
</tr>
<tr>
<td>16</td>
<td>Dynamic grasp control during gait</td>
<td>Priska Gysin, Terry R. Kaminski and Andrew M. Gordon</td>
</tr>
<tr>
<td>17</td>
<td>Development of grasping and object manipulation</td>
<td>Brigitte Vollmer and Hans Forssberg</td>
</tr>
<tr>
<td>18</td>
<td>The effects of aging on sensorimotor control of the hand</td>
<td>Kelly J. Cole</td>
</tr>
</tbody>
</table>

Part III The pathophysiology of grasping

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Disorders of the somatosensory system</td>
<td>Joachim Hermsdörfer and Dennis A. Nowak</td>
</tr>
<tr>
<td>20</td>
<td>Multi-digit grasping and manipulation: effect of carpal tunnel</td>
<td>Jamie A. Johnston and Marco Santello</td>
</tr>
<tr>
<td></td>
<td>syndrome on force coordination</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Stroke</td>
<td>Catherine E. Lang and Marc H. Schieber</td>
</tr>
<tr>
<td>22</td>
<td>Prehension characteristics in Parkinson’s disease patients</td>
<td>Tania S. Flink and George E. Stelmach</td>
</tr>
<tr>
<td>23</td>
<td>Grip-force analysis in Huntington’s disease – a biomarker</td>
<td>Ralf Reilmann</td>
</tr>
<tr>
<td></td>
<td>for clinical trials?</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Traumatic brain injury</td>
<td>Johann P. Kuhtz-Buschbeck</td>
</tr>
<tr>
<td>25</td>
<td>Focal hand dystonia</td>
<td>Sarah Pirio Richardson and Mark Hallett</td>
</tr>
<tr>
<td>26</td>
<td>Cerebellar disorders</td>
<td>Mario Manto and Dennis A. Nowak</td>
</tr>
<tr>
<td>27</td>
<td>Tremor</td>
<td>Lars Timmermann, Jan Raethjen and Günther Deuschl</td>
</tr>
<tr>
<td>28</td>
<td>Schizophrenia</td>
<td>Dennis A. Nowak</td>
</tr>
</tbody>
</table>

Part IV Therapy of impaired grasping

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Stroke therapy</td>
<td>Dennis A. Nowak and Joachim Hermsdörfer</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Functional reorganization and neuromodulation</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td>Christian Grefkes and Gereon R. Fink</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Intensive training of upper extremity function in children with cerebral palsy</td>
<td>438</td>
</tr>
<tr>
<td></td>
<td>Andrew M. Gordon and Kathleen M. Friel</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Therapy of sensorimotor dysfunction of the hand in Parkinson’s disease</td>
<td>458</td>
</tr>
<tr>
<td></td>
<td>Roland Wenzelburger</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Therapy of focal hand dystonia</td>
<td>469</td>
</tr>
<tr>
<td></td>
<td>Kirsten E. Zeuner, B. Baur and H. R. Siebner</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Therapy of idiopathic normal pressure hydrocephalus</td>
<td>482</td>
</tr>
<tr>
<td></td>
<td>Dennis A. Nowak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>491</td>
</tr>
</tbody>
</table>

The plates can be found between pages 112 and 113 and 368 and 369.
Contributors

Caterina Ansuini
Dipartimento di Psicologia Generale, Università di Padova, Via Venezia 8, 35131, Padova, Italy

B. Baur
EKN Clinical Neuropsychology Research Group, Hospital Munich-Bogenhausen, Dachauer Str. 164, D-80992 Munich, Germany

R. Martyn Bracewell
The Wolfson Centre for Clinical and Cognitive Neuroscience, University of Wales, Bangor, UK

Thomas Brochier
Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, UK and Institut de Neurosciences Cognitives de la Méditerranée – INCM, UMR 6193, CNRS – Université de la Méditerranée, Marseille, France

Umberto Castiello
Dipartimento di Psicologia Generale Università di Padova Via Venezia 8, 35131, Padova, Italy

