
Cambridge University Press & Assessment
978-0-521-88103-6 — Open Source: Technology and Policy
Fadi P. Deek , James A. M. McHugh
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1

Introduction

The open source movement is a worldwide attempt to promote an open style

of software development more aligned with the accepted intellectual style of

science than the proprietary modes of invention that have been characteristic

of modern business. The idea – or vision – is to keep the scientific advances

created by software development openly available for everyone to understand

and improve upon. Perhaps even more so than in the conventional scientific

paradigm, the very process of creation in open source is highly transparent

throughout. Its products and processes can be continuously, almost instan-

taneously scrutinized over the Internet, even retrospectively. Its peer review

process is even more open than that of traditional science. But most of all: its

discoveries are not kept secret and it lets anyone, anywhere, anytime free to

build on its discoveries and creations.

Open source is transparent. The source code itself is viewable and available

to study and comprehend. The code can be changed and then redistributed to

share the changes and improvements. It can be executed for any purpose without

discrimination. Its process of development is largely open, with the evolution

of free and open systems typically preserved in repositories accessible via the

Internet, including archives of debates on the design and implementation of the

systems and the opinions of observers about proposed changes. Open source

differs vastly from proprietary code where all these transparencies are generally

lacking. Proprietary code is developed largely in private, albeit its requirements

are developed with its prospective constituencies. Its source code is generally

not disclosed and is typically distributed under the shield of binary executables.

Its use is controlled by proprietary software licensing restrictions. The right to

copy the program executables is restricted and the user is generally forbidden

from attempting to modify and certainly from redistributing the code or possible

improvements. In most respects, the two modalities of program development

1

www.cambridge.org/9780521881036
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88103-6 — Open Source: Technology and Policy
Fadi P. Deek , James A. M. McHugh
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2 1 Introduction

are polar opposites, though this is not to say there are not many areas where the

commercial and open communities have cooperated.

Throughout this book, we will typically use the term open source in a

generic sense, encompassing free software as referred to by the Free Soft-

ware Foundation (FSF) and open source software as referred to by the Open

Source Initiative (OSI) organization. The alternative composite terms FLOSS

(for Free/Libre/Open Source Software) or FOSS are often used in a European

context. The two organizations, the FSF and the OSI, represent the two streams

of the free or open source movement. Free software is an intentionally evocative

term, a rallying cry as it were, used by the FSF and intended to resonate with

the values of freedom: user and developer freedom. The FSF’s General Public

License (GPL) is its gold standard for free licenses. It has the distinctive char-

acteristic of preventing software licensed under it from being redistributed in

a closed, proprietary distribution. Its motto might be considered as “share and

share alike.” However, the FSF also recognizes many other software licenses as

free as long as they let the user run a program for any purpose, access its source

code, modify the code if desired, and freely redistribute the modifications. The

OSI on the other hand defines ten criteria for calling a license open source. Like

the FSF’s conditions for free software (though not the GPL), the OSI criteria

do not require the software or modifications to be freely redistributed, allow-

ing licenses that let changes be distributed in proprietary distributions. While

the GPL is the free license preferred by the FSF, licenses like the (new) BSD

or MIT license are more characteristic of the OSI approach, though the GPL

is also an OSI-certified license. Much of the time we will not be concerned

about the differences between the various kinds of free or open source licenses,

though these differences can be very important and have major implications for

users and developers (see such as Rosen, 2005). When necessary, we will make

appropriate distinctions, typically referring to whether certain free software is

GPL-licensed or is under a specific OSI-certified license. We will elaborate on

software licenses in the chapter on legal issues. For convenience we will also

refer at times to “open software” and “open development” in the same way.

We will begin our exploration by considering the rationale for open source,

highlighting some of its putative or demonstrable characteristics, its advantages,

and opportunities it provides. We will then overview what we will cover in the

rest of the book.

