Contents

Nomenclature page xvii
Preface and Acknowledgment xxv
Acronyms and Abbreviations xxvii

1 SLOshING IN MARINE- AND LAND-BASED APPLICATIONS 1
1.1 Introduction 1
1.2 Resonant free-surface motions 1
1.3 Ship tanks 5
1.3.1 Oil tankers 10
1.3.2 FPSO ships and shuttle tankers 12
1.3.3 Bulk carriers 12
1.3.4 Liquefied gas carriers 14
1.3.5 LPG carriers 15
1.3.6 LNG carriers 16
1.3.7 Chemical tankers 21
1.3.8 Fish transportation 21
1.3.9 Cruise vessels 21
1.3.10 Antirolling tanks 22
1.4 Tuned liquid dampers 22
1.5 Offshore platforms 24
1.6 Completely filled fabric structure 27
1.7 External sloshing for ships and marine structures 27
1.8 Sloshing in coastal engineering 30
1.9 Land transportation 31
1.10 Onshore tanks 31
1.11 Space applications 32
1.12 Summary of chapters 33

2 GOVERNING EQUATIONS OF LIQUID SLOSHING 35
2.1 Introduction 35
2.2 Navier–Stokes equations 35
2.2.1 Two-dimensional Navier–Stokes formulation for incompressible liquid 35
2.2.1.1 Continuity equation 36
2.2.1.2 Viscous stresses and derivation of the Navier–Stokes equations 36
2.2.2 Three-dimensional Navier–Stokes equations 37
 2.2.2.1 Vorticity and potential flow 38
 2.2.2.2 Compressibility 39
 2.2.3 Turbulent flow 40
 2.2.4 Global conservation laws 40
 2.2.4.1 Conservation of fluid momentum 40
 2.2.4.2 Conservation of kinetic and potential fluid energy 41
 2.2.4.3 Examples: two special cases 42
 2.3 Tank-fixed coordinate system 43
 2.4 Governing equations in a noninertial, tank-fixed coordinate system 45
 2.4.1 Navier–Stokes equations 45
 2.4.1.1 Illustrative example: application to the Earth as an accelerated coordinate system 46
 2.4.2 Potential flow formulation 47
 2.4.2.1 Governing equations 47
 2.4.2.2 Body boundary conditions 48
 2.4.2.3 Free-surface conditions 48
 2.4.2.4 Mass (volume) conservation condition 49
 2.4.2.5 Free boundary problem of sloshing and initial/periodicity conditions 49
 2.5 Lagrange variational formalism for the sloshing problem 51
 2.5.1 Eulerian calculus of variations 51
 2.5.2 Illustrative examples 53
 2.5.2.1 Spring–mass systems 53
 2.5.2.2 Euler–Bernoulli beam equation 54
 2.5.2.3 Linear sloshing in an upright nonmoving tank 56
 2.5.3 Lagrange and Bateman–Luke variational formulations for nonlinear sloshing 57
 2.5.3.1 The Lagrange variational formulation 57
 2.5.3.2 The Bateman–Luke principle 58
 2.6 Summary 59
 2.7 Exercises 59
 2.7.1 Flow parameters 59
 2.7.2 Surface tension 60
 2.7.3 Kinematic boundary condition 60
 2.7.4 Added mass force for a nonlifting body in infinite fluid 60
 2.7.5 Euler–Lagrange equations for finite-dimensional mechanical systems 61

