
1 Preliminaries

1.1 Introduction

This book provides the reader with the basic procedures for performing a dynamic
analysis of marine structures subjected to environmental stochastic load processes
such as wind and ocean waves. The dynamics of rigid bodies and flexible structures
are considered. As opposed to the static analysis of structures, the dynamic analysis
of a structure concerns itself with time-variant external forces, inertia, damping,
reaction forces, and the corresponding responses. Dynamic behavior differs from
static behavior. Consider, for instance, the cantilevered tower shown in Fig. 1.1a.

Figures 1.1(b) and 1.1(d) display the bending moment in the tower with a deck
(i.e., mass) on the top when the hydrodynamic forces from a long wave are considered
as static and dynamic, respectively. Obviously, the dynamic case is relevant for a
certain time variation and an instant in time. The difference is due to the inertia
forces (on the deck Qi and along the tower qi ).

Clearly, dynamic behavior is more complex than static, and its calculation is
also more demanding. This becomes even more clear by considering a buoyant,
rigid, articulated tower such as the one shown in Fig. 1.2. The static response is such
that the tower rotates in such a way that the net effect of buoyancy and gravity
balances the external forces (expressed by zero total moment with respect to the pin
joint). If the external forces are considered as time variant, the external force at any
time instant is balanced by the mentioned reaction forces as well as by inertia and
damping forces. In practical situations (when resonance is not an issue), the inertia
forces would typically dominate.

The loading on the structure is then described in terms of a load vector where
one or more of the quantities, size, direction, or position, varies with time. As a
consequence, the structural response to the dynamic loading that is, the resulting
displacements, internal forces etc. will also be time varying or dynamic.

Broadly speaking, a dynamic analysis is performed in two different ways accord-
ing to how the loading is specified. If the time-variant loading is given in such a way
that we may consider it to be exactly known as a function of time, the same will apply
to the response. In such a case, the dynamic analysis is called deterministic. This is
in contrast to a stochastic analysis, where the loading is specified using probabilistic
concepts. When this is done, the corresponding displacements and tensions can only
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2 Preliminaries

(a) Tower and external

load due to a long wave

(b) Static bending

moment

(c) Inertia reaction
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moment

Figure 1.1. Schematic of wave-induced static versus instantaneous dynamic forces and
moments in a bottom-fixed cantilevered tower.

be described similarly. Even if, in principle, the naturally occurring loading that a
structure is subjected to, such as wind and waves, can be claimed to be deterministic
if the laws of physics and the initial conditions were known, their exact description
and analysis within such a framework are believed to remain beyond reach for any
foreseeable length of time. Fortunately, the complexity of these natural phenomena
is such that they can be accurately modeled as random processes. This opens the
way for practical analysis and prediction of the response of structures subjected to
environmental loads.

The response analysis is performed as part of the design verification of struc-
tures, according to serviceability and safety requirements. Serviceability require-
ments relate to the function of the structure and the possible equipment it is car-
rying, while safety requirements refer to avoidance of ultimate or fatigue failure.

(a) Tower and external

load due to a long wave

(b) Inertia reaction

forces

(c) Dynamic bending

moment

Figure 1.2. Schematic of instantaneous wave-induced forces and moments in an articulated
tower.
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1.2 Equations of Motion 3

The corresponding verification of ultimate or fatigue limit state criteria requires the
extreme structural response and the whole response history, respectively.

1.2 Equations of Motion

The goal of a dynamic analysis of structures is to calculate the time history of the
displacements, internal forces, or stresses at specific places in the structure. Before
a dynamic analysis can be performed, most real structures would normally have to
be represented by an idealized model.

Dynamic models fall into two basic categories, namely, continuous and discrete
models. The number of variables – normally, displacement components – that need
to be applied to describe the behavior is termed the number of degrees of freedom
(nDOF). According to this definition, a continuous model represents an infinite
DOF system, while a discrete model represents a finite DOF system.

Once the computational model of the structure is defined, the proper formulation
of the equations of motion creates the mathematical model of the structure. A
continuous model leads to partial differential equation(s), while a discrete model
leads to ordinary differential equation(s).

When the mathematical model has been formulated, the next step deals with the
solution of the differential equation(s) to predict the response of the real structure.
Finally, the last step is the verification and confirmation of the results. This can be
achieved by comparison of the computed results with dynamic tests or the responses
of the models arrived at in different ways.