1.1 Why Open Source

Before we embark on our detailed examination of open source, we will briefly

explore some markers for comparing open and proprietary products. A proper

www.cambridge.org/9780521881036
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88103-6 — Open Source: Technology and Policy
Fadi P. Deek , James A. M. McHugh
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.1 Why Open Source 3

comparison of their relative merits would be a massively complex, possibly

infeasible undertaking. There are many perspectives that would have to be

considered, as well as an immense range of products, operating in diverse

settings, under different constraints, and with varied missions. Unequivocal data

from unbiased sources would have to be obtained for an objective comparative

evaluation, but this is hard to come by. Even for a single pair of open and

proprietary products it is often difficult to come to clear conclusions about

relative merits, except for the case of obviously dominant systems like Web

servers (Apache). What this section modestly attempts is to set forth some of

the parameters or metrics that can help structure a comparative analysis. The

issues introduced here are elaborated on throughout the book.

Open source systems and applications often appear to offer significant ben-

efits vis-à-vis proprietary systems. Consider some of the metrics they compete

on. First of all, open source products are usually free of direct cost. They are

often superior in terms of portability. You can modify the code because you

can see it and it’s allowed by the licensing requirements, though there are

different licensing venues. The products may arguably be both more secure

and more reliable than systems developed in a proprietary environment. Open

products also often offer hardware advantages, with frequently leaner platform

requirements. Newer versions can be updated to for free. The development

process also exhibits potential macroeconomic advantages. These include the

innately antimonopolistic character of open source development and its the-

oretically greater efficiency because of its arguable reduction of duplicated

effort. The open source paradigm itself has obvious educational benefits for

students because of the accessibility of open code and the development pro-

cess’ transparent exposure of high-quality software practice. The products and

processes lend themselves in principle to internationalization and localization,

though this is apparently not always well-achieved in practice. There are other

metrics that can be considered as well, including issues of quality of vendor

support, documentation, development efficiency, and so on. We will highlight

some of these dimensions of comparison. A useful source of information on

these issues is provided by the ongoing review at (Wheeler, 2005), a detailed

discussion which, albeit avowedly sympathetic to the open source movement,

makes an effort to be balanced in its analysis of the relative merits of open and

proprietary software.

1.1.1 Usefulness, Cost, and Convenience

Does the open source model create useful software products in a timely fashion

at a reasonable cost that are easy to learn to use? In terms of utility, consider

that open source has been instrumental in transforming the use of computing

www.cambridge.org/9780521881036
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88103-6 — Open Source: Technology and Policy
Fadi P. Deek , James A. M. McHugh
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

4 1 Introduction

in society. Most of the Internet’s infrastructure and the vastly successful Linux

operating system are products of open source style development. There are

increasingly appealing open desktop environments like GNOME and KDE.

Furthermore, many of these products like the early Web servers and browsers

as well as Linux were developed quite rapidly and burst on the market. Fire-

fox is a recent example. It is of course hard to beat the direct price of open

source products since they are usually free. The zero purchase cost is especially

attractive when the software product involved has already been commoditized.

Commoditization occurs when one product is pretty much like another or at

least good enough for the needs it serves. In such cases, it does not pay to

pay more. An open source program like the Apache Web server does not even

have to be best of breed to attract considerable market share; it just has to be

cheap enough and good enough for the purpose it serves. Open source is also

not only freely available but is free to update with new versions, which are

typically available for free download on the same basis as the original. For

most users, the license restrictions on open products are not a factor, though

they may be relevant to software developers or major users who want to mod-

ify the products. Of course, to be useful, products have to be usable. Here the

situation is evolving. Historically, many open source products have been in the

category of Internet infrastructure tools or software used by system administra-

tors. For such system applications, the canons of usability are less demanding

because the users are software experts. For ordinary users, we observe that

at least in the past interface, usability has not been recognized as a strong

suit of open source. Open source advocate Eric Raymond observed that the

design of desktops and applications is a problem of “ergonomic design and

interface psychology, and hackers have historically been poor at it” (Raymond,

1999). Ease of installation is one aspect of open applications where usability

is being addressed such as for the vendor-provided GNU/Linux distributions

or, at a much simpler level, installers for software like the bundled AMP pack-

age (Apache, MySQL, Perl, PHP). (We use GNU/Linux here to refer to the

combination of GNU utilities and the Linux kernel, though the briefer desig-

nation Linux is more common.) Another element in usability is user support.