Kelly J. Cole
Department of Integrative Physiology, University of Iowa, Iowa City, IA, USA

Daniel M. Corcos
Departments of Kinesiology and Nutrition, Bioengineering, Physical Therapy, University of Illinois at Chicago, Chicago, IL and Department of Neurological Sciences, Rush Presbyterian St. Luke’s Medical Center, Chicago, IL, USA

Günther Deuschl
Department of Neurology University Hospital Schleswig Holstein, Campus Kiel, Schittenhelmstr. 10, 24105 Kiel, Germany

H. Henrik Ehrsson
Department of Neuroscience, Karolinska Institute, Retzius väg 8, 177 77, Stockholm, Sweden
Satoshi Endo
Behavioural Brain Sciences Centre,
School of Psychology,
University of Birmingham,
Birmingham, UK

Gereon R. Fink
Department of Neurology,
University of Cologne,
Kerpener Str. 62,
D-50924 Cologne, Germany

J. Randall Flanagan
Department of Psychology and Centre for
Neuroscience Studies,
Queen’s University,
Kingston, ON, K7L 3N6, Canada

Tania S. Flink
Department of Kinesiology,
Arizona State University,
Tempe, AZ, USA

Hans Forssberg
Department of Women and Child Health,
Neuropediatric Research Unit,
Karolinska Institute and Stockholm Brain Institute,
Astrid Lindgrens Barnsjukhus Q2:O7,
17176 Stockholm, Sweden

Kathleen M. Friel
Department of Neuroscience,
Columbia University,
New York, NY, USA

Andrew M. Gordon
Department of Biobehavioral Sciences,
Box 199,
Teachers College, Columbia University,
525 West 120th Street,
New York, NY 10027, USA

Christian Grefkes
Max-Planck-Institute for Neurological Research,
Section “Neuromodulation &
Neurorehabilitation”,
Cologne, Germany

Priska Gysin
Department of Biobehavioral Sciences,
Teachers College,
Columbia University,
New York, NY 10027, USA

Mark Hallett
Human Motor Control Section, NINDS,
NIH,
Building 10, Room 5N226
Bethesda, MD 20892-1428, USA

Joachim Hermsdörfer
EKN Clinical Neuropsychology Research Group,
Hospital Munich-Bogenhausen
Dachauer Str. 164,
D-80992 Munich, Germany

Marc Jeannerod
Institut des Sciences Cognitives,
67 Boulevard Pinel,
69675, Bron, France

Roland S. Johansson
Physiology Section,
Department of Integrative Medical Biology,
Umeå University,
SE-901 87 Umeå, Sweden

Jamie A. Johnston
Department of Kinesiology,
Arizona State University,
Tempe 85287, AZ, USA
Contributors

Terry R. Kaminski
Department of Biobehavioral Sciences,
Teachers College,
Columbia University,
New York, NY 10027, USA

Mitsuo Kawato
JST, ICORP, Computational Brain Project,
4-1-8 Honcho,
Kawaguchi, Saitama, Japan and
ATR, Computational Neuroscience
Laboratories,
2-2-2 Hikaridai, Seika-cho Soraku-gun,
Kyoto 619-0288, Japan

Giacomo Koch
Clinica Neurologica,
Dipartimento di Neuroscienze,
Università di Roma Tor Vergata,
Via Montpellier 1,
00133 Rome, Italy
and
Fondazione,
S. Lucia IRCCS,
Via Ardetaina 306,
00179 Rome, Italy

Johann P. Kuhtz-Buschbeck
Institute of Physiology,
Kiel University,
Olshausenstrasse 40,
D 24098 Kiel, Germany

Catherine E. Lang
Program in Physical Therapy,
Program in Occupational Therapy,
Department of Neurology,
Washington University,
St. Louis, MO, USA

Mark L. Latash
Department of Kinesiology,
The Pennsylvania State University,
University Park,
PA 16802, USA

Susan J. Lederman
Department of Psychology,
Queen’s University,
Kingston,
ON, Canada