For plane motions of a rigid body in the reference (x, y)-plane, Newton’s second
law yields to the following equations:

mücx =
∑

Px(t), (1.1)

mücy =
∑

Py(t), (1.2)

Jc�̈ =
∑

Mc(t). (1.3)

Herein, ücx and ücy denote the acceleration components of the center of mass C
of the body along the x and the y axes;

∑
Px(t) and

∑
Py(t) are the corresponding

resultant forces and �̈ is the angular acceleration; Jc represents the mass moment of
inertia of the body with respect to an orthogonal axis through C, the center of mass;
and

∑
Mc(t) is the sum of all moments acting on the body with respect to the axis

through C.
Sometimes, especially when dealing with multiple degrees-of-freedom mass

points with complex kinematic features, it is convenient to use Newton’s second
law recast in terms of Lagrange equations with reference to work and energy.

In analogy with the condition for static equilibrium, it is possible to introduce a
corresponding condition for dynamic equilibrium by defining an auxiliary (vector)
force, fi (t) = −(mücx, mücy, Jc�̈)T , which is often referred to as the inertia force.
By rewriting Eqs. (1.1)–(1.3), letting f(t) = (

∑
Px(t),

∑
Py(t),

∑
Mc(t))T , it is then

obtained that

f(t) + fi (t) = 0. (1.4)

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-88155-5 - Stochastic Dynamics of Marine Structures
Arvid Naess and Torgeir Moan
Excerpt
More information

http://www.cambridge.org/9780521881555
http://www.cambridge.org
http://www.cambridge.org


4 Preliminaries

This rephrasing of Newton’s second law of motion is usually called the principle of
d’Alembert. Expressed in words, it may be stated as follows:

The condition for dynamic equilibrium is that the total force is in equilibrium
with the inertia force.

It is emphasized that the extension of the equilibrium concept we obtained by the
introduction of the concept of dynamic equilibrium is synonymous with compliance
with Newton’s second law. This reformulation has resulted in a general condition
of equilibrium, which is completely analogous to the condition of static equilibrium,
and it contains this condition as a special case. When the acceleration is known
(or is considered known), one can therefore recast the dynamic problem into the
framework of a static problem by including the inertia force.

Although the treatment of a system of (rigid) mass points mainly requires the
use of Newton’s second law or derived energy formulations, the principles of contin-
uum mechanics are needed to handle deformed bodies. They include equilibrium,
kinematic compatibility and constitutive (stress–strain) relations, and may be used
to formulate differential or energy expressions. In particular, the principle of virtual
work provides a versatile tool for finite element discretizations of deformable bodies.

In this book, only the structural mechanics for bars, truss works, beams, and
frames are described, while the continuum mechanics of plane stress, plate bending,
shell, and solids are treated only in principle.

The principle of virtual work is briefly discussed. This principle is expressed here
as an integrated form of d’Alembert’s principle. Verbally expressed, it assumes the
following form.

If the (generalized) forces in Eq. (1.4) are considered as functions of position,
the principle of virtual work can be expressed as∫

V
�uTf dV +

∫
V

�uTfi dV = 0, (1.5)

where �u is a virtual displacement vector and V is the extension pr volume of the
system. The force f is then understood as the external forces minus possible forces
in the structure from damping and elastic resistance to displacement.

1.3 Stochastic Models

After the publication of the classical paper “On the motions of ships in confused
seas,” by St. Denis and Pierson (1953), where stochastic concepts were used for mod-
eling the waves and the wave forces on a ship subjected to the ocean environment, it
was generally recognized that this approach represented a rational and suitable way
to account for the “unpredictability” of the hydrodynamic loading on a ship during
an ocean voyage. During the more than 50 years since then, the stochastic model-
ing of environmental forces and the responses of the structures subjected to them
has reached a fairly mature state. Today, stochastic modeling of the environmental
loads and the induced responses is a routine procedure when designing ships and
other ocean structures, even if the degree of sophistication varies depending on the
type of structure and design provisions. In particular, taking account of the random
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1.4 Organization of the Book 5

character of wave and other environmental loads is important when the loads induce
inertia and damping reaction forces. In this light, the main aspects of stochastic mod-
eling of the environmental processes and loads, as well as the induced responses of
structures, should be an important part of any textbook on the dynamics of marine
structures. In this book, we therefore make an effort to discuss these aspects in some
detail.

1.4 Organization of the Book

The first part of the book (Chapters 2–4) describes fundamental issues of a determin-
istic dynamic analysis with emphasis on simple, but important, vibration problems.
The second part (Chapters 5–16) provides a fairly extensive introduction to stochas-
tic dynamic analysis of marine structures, as well as applications of such analyses in
the design process.