3 WAVE-INDUCED SHIP MOTIONS 63
 3.1 Introduction 63
 3.2 Long-crested propagating waves 63
 3.3 Statistical description of waves in a sea state 67
 3.4 Long-term predictions of sea states 70
 3.5 Linear wave-induced motions in regular waves 73
 3.5.1 Definitions 73
 3.5.2 Equations of motion in the frequency domain 76
3.6 Coupled sloshing and ship motions
3.6.1 Quasi-steady free-surface effects of a tank
3.6.2 Antirolling tanks
3.6.3 Free-surface antirolling tanks
3.6.4 U-tube roll stabilizer
 3.6.4.1 Nonlinear liquid motion
 3.6.4.2 Linear forces and moments due to liquid motion in
 the U-tube
 3.6.4.3 Lloyd’s U-tube model
 3.6.4.4 Controlled U-tank stabilizer
3.6.5 Coupled sway motions and sloshing
3.6.6 Coupled three-dimensional ship motions and sloshing in
 beam waves
3.7 Sloshing in external flow
3.7.1 Piston-mode resonance in a two-dimensional moonpool
3.7.2 Piston and sloshing modes in three-dimensional
 moonpools
3.7.3 Resonant wave motion between two hulls
3.8 Time-domain response
3.9 Response in irregular waves
 3.9.1 Linear short-term sea state response
 3.9.2 Linear long-term predictions
3.10 Summary
3.11 Exercises
 3.11.1 Wave energy
 3.11.2 Surface tension
 3.11.3 Added mass and damping
 3.11.4 Heave damping at small frequencies in finite water depth
 3.11.5 Coupled roll and sloshing in an antirolling tank of a
 barge in beam sea
 3.11.6 Operational analysis of patrol boat with U-tube tank
 3.11.7 Moonpool and gap resonances
4 LINEAR NATURAL SLOSHING MODES
4.1 Introduction
4.2 Natural frequencies and modes
4.3 Exact natural frequencies and modes
 4.3.1 Two-dimensional case
 4.3.1.1 Rectangular planar tank
 4.3.1.2 Wedge cross-section with 45° and 60° semi-apex
 angles
 4.3.1.3 Troesch’s analytical solutions
 4.3.2 Three-dimensional cases
 4.3.2.1 Rectangular tank
 4.3.2.2 Upright circular cylindrical tank
4.4 Seiching
 4.4.1 Parabolic basin
4.4.2 Triangular basin
4.4.3 Harbors
4.4.4 Pumping-mode resonance of a harbor
4.4.5 Ocean basins

4.5 Domain decomposition
4.5.1 Two-dimensional sloshing with a shallow-water part
4.5.2 Example: swimming pools

4.6 Variational statement and comparison theorems
4.6.1 Variational formulations
4.6.1.1 Rayleigh’s method
4.6.1.2 Rayleigh quotient for natural sloshing
4.6.1.3 Variational equation
4.6.2 Natural frequencies versus tank shape: comparison theorems
4.6.3 Natural frequencies versus tank shape: comparison theorems
4.6.3.1 Small liquid-domain reductions of rectangular tanks
4.6.3.2 Asymptotic formula for a chamfered tank bottom: examples
4.6.3.3 Discussion on the analytical continuation and the applicability of formula (4.90)

4.7 Asymptotic natural frequencies for tanks with small internal structures
4.7.1 Main theoretical background
4.7.2 Baffles
4.7.2.1 Small-size (horizontal or vertical) thin baffle
4.7.2.2 Hydrodynamic interaction between baffles (plates) and free-surface effects
4.7.3 Poles
4.7.3.1 Horizontal and vertical poles
4.7.3.2 Proximity of circular poles

4.8 Approximate solutions
4.8.1 Two-dimensional circular tanks
4.8.2 Axisymmetric tanks
4.8.2.1 Spherical tank
4.8.2.2 Ellipsoidal (oblate spheroidal) container
4.8.3 Horizontal cylindrical container
4.8.3.1 Shallow-liquid approximation for arbitrary cross-section
4.8.3.2 Shallow-liquid approximation for circular cross-section

4.9 Two-layer liquid
4.9.1 General statement
4.9.2 Two-phase shallow-liquid approximation
4.9.2.1 Example: oil–gas separator

4.10 Summary
4.11 Exercises
4.11.1 Irregular frequencies 186
4.11.2 Shallow-liquid approximation for trapezoidal-base tank 186
4.11.3 Annular and sectored upright circular tank 187
4.11.4 Circular swimming pool 187
4.11.5 Effect of pipes on sloshing frequencies for a gravity-based platform 189
4.11.6 Effect of horizontal isolated baffles in a rectangular tank 191
4.11.7 Isolated vertical baffles in a rectangular tank 192

5 LINEAR MODAL THEORY 193
5.1 Introduction 193
5.2 Illustrative example: surge excitations of a rectangular tank 193
5.3 Theory 196
5.3.1 Linear modal equations 196
5.3.1.1 Six generalized coordinates for solid-body, linear dynamics 196
5.3.1.2 Generalized coordinates for liquid sloshing and derivation of linear modal equations 197
5.3.1.3 Linear modal equations for prescribed tank motions 199
5.3.2 Resulting hydrodynamic force and moment in linear approximation 200
5.3.2.1 Force 200
5.3.2.2 Moment 202
5.3.3 Steady-state and transient motions: initial and periodicity conditions 204
5.4 Implementation of linear modal theory 208
5.4.1 Time- and frequency-domain solutions 208
5.4.1.1 Time-domain solution with prescribed tank motion 208
5.4.1.2 Time-domain solution of coupled sloshing and body motion 208
5.4.1.3 Frequency-domain solution of coupled sloshing and body motion 208
5.4.2 Forced sloshing in a two-dimensional rectangular tank 211
5.4.2.1 Hydrodynamic coefficients 211
5.4.2.2 Completely filled two-dimensional rectangular tank 213
5.4.2.3 Transient sloshing during collision of two ships 219
5.4.2.4 Effect of elastic tank wall deflections on sloshing 224
5.4.3 Forced sloshing in a three-dimensional rectangular-base tank 226
5.4.3.1 Hydrodynamic coefficients 226
5.4.3.2 Added mass coefficients in ship applications 229
5.4.3.3 Tank added mass coefficients in a ship motion analysis 233
5.4.4 Hydrodynamic coefficients for an upright circular cylindrical tank 235
5.4.5 Coupling between sloshing and wave-induced vibrations of a monotor 237
5.4 Theory 237
 5.4.5.1 Theory 237
 5.4.5.2 Undamped eigenfrequencies of the coupled motions 240
 5.4.5.3 Variational method 240
 5.4.5.4 Wave excitation 242
 5.4.5.5 Damping 244

