
Cambridge University Press & Assessment
978-0-521-88099-2 — Arithmetic Optimization Techniques for Hardware and Software Design
Ryan Kastner , Anup Hosangadi , Farzan Fallah
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1 Introduction

1.1 Overview

Arithmetic is one of the old topics in computing. It dates back to the many early

civilizations that used the abacus to perform arithmetic operations. The seventeenth

and eighteenth centuries brought many advances with the invention of mechanical

counting machines like the slide rule, Schickard’s Calculating Clock, Leibniz’s

Stepped Reckoner, the Pascaline, and Babbage’s Difference and Analytical Engines.

The vacuum tube computers of the early twentieth century were the first program-

mable, digital, electronic, computing devices. The introduction of the integrated

circuit in the 1950s heralded the present era where the complexity of computing

resources is growing exponentially. Today’s computers perform extremely advanced

operations such as wireless communication and audio, image, and video processing,

and are capable of performing over 1015 operations per second.

Owing to the fact that computer arithmetic is a well-studied field, it should

come as no surprise that there are many books on the various subtopics of

computer arithmetic. This book provides a focused view on the optimization of

polynomial functions and linear systems. The book discusses optimizations that

are applicable to both software and hardware design flows; e.g., it describes the

best way to implement arithmetic operations when your target computational

device is a digital signal processor (DSP), a field programmable gate array

(FPGA) or an application specific integrated circuit (ASIC).

Polynomials are among the most important functions in mathematics and are

used in algebraic number theory, geometry, and applied analysis. Polynomial

functions appear in applications ranging from basic chemistry and physics to

economics, and are used in calculus and numerical analysis to approximate other

functions. Furthermore, they are used to construct polynomial rings, a powerful

concept in algebra and algebraic geometry.

One of the most important computational uses of polynomials is function

evaluation, which lies at the core of many computationally intensive applications.

Elementary functions such as sin, cos, tan, sin�1, cos�1, sinh, cosh, tanh, exponen-

tiation and logarithm are often approximated using a polynomial function.

Producing an approximation of a function with the required accuracy in a rather

large intervalmay require apolynomialof a largedegree.For instance, approximating

the function ln(1 þ x) in the range [�1=2, 1=2] with an error less than 10–8

www.cambridge.org/9780521880992
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-88099-2 — Arithmetic Optimization Techniques for Hardware and Software Design
Ryan Kastner , Anup Hosangadi , Farzan Fallah
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

requires a polynomial of degree 12. This requires a significant amount of

computation, which without careful optimization results in unacceptable runtime.

Linear systems also play an important role in mathematics and are prevalent in a

wide range of applications. A linear system is a mathematical model based on

linear operators. Linear systems typically exhibit features and properties that are

much simpler and easier to understand and manipulate than the more general,

nonlinear case. They are used for mathematical modeling or abstraction in

automatic control theory, signal processing, and telecommunications.

Perhaps the foremost computational use of linear systems is in signal process-

ing. A typical signal processing algorithm takes as input a signal or a set of signals

and outputs a transformation of them that highlights specific aspects of the data

set. For example, the Fourier transform takes as the input the value of a signal

over time and returns the corresponding signal transformed into the frequency

domain. Such linear transforms are prevalent in almost any form of DSP and

include the aforementioned discrete Fourier transform (DFT), as well as the

discrete cosine transform (DCT), finite impulse response (FIR) filters, and discrete

wavelet transform (DWT).

Polynomials and linear systems lie at the heart of many of the computer

intensive tasks in real-time systems. For example, radio frequency communication

transceivers, image and video compression, and speech recognition engines all

have tight constraints on the time period within which they must compute a

function; the processing of each input, whether it be an electromagnetic sample

from the antenna, a pixel from a camera or an acoustic sample from a micro-

phone, must be performed within a fixed amount of time in order to keep up

with the application’s demand. Therefore, the processing time directly limits the

real-time behavior of the system.

The bulk of the computation in these applications is performed by mathemat-

ical functions. These functions include many of the aforementioned elementary

functions (sin, cos, tan, exponentiation, and logarithm) as well as linear trans-

forms (DFT, DCT, DWT, and FIR filters). Application developers often rely

on hand-tuned hardware and software libraries to implement these functions.