There is for-charge vendor-based support for many open source products just

as is for proprietary products. Arguments have been made on both sides about

which is better. Major proprietary software developers may have more financial

resources to expend on “documentation, customer support and product train-

ing than do open source providers” (Hahn, 2002), but open source products

by definition can have very wide networks of volunteer support. Furthermore,

since the packages are not proprietary, the user is not locked-in to a particular

vendor.

www.cambridge.org/9780521881036
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88103-6 — Open Source: Technology and Policy
Fadi P. Deek , James A. M. McHugh
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.1 Why Open Source 5

1.1.2 Performance Characteristics

Does open source provide products that are fast, secure, reliable, and portable?

The overview in Wheeler (2005) modestly states that GNU/Linux is often either

superior or at least competitive in performance with Windows on the same

hardware environment. However, the same review emphasizes the sensitiv-

ity of performance to circumstances. Although proprietary developers benefit

from financial resources that enable them to produce high quality software, the

transparent character of open source is uniquely suitable to the requirements of

security and reliability.

In terms of security, open source code is widely considered to be highly

effective for mission-critical functions, precisely because its code can be pub-

licly scrutinized for security defects. It allows users the opportunity to security-

enhance their own systems, possibly with the help of an open source consultant,

rather than being locked into a system purchased from a proprietary vendor

(Cowan, 2003). In contrast, for example, Hoepman and Jacobs (2007) describe

how the exposure of the code for a proprietary voting system revealed serious

security flaws. Open accessibility is also necessary for government security

agencies that have to audit software before using it to ensure its operation is

transparent (Stoltz, 1999). Though security agencies can make special arrange-

ments with proprietary distributors to gain access to proprietary code, this access

is automatically available for open source. Open source products also have a

uniquely broad peer review process that lends itself to detection of defects during

development, increasing reliability. Not only are the changes to software pro-

posed by developers scrutinized by project maintainers, but also any bystander

observing the development can comment on defects, propose implementation

suggestions, and critique the work of contributors. One of the most well-known

aphorisms of the open source movement “Given enough eyeballs, all bugs are

shallow” (Raymond, 1998) identifies an advantage that may translate into more

reliable software. In open source “All the world’s a stage” with open source

developers very public actors on that stage. The internal exposure and review

of open source occurs not just when an application is being developed and

improvements are reviewed by project developers and maintainers, but for the

entire life cycle of the product because its code is always open. These theoretical

benefits of open source appear to be verified by data. For example, a significant

empirical study described in Reasoning Inc. (2003) indicates that free MySQL

had six times fewer defects than comparable proprietary databases (Tong, 2004).

A legendary acknowledgment of Linux reliability was presented in the famous

Microsoft Halloween documents (Valloppillil, 1998) which described Linux as

having a failure rate two to five times lower than commercial Unix systems.

www.cambridge.org/9780521881036
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88103-6 — Open Source: Technology and Policy
Fadi P. Deek , James A. M. McHugh
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 1 Introduction

The open source Linux platform is the most widely ported operating sys-

tem. It is dominant on servers, workstations, and supercomputers and is widely

used in embedded systems like digital appliances. In fact, its portability is

directly related to the design decisions that enabled the distributed open style

of development under which Linux was built in the first place. Its software

organization allowed architect Linus Torvalds to manage core kernel develop-

ment while other distributed programmers could work independently on so-

called kernel modules (Torvalds, 1999). This structure helped keep hardware-

specific code like device drivers out of the core kernel, keeping the core highly

portable (Torvalds, 1999). Another key reason why Linux is portable is because

the GNU GCC compiler itself is ported to most “major chip architectures”