5.4.6 Rollover of a tank vehicle 245

5.4.7 Spherical tanks 247
 5.4.7.1 Hydroelastic vibrations of a spherical tank 247
 5.4.7.2 Simplified two-mode modal system for sloshing in a spherical tank 249

5.4.8 Transient analysis of tanks with asymptotic estimates of natural frequencies 250

5.5 Summary 251

5.6 Exercises 251
 5.6.1 Moments by direct pressure integration and the Lukovsky formula 251
 5.6.2 Transient sloshing with damping 251
 5.6.3 Effect of small structural deflections of the tank bottom on sloshing 252
 5.6.4 Effect of elastic deformations of vertical circular tank 252
 5.6.5 Spilling of coffee 253
 5.6.6 Braking of a tank vehicle 253
 5.6.7 Free decay of a ship cross-section in roll 253

6 VISCOUS WAVE LOADS AND DAMPING 254

6.1 Introduction 254

6.2 Boundary-layer flow 254
 6.2.1 Oscillatory nonseparated laminar flow 255
 6.2.2 Oscillatory nonseparated laminar flow past a circular cylinder 257
 6.2.3 Turbulent nonseparated boundary-layer flow 258
 6.2.3.1 Turbulent energy dissipation 260
 6.2.3.2 Oscillatory nonseparated flow past a circular cylinder 261

6.3 Damping of sloshing in a rectangular tank 262
 6.3.1 Damping due to boundary-layer flow (Keulegan’s theory) 262
 6.3.2 Incorporation of boundary-layer damping in a potential flow model 264
 6.3.3 Bulk damping 265

6.4 Morison’s equation 266
 6.4.1 Morison’s equation in a tank-fixed coordinate system 267
 6.4.2 Generalizations of Morison’s equation 269
 6.4.3 Mass and drag coefficients (C_M and C_D) 270

6.5 Viscous damping due to baffles 274
 6.5.1 Baffle mounted vertically on the tank bottom 275
 6.5.2 Baffles mounted horizontally on a tank wall 278
6.6 Forced resonant sloshing in a two-dimensional rectangular tank 280
6.7 Tuned liquid damper (TLD) 280
6.7.1 TLD with vertical poles 282
6.7.2 TLD with vertical plate 283
6.7.3 TLD with wire-mesh screen 283
6.7.4 Scaling of model tests of a TLD 286
6.7.5 Forced longitudinal oscillations of a TLD 286
6.8 Effect of swash bulkheads and screens with high solidity ratio 289
6.9 Vortex-induced vibration (VIV) 294
6.10 Summary 296
6.11 Exercises 297
6.11.1 Damping ratios in a rectangular tank 297
6.11.2 Morison’s equation 297
6.11.3 Scaling of TLD with vertical poles 298
6.11.4 Effect of unsteady laminar boundary-layer flow on potential flow 298
6.11.5 Reduction of natural sloshing frequency due to wire-mesh screen 298

7 MULTIMODAL METHOD 299
7.1 Introduction 299
7.2 Nonlinear modal equations for sloshing 300
7.2.1 Modal representation of the free surface and velocity potential 300
7.2.2 Modal system based on the Bateman–Luke formulation 301
7.2.3 Advantages and limitations of the nonlinear modal method 303
7.3 Modal technique for hydrodynamic forces and moments 304
7.3.1 Hydrodynamic force 305
7.3.1.1 General case 305
7.3.1.2 Completely filled closed tank 306
7.3.2 Moment 306
7.3.2.1 Hydrodynamic moment as a function of the angular momentum 306
7.3.2.2 Potential flow 307
7.3.2.3 Completely filled closed tank 307
7.4 Limitations of the modal theory and Lukovsky’s formulas due to damping 307
7.5 Summary 308
7.6 Exercises 309
7.6.1 Modal equations for the beam problem 309
7.6.2 Linear modal equations for sloshing 309
8 NONLINEAR ASYMPTOTIC THEORIES AND EXPERIMENTS FOR A TWO-DIMENSIONAL RECTANGULAR TANK 310