As these are typically a bottleneck in the overall execution of the application,

the sooner they finish, the faster the applications run. However, small changes

in the parameters of the function (e.g., moving from 16-bit to 32-bit data,

changing the coefficients of a filter, adding more precision to the linear transform)

require significant redesign of the library elements, perhaps even starting from

scratch if the library does not support the exact specification that is required.

Further, as the underlying computing platform changes, the libraries should

ideally be ported to the new platform with minimal cost and turnaround time.

Finally, designers require the ability to tradeoff between different performance

metrics including speed, accuracy, and resource usage (i.e., silicon area for hard-

ware implementation and the number of functional units and the amount of

memory for software implementations). Therefore, methods to ease the design

space exploration over these points are invaluable.

2 Introduction

www.cambridge.org/9780521880992
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-88099-2 — Arithmetic Optimization Techniques for Hardware and Software Design
Ryan Kastner , Anup Hosangadi , Farzan Fallah
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Many of the applications that we consider lie in the realm of embedded

computing. These are nontraditional computing systems where the processor is a

component of a larger system. Unlike desktops, laptops, and servers, embedded

systems are not thought of as primarily computing devices. Example applications

include anti-lock braking systems and navigation controls in automobiles, theMars

Rover and robotic surgical systems (along with many other robotics applications),

smart phones, MP3 players, televisions, digital video recorders and cameras;

these are just some of the devices that can be classified as embedded systems.

There has been an explosive growth in the market for embedded systems

primarily in the consumer electronics segment. The increasing trend towards high

performance and portable systems has forced researchers to come up with innova-

tive techniques and tools that can achieve these objectives and meet the strict time

to market requirements. Most of these consumer applications, such as smart

phones, digital cameras, portable music and video players, perform some kind

of continuous numerical processing; they constantly process input data and

perform extensive calculations. In many cases, these calculations determine the

performance and size of the system implemented. Furthermore, since these calcu-

lations are energy intensive, they are the major factors determining the battery life

of the portable applications.

Embedded system designers face a plethora of decisions. They must attempt to

delicately balance a number of often conflicting variables, which include cost,

performance, energy consumption, size, and time to market. They are faced with

many questions; one of the most important is the choice of the computational

device. Microprocessors, microcontrollers, DSPs, FPGAs and ASICs are all

appropriate choices depending on the situation, and each has its benefits

and drawbacks. Some are relatively easy to program (microprocessors, microcon-

trollers, DSPs), while others (ASICs, FPGAs) provide better performance

and energy consumption. The first three choices require a software design flow,

while the last two (ASICs and FPGAs) require hardware design tools. Increas-

ingly, computing devices are “system-on-chip” and consist of several of the

aforementioned computational devices. For example, cell phones contain a mix

of DSPs, microcontrollers, and ASICs – all on the same physical silicon die. This

necessitates a mixed hardware/software design flow, which we discuss in more

detail in the following.

Figure 1.1 illustrates a typical design flow for computationally intensive embed-

ded system applications. The application is described using a specification lan-

guage that expresses the functional requirements in a systematic manner.

Additionally, the designer provides constraints, which include the available

resources, timing requirements, error tolerance, maximum area, power consump-

tion. The application specification is then analyzed and an appropriate algorithm

is selected to implement the desired functionality. For example, signal processing

applications must choose the appropriate transforms. Computer graphics

applications must select the polynomial models for the surfaces, curves, and

textures. An important step is the conversion of floating point representation

31.1 Overview

www.cambridge.org/9780521880992
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-88099-2 — Arithmetic Optimization Techniques for Hardware and Software Design
Ryan Kastner , Anup Hosangadi , Farzan Fallah
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

to fixed point representation. Though floating point representation provides

greater dynamic range and precision than fixed point, it is far more expensive to

compute. Most embedded system applications tolerate a certain degree of inaccur-

acy and use the much simpler fixed point notation to increase throughput and

decrease area, delay, and energy. The conversion of floating point to fixed point

produces some errors [1]. These errors should be carefully analyzed to see if they

reside within tolerable limits [2, 3].