Roger N. Lemon
Sobell Department of Motor
Neuroscience and Movement
Disorders,
Institute of Neurology,
University College London,
London WC1N 3BG, UK

Mario Manto
FNRS Neurologie,
ULB Erasme,
Brussels, Belgium

Kyle Merritt
Department of Psychology and
Centre for Neuroscience Studies,
Queen’s University,
Kingston, ON K7L 3N6, Canada

Dennis A. Nowak
Klinik Kipfenberg,
Kindinger Str. 13,
D-85110 Kipfenberg, Germany

Erhan Oztop
JST, ICORP, Computational
Brain Project, 4-1-8 Honcho,
Kawaguchi, Saitama, Japan and
ATR, Computational Neuroscience
Laboratories,
2-2-2 Hikaridai, Seika-cho Soraku-gun,
Kyoto 619-0288, Japan

Jan Raethjen
Department of Neurology,
University Hospital Schleswig Holstein,
Campus Kiel,
Schittenhelmstr. 10,
24105 Kiel, Germany
Contributors

Ralf Reilmann
Department of Neurology,
Universitätssklinik Münster (UKM),
Westfälische Wilhelms-University,
Albert-Schweitzer-Str. 33,
48129 Münster, Germany

Sarah Pirio Richardson
Department of Neurology,
University of New Mexico HSC,
MSC 10 5620,
1 University of New Mexico,
Albuquerque, NM 87131, USA and
Human Motor Control Section, NINDS,
NIH,
Building 10, Room 5N226,
Bethesda, MD 20892-1428, USA

John C. Rothwell
Sobell Department,
Institute of Neurology,
Queen Square,
London WC1N 3BG, UK

Marco Santello
Department of Kinesiology,
Arizona State University,
Tempe, AZ 85287-0404, USA

Marc H. Schieber
Departments of Neurology,
Neurobiology & Anatomy, and Physical
Medicine & Rehabilitation,
University of Rochester,
Rochester, NY, USA

H. R. Siebner
Department of Neurology,
University of Schleswig-Holstein, Kiel
Campus,
Neurozentrum,
Schittenhelmstrasse 10,
24105 Kiel, Germany

Allan M. Smith
Département de Physiologie,
Université de Montréal,
C.P. 6128 Succursale Centre ville,
Montréal, QC, Canada H3C 3T8

Rachel L. Spinks
Sobell Department of Motor Neuroscience
and Movement Disorders,
Institute of Neurology,
University College London,
London WC1N 3BG, UK

Matthew B. Spraker
Department of Bioengineering,
University of Illinois at Chicago,
Chicago, IL, USA

George E. Stelmach
Department of Kinesiology,
Arizona State University,
Tempe, AZ, USA

Lars Timmermann
Department of Neurology,
University Hospital Cologne,
Kerpener Str. 62,
50924 Cologne, Germany

Maria A. Umilta
Sobell Department of Motor Neuroscience
and Movement Disorders,
Institute of Neurology,
University College London,
London WC1N 3BG, UK and
Università di Parma,
Parma, Italy

David E. Vaillancourt
Departments of Kinesiology and Nutrition,
Bioengineering and Neurology and
Rehabilitation,
University of Illinois at Chicago,
Chicago, IL, USA
Contributors

Brigitte Vollmer
Department of Women and Child Health, Neuropediatric Research Unit, Karolinska Institute and Stockholm Brain Institute, Astrid Lindgrens Barnsjukhus Q2-O7, 17176 Stockholm, Sweden

Roland Wenzelburger
Dänischenhagener Str. 12B, D-24161 Altenholz, Germany

Alan M. Wing
Behavioural Brain Sciences Centre, School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