8.1 Introduction 310

8.2 Steady-state resonant solutions and their stability for a Duffing-like mechanical system 315

8.2.1 Nonlinear spring-mass system, resonant solution, and its stability 315

8.2.1.1 Steady-state solution 315

8.2.1.2 Stability 317

8.2.1.3 Damping 319

8.2.2 Steady-state resonant sloshing due to horizontal excitations 319

8.3 Single-dominant asymptotic nonlinear modal theory 323

8.3.1 Asymptotic modal system 323

8.3.1.1 Steady-state resonant waves: frequency-domain solution 325

8.3.1.2 Time-domain solution and comparisons with experiments 327

8.3.2 Nonimpulsive hydrodynamic loads 337

8.3.2.1 Hydrodynamic pressure 337

8.3.2.2 Hydrodynamic force 338

8.3.2.3 Hydrodynamic moment relative to origin O 339

8.3.2.4 Nonimpulsive hydrodynamic loads on internal structures 339

8.3.3 Coupled ship motion and sloshing 340

8.3.4 Applicability: effect of higher modes and secondary resonance 341

8.4 Adaptive asymptotic modal system for finite liquid depth 343

8.4.1 Infinite-dimensional modal system 343

8.4.2 Hydrodynamic force and moment 345

8.4.3 Particular finite-dimensional modal systems 345

8.5 Critical depth 347

8.6 Asymptotic modal theory of Boussinesq-type for lower-intermediate and shallow-liquid depths 352

8.6.1 Intermodal ordering 352

8.6.2 Boussinesq-type multimodal system for intermediate and shallow depths 353

8.6.3 Damping 355

8.7 Intermediate liquid depth 355

8.8 Shallow liquid depth 357

8.8.1 Use of the Boussinesq-type multimodal method for intermediate and shallow depths 357

8.8.1.1 Transients 357

8.8.1.2 Steady-state regimes 358

8.8.2 Steady-state hydraulic jumps 361
8.9 Wave loads on interior structures in shallow liquid depth
8.10 Mathieu instability for vertical tank excitation
8.11 Summary
8.11.1 Nonlinear multimodal method
8.11.2 Subharmonics
8.11.3 Damping
8.11.4 Hydraulic jumps
8.11.5 Hydrodynamic loads on interior structures
8.12 Exercises
8.12.1 Moiseev’s asymptotic solution for a rectangular tank with infinite depth
8.12.2 Mean steady-state hydrodynamic loads
8.12.3 Simulation by multimodal method
8.12.4 Force on a vertical circular cylinder for shallow depth
8.12.5 Mathieu-type instability

9 NONLINEAR ASYMPTOTIC THEORIES AND EXPERIMENTS FOR THREE-DIMENSIONAL SLOSHING

9.1 Introduction
9.1.1 Steady-state resonant wave regimes and hydrodynamic instability
9.1.1.1 Theoretical treatment by the two lowest natural modes
9.1.1.2 Experimental observations and measurements for a nearly square-base tank
9.1.2 Bifurcation and stability
9.2 Rectangular-base tank with a finite liquid depth
9.2.1 Statement and generalization of adaptive modal system (8.95)
9.2.2 Moiseev-based modal system for a nearly square-base tank
9.2.3 Steady-state resonance solutions for a nearly square-base tank
9.2.4 Classification of steady-state regimes for a square-base tank with longitudinal and diagonal excitations
9.2.4.1 Longitudinal excitation
9.2.4.2 Diagonal excitation
9.2.5 Longitudinal excitation of a nearly square-base tank
9.2.6 Amplification of higher modes and adaptive modal modeling for transients and swirling
9.2.6.1 Adaptive modal modeling and its accuracy
9.2.6.2 Transient amplitudes
9.2.6.3 Response for diagonal excitations
9.2.6.4 Response for longitudinal excitations
9.3 Vertical circular cylinder
9.3.1 Experiments
9.3.2 Modal equations 422
9.3.3 Steady-state solutions 424
9.4 Spherical tank 426
9.4.1 Wave regimes 428
9.4.2 Tower forces 430
9.5 Summary 432
9.5.1 Square-base tank 432
9.5.2 Nearly square-base tanks 433
9.5.3 Circular base 433
9.5.4 Spherical tank 433
9.6 Exercises 434
9.6.1 Multimodal methods for square- and circular-base tanks 434
9.6.2 Spherical pendulum, planar, and rotary motions 434
9.6.3 Angular Stokes drift for swirling 435
9.6.4 Three-dimensional shallow-liquid equations in a body-fixed accelerated coordinate system 436
9.6.5 Wave loads on a spherical tank with a tower 437