At this point, the application is roughly divided between hardware and soft-

ware. The designer, perhaps with the help of automated tools, determines the

parts of the system specification that should be mapped onto hardware compon-

ents and the parts that should be mapped to software. For real-time applications

with tight timing constraints, the computation intensive kernels are often imple-

mented in hardware, while the parts of the specification with looser timing

constraints are implemented in software. After this decision, the architecture of

the system and the memory hierarchy are decided. The custom hardware por-

tions of the system are then designed by means of a behavioral description of the

algorithm using a hardware description language (HDL). Hardware synthesis

tools transform these hardware descriptions into a register transfer level (RTL)

language description by means of powerful hardware synthesis tools. These

synthesis tools mainly perform scheduling, resource allocation, and binding of

the various operations obtained from an intermediate representation of the

System

specification

Logic

synthesis

Architectural

synthesis

Physical

synthesis

Register transfer level

description

 H
a

rd
w

a
re

 d
e

s
ig

n
 f

lo
w

Algorithmic

optimization

Error

analysis

 Fixed to floating

point conversion

Hardware/Software

partitioning

Computational analysis

Compiler backend:

analysis,

optimization,

code generation

Compiler frontend:

lexical analysis,

syntactic analysis,

semantic checking

Embedded system

S
o

ft
w

a
re

 d
e

s
ig

n
 f

lo
w

Figure 1.1 Embedded system design flow.

4 Introduction

www.cambridge.org/9780521880992
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-88099-2 — Arithmetic Optimization Techniques for Hardware and Software Design
Ryan Kastner , Anup Hosangadi , Farzan Fallah
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

behavior represented in the HDL [4]. In addition the tools perform optimizations

such as redundancy elimination (common subexpression elimination (CSE) and

value numbering) and critical path minimization. The constant multiplications in

the linear systems and polynomials can be decomposed into shifts and additions

and the resulting complexity can be further reduced by eliminating common

subexpressions [5–8]. Furthermore, there are some numeric transformations of

the constant coefficients that can be applied to linear transforms to reduce the

strength of the operations [9, 10]. This book provides an in-depth discussion of

such transforms. The order and priorities of the various optimizations and

transformations are largely application dependent and are the subject of current

research. In most cases, this is done by evaluating a number of transformations

and selecting the one that best meets the constraints [11]. The RTL description is

then synthesized into a gate level netlist, which is subsequently placed and routed

using standard physical design tools.

For the software portion of the design, custom instructions tuned to the

particular application may be added [12–14]. Certain computation intensive

kernels of the application may require platform dependent software in order to

achieve the best performance on the available architecture. This is often done

manually by selecting the relevant functions from optimized software libraries.

For some domains, including signal processing applications, automatic library

generators are available [11]. The software is then compiled using various trans-

formations and optimization techniques [15]. Unfortunately, these compiler

optimizations perform limited transformations for reducing the complexity of

polynomial expressions and linear systems. For some applications, the generated

assembly code is optimized (mostly manually) to improve performance, though it

is not practical for large and complex programs. An assembler and a linker are

then used to generate the executable code.

Opportunities for optimizing polynomial expressions and linear systems exist

for both the hardware and the software implementations. These optimizations

have the potential for huge impact on the performance and power consumption

of the embedded systems. This book presents techniques and algorithms for

performing such optimizations during both the hardware design flow and the

software compilation.

1.2 Salient features of this book

The unique feature of this book is its treatment of the hardware synthesis and

software compilation of arithmetic expressions. It is the first book to discuss

automated optimization techniques for arithmetic expressions. The previous

literature on this topic, e.g., [16] and [17], deals only with the details of implement-

ing arithmetic intensive functions, but stops short of discussing techniques to

optimize them for different target architectures. The book gives a detailed intro-

duction to the kind of arithmetic expressions that occur in real-life applications,

51.2 Salient features of this book

www.cambridge.org/9780521880992
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-88099-2 — Arithmetic Optimization Techniques for Hardware and Software Design
Ryan Kastner , Anup Hosangadi , Farzan Fallah
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

such as signal processing and computer graphics. It shows the reader the import-

ance of optimizing arithmetic expressions to meet performance and resource

constraints and improve the quality of silicon. The book describes in detail the

different techniques for performing hardware and software optimizations. It also

describes how these techniques can be tuned to improve different parameters such

as the performance, power consumption, and area of the synthesized hardware.