(Torvalds, 1999, p. 107). Ironically, it is the open source Wine software that

lets proprietary Windows applications portably run on Linux. Of course, there

are open source clones of Windows products like MS Office that work on

Windows platforms. A secondary consideration related to portability is soft-

ware localization and the related notion of internationalization. Localization

refers to the ability to represent a system using a native language. This can

involve the language a system interface is expressed in, character-sets or even

syntactical effects like tokenization (since different human languages are bro-

ken up differently, which can impact the identification of search tokens). It

may be nontrivial for a proprietary package that is likely to have been devel-

oped by a foreign corporation to be localized, since the corporate developer

may only be interested in major language groupings. It is at least more nat-

ural for open software to be localized because the source code is exposed

and there may be local open developers interested in the adaptation. Interna-

tionalization is a different concept where products are designed in the first

place so that they can be readily adapted, making subsequent localization

easier. Internationalization should be more likely to be on the radar screen

in an open source framework because the development model itself is inter-

national and predisposed to be alert to such concerns. However, Feller and

Fitzgerald (2002) who are sympathetic to free software critique it with respect

to internationalization and localization, contrasting what appears to be, for

example, the superior acceptability of the Microsoft IIS server versus Apache

on these metrics. They suggest the root of the problem is that these char-

acteristics are harder to “achieve if they are not factored into the original

design” (p. 113). Generally, open source seems to have an advantage in sup-

porting the customization of applications over proprietary code, because its

code is accessible and modification of the code is allowed by the software

license.

www.cambridge.org/9780521881036
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88103-6 — Open Source: Technology and Policy
Fadi P. Deek , James A. M. McHugh
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.1 Why Open Source 7

1.1.3 Forward-looking Effects

Is open source innovative or imitative? The answer is a little of both. On the

one hand, open source products are often developed by imitating the function-

ality of existing proprietary products, “following the taillights” as the saying

goes. This is what the GNOME project does for desktop environments, just like

Apple and Microsoft took off on the graphical environments developed at Xerox

PARC in the early 1980s. However, open development has also been incredibly

innovative in developing products for the Internet environment, from infras-

tructure software like code implementing the TCP/IP protocols, the Apache

Web server, the early browsers at CERN and NCSA that led to the explosion

of commercial interest in the Internet to hugely successful peer-to-peer file

distribution software like BitTorrent. Much of the innovation in computing has

traditionally emerged from academic and governmental research organizations.

The open source model provides a singularly appropriate outlet for deploying

these innovations: in a certain sense it keeps these works public.

In contrast, Microsoft, the preeminent proprietary developer, is claimed by

many in the open community to have a limited record of innovation. A typical

contention is illustrated in the claim by the FSF’s Moglen that “Microsoft’s

strategy as a business was to find innovative ideas elsewhere in the software

marketplace, buy them up and either suppress them or incorporate them in its

proprietary product” (Moglen, 1999). Certainly a number of Microsoft’s sig-

nature products have been reimplementations of existing software (Wheeler,

2006) or acquisitions which were possibly subsequently improved on. These

include QDOS (later MS-DOS) from Seattle Computer in 1980 (Conner, 1998),

FrontPage from Vermeer in 1996 (Microsoft Press Release, 1996), PowerPoint

from Forethought in 1987 (Parker, 2001), and Cooper’s Tripod subsequently

developed at Microsoft into Visual Basic in 1988 (Cooper, 1996). In a sense,

these small independent companies recognized opportunities that Microsoft

subsequently appropriated. For other examples, see McMillan (2006). On the

other hand, other analysts counter that a scenario where free software domi-

nated development could seriously undermine innovation. Thus Zittrain (2004)

critically observes that “no one can readily monopolize derivatives to popular

free software,” which is a precondition to recouping the investments needed to

improve the original works; see also Carroll (2004).

Comparisons with proprietary accomplishments aside, the track record on

balance suggests that the open source paradigm encourages invention. The avail-

ability of source code lets capable users play with the code, which is a return

to a venerable practice in the history of invention: tinkering (Wheeler, 2005).

www.cambridge.org/9780521881036
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88103-6 — Open Source: Technology and Policy
Fadi P. Deek , James A. M. McHugh
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8 1 Introduction

The public nature of Internet-based open development provides computer sci-

ence students everywhere with an ever-available set of world-class examples of

software practice. The communities around open source projects offer unique

environments for learning. Indeed, the opportunity to learn is one of the most

frequently cited motivations for participating in such development. The model

demonstrably embodies a participatory worldwide engine of invention.