Vladimir M. Zatsiorsky
Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA

Kirsten E. Zeuner
Department of Neurology, University of Schleswig-Holstein, Kiel Campus, Neurozentrum, Schittenhelmstr. 10, 24105 Kiel, Germany
The numerous skeletal and muscular degrees of freedom of the hand provide the human with an enormous dexterity that has not yet been achieved by any other species on earth. The human hand can take on a huge variety of shapes and functions, providing its owner with a powerful hammer at one time or a delicate pair of forceps at another. The universal utility of the hand is even more enhanced by the ability to amplify the function of the hand by using tools. True opposition between the thumb and index finger is only observed in humans, the great apes and Old World monkeys. The human thumb is much longer, relative to the index finger, than the thumb of other primates and this allows humans to grasp and manipulate objects between the tips of the thumb and index finger. Humans have more individuated muscles and tendons with which to control the digits and have evolved extensive cortical systems for controlling the hand. In addition to its manipulative function the hand is a highly sensitive perceptive organ, orchestrated by myriads of tactile and somatosensory receptors, which enables humans to perceive the world within their reach. Taken together all these phylogenetic developments have provided humans with the ability to interact with each other, make love and war, and also to shape the world. To understand and appreciate how the human brain controls movements of the hand, it is important to investigate both the healthy motor behavior of the hand and its dysfunction during everyday manipulative tasks.

Over the past three decades exciting novel achievements have enhanced our knowledge of the physiology and pathophysiology of human grasping. When trying to summarize what we know today about the physiology of human grasping we have to look back at the origins of its research. There is no doubt that the modern era of research on the kinematics and kinetics of human grasping started in the early 1980s with the epoch-making studies from the groups around Marc Jeannerod in Bron, France, and Roland Johansson in Umeå, Sweden. These researchers provided us with the first detailed descriptions of the kinematics of human grasping and the dynamic control of isometric grip forces when handling objects in the environment. Inspired from these early works, Alan Wing, Randy Flanagan, Hans Forssberg, Kelly Cole and Andrew Gordon, among others, carried on in this “orphan” field of research over the next decade. Thereafter, several scientists have been walking in the footsteps of these first-hour researchers, including ourselves. Consequently, the methodology of kinematic and kinetic analysis of grasping movements has rapidly found its way into clinics and aided in discovering the characteristics of impaired grasping in a huge
Preface

variety of neurological, psychiatric and orthopedic disorders. Today, motor laboratories all over the world have established kinematic and kinetic investigation of grasping both in clinical and research settings and knowledge is still growing given the increasing number of citations each year in the PubMed database (www.ncbi.nlm.nih.gov/sites/).

It was our intention to bring together first-hour and last-generation neuroscientists and clinical researchers in the field to compile a contemporary summary about what we know today about the physiology and pathophysiology of the manipulative and exploratory functions of the human hand. The book is separated into four major sections: methodology, physiology of grasping, pathophysiology of grasping and therapy of impaired sensorimotor control of the hand. It covers the development of healthy human grasping over the lifespan and the wide spectrum of disability in the pathological state, and links basic motor research with modern brain sciences. The book focuses on, but is not limited to, grasping. Several additional aspects of the physiology and pathophysiology of fine motor performance of the hand, such as writing, multi-digit coordination and bimanual motor performance, are also covered. The book addresses scientists and clinical researchers from the areas of biomechanics, kinesiology, neurophysiology, psychology, physical medicine and rehabilitation. We are glad to have succeeded in pooling knowledge from “dinosaurs” in the field as well as from young scientists and clinical researchers from all over the world. This allows the book to contain basic knowledge from kinematic and kinetic recordings of the early days, and novel aspects regarding central control processes and models derived from more recent advances in technology, such as neurophysiology and neuroimaging.

When it comes to acknowledgments, we have to admit that there are many people without whom we certainly would not have arrived at this stage along our way through the world of grasping research. So we wish to direct our apologies to all those who are not mentioned here, despite their valuable support that is much appreciated. This is in particular to our team members, to all the doctoral students and to our clinical teachers. We wish to thank our families for their patience and constant support over the years. We both wish to dedicate this book to Norbert Mai, who inspired us to focus on the pathological aspects of grasping many years ago. Norbert died too early and we will always remember him for his visionary genius. Finally, we would like to thank Alison Evans, Anna-Marie Lovett and Martin Griffiths from Cambridge University Press for their assistance and guidance in making this project a success.