10 COMPUTATIONAL FLUID DYNAMICS 439
10.1 Introduction 439
10.2 Boundary element methods 444
10.2.1 Free-surface conditions 445
10.2.2 Generation of vorticity 447
10.2.3 Example: numerical discretization 447
10.2.4 Linear frequency-domain solutions 449
10.3 Finite difference method 450
10.3.1 Preliminaries 451
10.3.2 Governing equations 451
10.3.3 Interface capturing 452
10.3.3.1 Level-set technique 453
10.3.4 Introduction to numerical solution procedures 454
10.3.5 Time-stepping procedures 455
10.3.6 Spatial discretizations 456
10.3.7 Discretization of the convective and viscous terms 456
10.3.8 Discretization of the Poisson equation for pressure 457
10.3.9 Treatment of immersed boundaries 458
10.3.10 Constrained interpolation profile method 459
10.4 Finite volume method 460
10.4.1 Introduction 460
10.4.2 FVM applied to linear sloshing with potential flow 462
10.4.2.1 Example 464
10.5 Finite element method 465
10.5.1 Introduction 465
10.5.2 A model problem 465
10.5.2.1 Numerical example 466
10.5.3 One-dimensional acoustic resonance 466
10.5.4 FEM applied to linear sloshing with potential flow 468
 10.5.4.1 Matrix system 470
 10.5.4.2 Example 472
10.6 Smoothed particle hydrodynamics method 472
10.7 Summary 477
10.8 Exercises 478
 10.8.1 One-dimensional acoustic resonance 478
 10.8.2 BEM applied to steady flow past a cylinder in infinite fluid 479
 10.8.3 BEM applied to linear sloshing with potential flow and viscous damping 480
 10.8.4 Application of FEM to the Navier–Stokes equations 480
 10.8.5 SPH method 480

11 SLAMMING 481

 11.1 Introduction 481
 11.2 Scaling laws for model testing 484
 11.3 Incompressible liquid impact on rigid tank roof without gas cavities 488
 11.3.1 Wagner model 489
 11.3.1.1 Prediction of wetted surface 491
 11.3.1.2 Spray root solution 492
 11.3.2 Damping of sloshing due to tank roof impact 494
 11.3.3 Three-dimensional liquid impact 496
 11.4 Impact of steep waves against a vertical wall 497
 11.4.1 Wagner-type model 500
 11.4.2 Pressure-impulse theory 502
 11.5 Tank roof impact at high filling ratios 503
 11.6 Slamming with gas pocket 506
 11.6.1 Natural frequency for a gas cavity 509
 11.6.1.1 Simplified analysis 511
 11.6.2 Damping of gas cavity oscillations 511
 11.6.3 Forced oscillations of a gas cavity 513
 11.6.3.1 Prediction of the wetted surface 515
 11.6.3.2 Case study 515
 11.6.4 Nonlinear gas cavity analysis 516
 11.6.5 Scaling 516
 11.7 Cavitation and boiling 522
 11.8 Acoustic liquid effects 522
 11.8.1 Two-dimensional liquid entry of body with horizontal bottom 524
 11.8.2 Liquid entry of parabolic contour 526
 11.8.3 Hydraulic jump impact 526
 11.8.4 Thin-layer approximation of liquid–gas mixture 527
 11.9 Hydroelastic slamming 528
 11.9.1 Experimental study 532
 11.9.2 Theoretical hydroelastic beam model 533
11.9.3 Comparisons between theory and experiments 537
11.9.4 Parameter study for full-scale tank 538
11.9.5 Model test scaling of hydroelasticity 544
11.9.6 Slamming in membrane tanks 545
11.10 Summary 548
11.11 Exercises 550
 11.11.1 Impact force on a wedge 550
 11.11.2 Prediction of the wetted surface by Wagner’s method 550
 11.11.3 Integrated slamming loads on part of the tank roof 551
 11.11.4 Impact of a liquid wedge 551
 11.11.5 Acoustic impact of a hydraulic jump against a vertical wall 551

APPENDIX: Integral Theorems 553

Bibliography 555

Index 571