It is inevitable that a book of this type also to some extent reflects the authors’
“world view.” This is particularly apparent in the choice of a number of advanced
topics that the authors have been particularly involved in.
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2 Dynamics of Single-Degree-of-Freedom
Linear Systems

2.1 Introduction

This chapter deals with vibrations of structures that can be represented as a single-
degree-of-freedom (SDOF) system. This means that the oscillatory response can
be completely described by one displacement variable. This may seem like a gross
oversimplification for structures of engineering interest that leads to a theory of little
practical significance. However, the theory of vibrations for systems of an SDOF is
crucial for understanding the vibration response of more complex structures. Fre-
quently, it is also the case that one may investigate the vibration response character-
istics of apparently complex structures by directly applying the theory of vibrations
of SDOF systems. This is demonstrated in Chapter 3 on multi-degrees-of-freedom
(MDOF) structures.

The word “vibration” used in this chapter should be interpreted as meaning
oscillatory response in a fairly general sense, e.g., as applied to marine structures.

2.2 Harmonic Oscillator – Free Vibrations

Free vibrations or oscillations occur when there are no external forces imposed on
the structure, e.g., after an initial displacement and release. Two different situations
are discussed: translational oscillations and rotational oscillations.

2.2.1 Motions of Marine Structures

Because the main focus of this book is the motion response of marine structures, it
is expedient to define the terms commonly used to describe the rigid-body motions
of floating structures. This is most easily done by referring to Fig. 2.1. For a shiplike
structure, it is common practice to place the x-axis along the beam of the ship (for
the body-fixed coordinate system), and call the corresponding translational motion
for surge. The y-axis is placed in the water plane (or parallel to it). Whether the
z-axis points into the water (downward) or out of the water (upward) may vary. In
this book, the z-axis is invariably positive upward. Thus, there are three translatory
motions: surge (x-axis), sway (y-axis), and heave (z-axis). Similarly, there are three
rotational motions: roll (x-axis), pitch (y-axis), and yaw (z-axis).
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2.2 Harmonic Oscillator – Free Vibrations 7

Figure 2.1. Definition of the motion
response modes of a marine structure.
�1 = surge, �2 = sway, �3 = heave, �4 =
roll, �5 = pitch, �6 = yaw (SNAME,
1988).

For many offshore platform structures, there is no obvious “x-axis” in the same
way as for a ship, and the placement of a local coordinate system is therefore to a
larger extent arbitrary. In such cases, the x-axis is often placed along, or close to, the
main wave direction.

2.2.2 Translational Oscillations

Figure 2.2 displays a schematic of an undamped (without friction) vibration system of
an SDOF. The spring k is assumed to be without mass. It is also assumed to comply
with Hooke’s law; that is, it is assumed to be linearly elastic. The displacement
u is considered positive to the right of the equilibrium point; that is, u = 0 at the
equilibrium point. When the mass m is displaced a distance u, the spring k will impose
a force −ku on m, where the minus sign indicates that the force is directed against
the displacement. Invoking Newton’s second law then gives the relation

−ku = mü (2.1)

or

mü + ku = 0 (2.2)

To simplify language and notation, we let the letter m denote both the physical
mass itself and its size in kilograms (kg). Similarly for the letter k, which denotes
both a linearly elastic spring and the corresponding spring constant in Hooke’s law
([k] = N/m).

Equation (2.2) can be rewritten as

ü + �2
e u = 0 (2.3)

Figure 2.2. Principle sketch of the vibration system
of an SDOF.
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8 Dynamics of Single-Degree-of-Freedom Linear Systems

Figure 2.3. Undamped free oscillation response of amplitude a and period Te.

by introducing the angular frequency �e defined by

�2
e = k

m
([�e] = rad/s) (2.4)

�e is referred to as the natural frequency, or the eigenfrequency, of the oscillatory
system.

One can easily verify that the harmonic functions cos �et and sin �et both satisfy
Eq. (2.3). The general solution can therefore be written as

u(t) = a1 cos �et + a2 sin �et, (2.5)

where a1 and a2 are two constants. The solution u(t) represents an oscillation
response with constant angular frequency �e, hence the name harmonic oscilla-
tor. Because the differential Eq. (2.3) is of second order, two constants are required
to describe the general solution. If position and velocity at a particular point in time
are given, for instance, u(0) = u0 and u̇(0) = v0, then the solution will be uniquely
determined as follows,

u(t) = u0 cos �et + v0

�e
sin �et. (2.6)