1.1.4 Economic Impact

Free and open software is an important and established feature of the commer-

cial development landscape. Granted, no open source company has evolved to

anything like the economic status of proprietary powerhouses like Microsoft;

nonetheless, the use of open source, especially as supporting infrastructure

for proprietary products, is a widely used and essential element of the busi-

ness strategies of major companies from IBM to Apple and Oracle. Software

companies traditionally rely at least partly on closed, proprietary code to main-

tain their market dominance. Open source, on the other hand, tends to under-

mine monopoly, the likelihood of monopolistic dominance being reduced to the

extent that major software infrastructure systems and applications are open. The

largest proprietary software distributors are U.S. corporations – a factor that is

increasingly encouraging counterbalancing nationalistic responses abroad. For

example, foreign governments are more than ever disposed to encourage a pol-

icy preference for open source platforms like Linux. The platforms’ openness

reduces their dependency on proprietary, foreign-produced code, helps nurture

the local pool of software expertise, and prevents lock-in to proprietary distrib-

utors and a largely English-only mode where local languages may not even be

supported. Software is a core component of governmental operation and infras-

tructure, so dependency on extranational entities is perceived as a security risk

and a cession of control to foreign agency.

At the macroeconomic level, open source development arguably reduces

duplication of effort. Open code is available to all and acts as a public reposi-

tory of software solutions to a broad range of problems, as well as best prac-

tices in programming. It has been estimated that 75% of code is written for

specific organizational tasks and not shared or publicly distributed for reuse

(Stoltz, 1999). The open availability of such source code throughout the econ-

omy would reduce the need to develop applications from scratch. Just as soft-

ware libraries and objects are software engineering paradigms for facilitating

software reuse, at a much grander scale the open source movement proposes to

preserve entire ecosystems of software, open for reuse, extension, and modifi-

cation. It has traditionally been perceived that “open source software is often

www.cambridge.org/9780521881036
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88103-6 — Open Source: Technology and Policy
Fadi P. Deek , James A. M. McHugh
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.1 Why Open Source 9

geared toward information technology specialists, to whom the availability of

source code can be a real asset, (while) proprietary software is often aimed

at less sophisticated users” (Hahn, 2002). Although this observation could be

refined, generally a major appeal of open source has been that its code availabil-

ity makes it easier for firms to customize the software for internal applications.

Such in-house customization is completely compatible with all open source

licenses and is extremely significant since most software is actually developed

or custom-designed rather than packaged (Beesen, 2002). As a process, open

source can also reduce the development and/or maintenance risks associated

with software development even when done by private, for-profit companies.

For example, consider code that has been developed internally for a company. It

may often have little or no external sales value to the organization, even though

it provides a useful internal service. Stallman (1999) recounts the example of a

distributed print-spooler written for an in-house corporate network. There was

a good chance the life cycle of the code would be longer than the longevity

of its original programmers. In this case, distributing the code as open source

created the possibility of establishing an open community of interest in the

software. This is useful to the company that owns the code since it reduces

the risk of maintenance complications when the original developers depart.

With any luck, it may connect the software to a persistent pool of experts who

become familiar with the software and who can keep it up to date for their

own purposes. More generally, open development can utilize developers from

multiple organizations in order to spread out development risks and costs, split-

ting the cost among the participants. In fact, while much open source code

has traditionally been developed with a strong volunteer pool, there has also

been extensive industrial support for open development. Linux development is

a prime example. Developed initially under the leadership of Linus Torvalds

using a purely volunteer model, most current Linux code contributions are done

by professional developers who are employees of for-profit corporations.

References

Beesen, J. (2002). What Good is Free Software? In: Government Policy toward Open

Source Software, R.W. Hahn (editor). Brookings Institution Press, Washington,

DC.