Though most of the algorithms described in it are heuristics, the book also shows

how optimal solutions to these problems can be modeled using integer linear

programming (ILP). The usefulness of these techniques is then verified by applying

them on real benchmarks.

In short, this book gives a comprehensive overview of an important problem

in the design and optimization of arithmetic intensive embedded systems.

It describes in detail the state of the art techniques that have been developed to

solve this problem. This book does not go into detail about the mathematics

behind the arithmetic expressions. It assumes that system designers have per-

formed an analysis of the system and have come up with a set of polynomial

equations that describe the functionality of the system, within an acceptable error.

Furthermore, it assumes that the system designer has decided what is the best

architecture (software, ASIC or FPGA or a combination of them) to implement

the arithmetic function. The book does not talk about techniques to verify the

precision of the optimized arithmetic expressions. Techniques such as those dis-

cussed in [2] and [18] can be used to verify if the expressions produce errors within

acceptable limits.

1.3 Organization

� Chapter 2 illustrates the different applications that require arithmetic computa-

tion. It shows how polynomial expressions and linear computations reside in a

number of applications that drive embedded systems and high-performance

computing markets. The chapter discusses how polynomials are employed in

computer graphics applications and describes the use of linear systems in DSP,

cryptography, and address calculation.

� Chapter 3 presents an overview of the software compilation process and shows

opportunities to optimize linear systems and polynomial expressions.

� Chapter 4 provides a high-level description of the hardware synthesis design

flow. It explains the major steps in this design flow including input specification,

algorithm optimization, scheduling, binding, and resource allocation. The chapter

illustrates these concepts with a case study of an FIR filter.

� Chapter 5 gives a brief introduction to the concepts in digital arithmetic.

It explains number representations including fixed and floating point represen-

tations. Also, it presents different architectures to perform two-operand and

multiple-operand addition. These concepts are important in order to gain an

understanding of the optimizations described in Chapters 6 and 7.

6 Introduction

www.cambridge.org/9780521880992
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-88099-2 — Arithmetic Optimization Techniques for Hardware and Software Design
Ryan Kastner , Anup Hosangadi , Farzan Fallah
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

� Chapter 6 presents algebraic optimization techniques for polynomial expres-

sions. It describes representations of polynomial expressions as well as various

algorithms to optimize polynomials for both hardware and software implemen-

tation. The chapter concludes with experimental results showing the relative

benefits of the various optimization techniques.

� Chapter 7 describes algebraic techniques for the optimization of linear arithmetic

computations such as FIR filters and other linear transforms. Algorithms to

optimize multiple-operand addition are also presented. Finally, the chapter pre-

sents experimental results where the usefulness of these techniques is demonstrated

using real-life examples.

1.4 Target audience

When writing this book we had several audiences in mind. Much of the material

is targeted towards specialists, whether they be researchers in academia or

industry, who are designing both software and hardware for polynomial expres-

sions and/or linear systems. The book also provides substantial background of

the state of the art algorithms for the implementation of these systems, and

serves as a reference for researchers in these areas. This book is designed to

accommodate readers with different backgrounds, and the book includes some

basic introductory material on several topics including computer arithmetic,

software compilation, and hardware synthesis. These introductory chapters give

just enough background to demonstrate basic ideas and provide references to

gain more in-depth information. Most of the book can be understood by anyone

with a basic grounding in computer engineering. The book is suitable for

graduate students, either as a reference or as textbook for a specialized class

on the topics of hardware synthesis and software compilation for linear systems

and polynomial expressions. It is also suitable for an advanced topics class for

undergraduate students.

References

[1] C. Shi and R.W. Brodersen, An automated floating-point to fixed-point conversion

methodology, IEEE International Conference on Acoustics, Speech, and Signal Processing,

2003. Washington, DC: IEEE Computer Society, 2003.

[2] C.F. Fang, R.A. Rutenbar, and T. Chen, Fast, accurate static analysis for fixed-

point finite-precision effects in DSP designs, International Conference on Computer Aided

Design (ICCAD), San Jose, 2003. Washington, DC: IEEE Computer Society, 2003.