This harmonic oscillation is illustrated in Fig. 2.3. It is seen from Eqs. (2.5) and
(2.6) that u(t) = u(t + 2�/�e), while u(t) �= u(t + t ′) when 0 < t ′ < 2�/�e. This leads
to the expression for the natural period of the system:

Te = 2 �

�e
= 2 �

√
m
k

. (2.7)

The natural frequency fe ([ fe] = s−1 or Hz) is therefore

fe = 1
Te

= �e

2 �
. (2.8)

Equation (2.5) may be rewritten as

u(t) =
√

a2
1 + a2

2

⎛
⎝ a1√

a2
1 + a2

2

cos �et + a2√
a2

1 + a2
2

sin �et

⎞
⎠ . (2.9)
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2.2 Harmonic Oscillator – Free Vibrations 9

Figure 2.4. Argand diagram for the oscillation response shown in Fig. 2.3.

Because

⎛
⎝ a1√

a2
1 + a2

2

⎞
⎠2

+
⎛
⎝ a2√

a2
1 + a2

2

⎞
⎠2

= 1, (2.10)

there must exist an angle � (0 ≤ � < 2�) such that cos � = a1/

√
a2

1 + a2
2 and

sin � = a2/

√
a2

1 + a2
2 . This implies that

u(t) =
√

a2
1 + a2

2 (cos �et cos � + sin �et sin �) = a cos(�et − �), (2.11)

where the amplitude a =
√

a2
1 + a2

2 and the phase angle � are determined by the
initial conditions at t = 0. Because tan � = a2/a1, � can also be calculated from the
relation � = arctan(a2/a1). There are two solutions for � in the interval [0, 2�], and
the sign of u(0) = u0 determines the correct one. When u(0) is positive, the phase
angle will be in the first or fourth quadrant. If u(0) is negative, the phase angle will
be in the second or third quadrant.

The oscillation response can be represented in the complex plane by using an
Argand diagram, where u(t) is the real part of the complex number a (|a| = a), which
rotates with constant angular frequency �e, see Fig. 2.4.

2.2.3 Example – Amplitude and Phase of a Free Oscillation

Assume a vibration response determined by Eq. (2.2) with m = 10 kg and k =
400 N/m. What will be the resulting amplitude and phase angle for the free
oscillation when u0 = 0.1 m and v0 = −0.2 m/s?

The natural frequency of the system is �e = √
k/m = 2 rad/s. From Eqs. (2.2)

and (2.11), it follows that the amplitude a =
√

u2
0 + (v0/�e)2 = √

0.12 + 0.12 =
0.14 m. The phase angle � = arctan(v0/(�eu0)) = arctan(−1) = 7�/4, corre-
sponding to a positive displacement and negative velocity.
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10 Dynamics of Single-Degree-of-Freedom Linear Systems

Figure 2.5. A coarse sketch of the Brent Spar.

2.2.4 Example – Heave Oscillations of a Spar Buoy

In the mid-1970s, the oil company Shell installed an oil storage and offloading
spar buoy at the Brent offshore oil field in the North Sea at a water depth
of 140 meters, see Fig. 2.5. The Brent Spar, or Brent E, was a conventional
cylindrical buoy moored to the sea floor by six anchors. The cylindrical tank
was 137 meters high with a diameter of 29 meters and a displacement of 66000
metric tons, which corresponds to a draft of 109 meters. The spar buoy was made
up of oil storage tanks at the bottom, buoyancy tanks toward the middle and
a topside containing the offloading and other equipment. Decommissioned in
the mid-1990s, the Brent Spar was in operation for about 20 years. The original
plans for decommissioning, which were basically to sink it in deep water, were
fiercely attacked by Greenpeace and other environmental organizations, and
these plans were eventually abandoned. Accounts of the “battle” of the Brent
Spar can be found on the Internet.

The deep draft of the spar buoy makes it nonresponsive to normal sea states,
and the heave response is hardly noticeable under ordinary operating conditions.
This is connected with the long natural period of the heave oscillations of the
spar, which can be determined by calculating the restoring force produced by a
vertical displacement of the spar. The restoring force originates mainly from a
change in the buoyancy effect. The mooring lines will contribute only marginally
to the total restoring force in the heave direction. Hence, a vertical displacement
of x meters will produce a restoring force fr (x) approximately equal to

fr (x) = �g�R2 x, (a)

where � = 1,025 kg/m3 = density of sea water, g = 9.81 m/s2, and R = 14.5 m =
radius of cylindrical tank. It follows that the spar buoy offers a restoring force
that is a linear function of the displacement x; that is, fr (x) = K x. It is found
that K = 6.6 · 106 N/m for the Brent Spar.
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