Carroll, J. (2004). Open Source vs. Proprietary: Both Have Advantages. ZDNet

Australia. http://opinion.zdnet.co.uk/comment/0,1000002138,39155570,00.htm.

Accessed June 17, 2007.

Conner, D. (1998). Father of DOS Still Having Fun at Microsoft, Microsoft MicroNews,

April 10. http://www.patersontech.com/Dos/Micronews/paterson04 10 98.htm.

Accessed December 20, 2006.

www.cambridge.org/9780521881036
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-88103-6 — Open Source: Technology and Policy
Fadi P. Deek , James A. M. McHugh
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

10 1 Introduction

Cooper, A. (1996). Why I Am Called “the Father of Visual Basic,” Cooper Interac-

tion design. http://www.cooper.com/alan/father of vb.html. Accessed December

20, 2006.

Cowan, C. (2003). Software security for open-source systems. IEEE Security and Pri-

vacy, 1, 38–45.

Feller, J. and Fitzgerald, B. (2002). Understanding Open Source Software Development.

Addison-Wesley, Pearson Education Ltd., London.

Hahn, R. (2002). Government Policy toward Open Source Software: An Overview. In:

Government Policy toward Open Source Software, R.W. Hahn (editor). Brookings

Institution Press, Washington, DC.

Hoepman J.H. and Jacobs, B. (2007). Increased Security through Open Source, Com-

munications of the ACM, 50(1), 79–83.

McMillan, A. (2006). Microsoft “Innovation.” http://www.mcmillan.cx/innovation.html.

Accessed December 20, 2006.

Microsoft Press Release. (1996). Microsoft Acquires Vermeer Technologies Inc., Jan-

uary 16th. http://www.microsoft.com/presspass/press/1996/jan96/vrmeerpr.mspx.

Accessed December 20, 2006.

Moglen, E. (1999). Anarchism Triumphant: Free Software and the Death of Copyright.

First Monday, 4(8). http://www.firstmonday.org/issues/issue4 8/moglen/index.

html. Accessed January 5, 2007.

Parker, I. (2001). Absolute Powerpoint – Can a Software Package Edit Our Thoughts.

New Yorker, May 28. http://www.physics.ohio-state.edu/w̃ilkins/group/powerpt.

html. Accessed December 20, 2006.

Raymond, E. (1999). The Revenge of the Hackers. In: Open Sources: Voices from the

Open Source Revolution, M. Stone, S. Ockman, and C. DiBona (editors). O’Reilly

Media, Sebastopol, CA, 207–219.

Raymond, E.S. (1998). The Cathedral and the Bazaar. First Monday, 3(3). http://www.

firstmonday.dk/issues/issue3 3/raymond/index.html. Accessed December 3, 2006.

Reasoning Inc. (2003). How Open Source and Commercial Software Compare: MySQL

white paper MySQL 4.0.16. http://www.reasoning.com/downloads.html. Accessed

November 29, 2006.

Rosen, L. (2005). Open Source Licensing: Software Freedom and Intellectual Property

Law, Prentice Hall, Upper Saddle River, NJ.

Stallman, R. (1999). The Magic Cauldron. http://www.catb.org/esr/writings/magic-

cauldron/. Accessed November 29, 2006.

Stoltz, M. (1999). The Case for Government Promotion of Open Source Soft-

ware. NetAction White Paper. http://www.netaction.org/opensrc/oss-report.html.

Accessed November 29, 2006.

Tong, T. (2004). Free/Open Source Software in Education. United Nations Development

Programme’s Asia-Pacific Information Programme, Malaysia.

Torvalds, L. (1999). The Linux Edge. In: Open Sources: Voices from the Open Source

Revolution, M. Stone, S. Ockman, and C. DiBona (editors). O’Reilly Media,

Sebastopol, CA, 101–112.

Valloppillil, V. (1998). Open Source Software: A (New?) Development Methodol-

ogy. http://www.opensource.org/halloween/. The Halloween Documents. Accessed

November 29, 2006.

www.cambridge.org/9780521881036
www.cambridge.org