[3] D. Menard and O. Sentieys, Automatic evaluation of the accuracy of fixed-point

algorithms, Design, Automation and Test in Europe Conference and Exhibition, 2002.

Washington, DC: IEEE Computer Society, 2002.

71.4 Target audience

www.cambridge.org/9780521880992
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-88099-2 — Arithmetic Optimization Techniques for Hardware and Software Design
Ryan Kastner , Anup Hosangadi , Farzan Fallah
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

[4] G.D. Micheli, Synthesis and optimization of digital circuits, New York, NY:

McGraw-Hill, 1994.

[5] M. Potkonjak, M.B. Srivastava, and A.P. Chandrakasan, Multiple constant

multiplications: efficient and versatile framework and algorithms for exploring

common subexpression elimination, IEEE Transactions on Computer Aided Design

of Integrated Circuits and Systems, 15(2), 151–65, 1996.

[6] R. Pasko, P. Schaumont, V. Derudder, V. Vernalde, and D. Durackova, A new

algorithm for elimination of common subexpressions, IEEE Transactions on Computer

Aided Design of Integrated Circuits and Systems, 18(1), 58–68, 1999.

[7] R. Pasko, P. Schaumont, V. Derudder, and D. Durackova, Optimization method for

broadband modem FIR filter design using common subexpression elimination,

International Symposium on System Synthesis, 1997. Washington, DC: IEEE Computer

Society, 1997.

[8] A. Hosangadi, F. Fallah, and R. Kastner, Common subexpression elimination

involving multiple variables for linear DSP synthesis, IEEE International Conference on

Application-Specific Architectures and Processors, 2004. Washington, DC: IEEE

Computer Society, 2004.

[9] A. Chatterjee, R.K. Roy, and M.A. D’Abreu, Greedy hardware optimization

for linear digital circuits using number splitting and refactorization, IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 1(4), 423–31, 1993.

[10] H.T. Nguyen and A. Chatterjee, Number-splitting with shift-and-add decomposition

for power and hardware optimization in linear DSP synthesis, IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 8, 419–24, 2000.

[11] M. Puschel, B. Singer, J. Xiong, et al., SPIRAL: a generator for platform-adapted

libraries of signal processing algorithms, Journal of High Performance Computing and

Applications, 18, 21–45, 2004.

[12] R. Kastner, S. Ogrenci-Memik, E. Bozorgzadeh, and M. Sarrafzadeh, Instruction

generation for hybrid reconfigurable systems, International Conference on Computer

Aided Design. New York, NY: ACM, 2001.

[13] A. Peymandoust, L. Pozzi, P. Ienne, and G. De Micheli, Automatic instruction set

extension and utilization for embedded processors, IEEE International Conference on

Application-Specific Systems, Architectures, and Processors, 2003. Washington, DC:

IEEE Computer Society, 2003.

[14] Tensilica Inc., http://www.tensilica.com.

[15] S.S. Muchnick, Advanced Compiler Design and Implementation, San Francisco, CA:

Morgan Kaufmann Publishers, 1997.

[16] J.P. Deschamps, G.J.A. Bioul, and G.D. Sutter, Synthesis of Arithmetic Circuits:

FPGA, ASIC and Embedded Systems, New York, NY: Wiley-Interscience (2006).

[17] U. Meyer-Baese, Digital Signal Processing with Field Programmable Gate Arrays,

third edition. Springer, 2007.

[18] C. Fang Fang, R.A. Rutenbar, M. Puschel, and T. Chen, Toward efficient static

analysis of Finite-Precision effects in DSP applications via affine arithmetic modeling,

Design Automation Conference. New York, NY: ACM, 2003.

8 Introduction

www.cambridge.org/9780521880992
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-88099-2 — Arithmetic Optimization Techniques for Hardware and Software Design
Ryan Kastner , Anup Hosangadi , Farzan Fallah
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2 Use of polynomial expressions
and linear systems

2.1 Chapter overview

Polynomial expressions and linear systems are found in a wide range of applica-

tions: perhaps most fundamentally, Taylor’s theorem states that any differentiable

function can be approximated by a polynomial. Polynomial approximations are

used extensively in computer graphics to model geometric objects. Many of the

fundamental digital signal processing transformations are modeled as linear

systems, including FIR filters, DCT and H.264 video compression. Cryptographic

systems, in particular, those that perform exponentiation during public key

encryption, are amenable to modeling using polynomial expressions. Finally,

address calculation during data intensive applications requires a number of add

and multiply operations that grows larger as the size and dimension of the array

increases. This chapter describes these and other applications that require arith-

metic computation. We show that polynomial expressions and linear systems are

found in a variety of applications that are driving the embedded systems and high-

performance computing markets.

2.2 Approximation algorithms

Polynomial functions can be used to approximate any differentiable function.

Given a set of points, the unisolvence theorem states that there always exists a

unique polynomial, which precisely models these points. This is extremely useful

for computing complex functions such as logarithm and trigonometric functions

and forms the basis for algorithms in numerical quadrature and numerical ordin-

ary differential equations. More precisely, the unisolvence theorem states that,

given a set of nþ 1 unique data points, a unique polynomial with degree n or less

exists.

As an example, consider theTaylor expansionof sin (x) approximated to four terms:

sinðxÞ ¼ x�
x3

3!
þ
x5

5!
�
x7

7!
: ð2:1Þ

This is a polynomial of degree 7 that approximates the sine function. Assuming

that the terms 1/3!, 1/5!, and 1/7! are precomputed (these will be denoted as S3, S5,

www.cambridge.org/9780521880992
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-88099-2 — Arithmetic Optimization Techniques for Hardware and Software Design
Ryan Kastner , Anup Hosangadi , Farzan Fallah
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

and S7, respectively), the naı̈ve evaluation of this polynomial representation

requires 3 additions/subtractions, 12 variable multiplications, and 3 constant

multiplications. However, it is possible to optimize this polynomial to reduce the

number of operations needed for its computation. For example, the techniques

described in this book produce the following set of equations, which are equiva-

lent to the four-term Taylor expansion of sin (x):

d1 ¼ x � x,

d2 ¼ S5 � S7 � d1,

d3 ¼ d2 � d1 � S3,

d4 ¼ d3 � d1 þ 1,

sinðxÞ ¼ x � d4:

Here, only three additions/subtractions, four variable multiplications, and one

constant multiplication are needed.

It is noteworthy that computing these expressions, even in their optimized form,

is expensive in terms of hardware, cycle time, and power consumption. If the

arguments to these functions are known beforehand, the functions can be pre-

computed and stored in lookup tables in memory. However, in cases where these

arguments are not known or the memory size is limited, these expressions must be

computed during the execution of the application that uses them.

2.3 Computer graphics

Computer graphics is a prime example of an application domain that uses

polynomials to approximate complex functions. The use of computer graphics is

widespread and includes applications such as video games, animated movies, and

scientific modeling. In general, these applications are computationally expensive.

Advanced graphics is increasingly being integrated into embedded devices due

to the consumer demand and improvements in technology. Therefore, techniques

that optimize computation time, power, energy, and throughput for graphics

applications are of utmost importance.

Polynomials are the fundamental model for approximating arcs, surfaces,

curves, and textures. In fact, most geometric objects are formulated in terms of

polynomial equations, thereby reducing many graphic problems to the manipula-

tion of polynomial systems [1]. Therefore, solving polynomial systems is an

elementary problem in many geometric computations. As an example, consider

the process of spline interpolation, which is used to model textures and surfaces.

A spline is a method of approximation, in which a function is divided piecewise

into a set of polynomials, i.e., each piece of the function is approximated using

a polynomial. More formally, given a set of nþ 1 distinct points, a k-spline

function is a set of n polynomial functions with degree less than or equal to k.

This interpolation allows each polynomial to have a low degree, as opposed to

10 Use of polynomial expressions and linear systems

www.cambridge.org/9780521880992
www.cambridge.org

