
Prologue

The quantitative data obtained in any physical experiment are recorded as finite,
ordered sets of rational numbers. All such sets are discrete. However, when a
physicist sits down to make sense of such data, the tools he or she employs are
generally based upon the continuum: analytic (or at least smooth) functions,
differential equations, Lie groups, and the like. It is the view of many eminent
mathematicians that ‘bridging the gap between the domains of discreteness and
of continuity . . . is a central, presumably even the central problem of the founda-
tions of mathematics’,1 yet Fritz London did not seem to have had the slightest
hesitation in writing, in the very first paragraph of his book on superfluidity,2

‘that new differential equations were required to describe [the observed behaviour
of]. . . “superfluid” helium. . . ’ The physicist had stepped over the gap which has
occupied philosophers for two millenia without even noticing that it existed!3

This gap is but a fragment of one that separates theoretical from experimental
physics. Some of the most important physicists of the first half of the twentieth
century have expressed themselves on the subject, and it is instructive to compare
their views. Dirac, for example, had the following to say:4

The physicist, in his study of natural phenomena, has two methods of
making progress: (1) the method of experiment and observation, and (2) the
method of mathematical reasoning. The former is just the collection of
selected data; the latter enables one to infer results about experiments
that have not been performed. There is no logical reason why the second
method should be possible at all, but one has found in practice that it
does work and meets with reasonable success. This must be ascribed to
some mathematical quality in Nature, a quality which the casual observer
of Nature would not suspect, but which nevertheless plays an important
role in Nature’s scheme.

There can be no clearer acknowledgement of this gap than Dirac’s remark: ‘There
is no logical reason why the second method should be possible at all.’

1 See (Fraenkel, Bar-Hillel and Levy, 2001, p. 211).
2 See (London, 1964, p. 1).
3 The emphases in the quotations are in the originals.
4 See (Dirac, 1938–39, first paragraph).
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2 Prologue

It is well known that Heisenberg stumbled upon matrix mechanics while
attempting to express quantum theory entirely in terms of observable quanti-
ties. Many years later, he wrote an article in the literary journal Encounter in
which he recounted the following:5

It is generally believed that our science is empirical, and that we draw our
concepts and our mathematical constructs from empirical data. If this was
the whole truth, we should when entering a new field introduce only those
quantities that can directly be observed, and formulate laws only by means
of these quantities.

When I was a young man I believed that this was just the philosophy
which Albert Einstein had followed in his theory of Relativity. I tried,
therefore, to take a corresponding and related step in Quantum theory by
introducing the matrices. But when I later asked Einstein about it, he told
me: ‘This may have been my philosophy, but it is nonsense all the same.
It is never possible to introduce only observable quantities in a theory. It
is a theory which decides what can be observed. . . ’ What he meant was
that. . . we cannot separate the empirical process of observation from the
mathematical construct and concepts.

The ‘mathematical quality in nature’ of Dirac’s description, acknowledged if
not articulated by Einstein and Heisenberg, was a philosophical position that
went back to the ancient Greeks – to geometry, measuring the earth, and arith-
metic, the art of counting. But, in the last three decades of the nineteenth
century, Georg Cantor had developed his theory of transfinite numbers which
challenged this wisdom. Cantor introduced the notion of a set, and, using this
notion, established several epoch-making results. One of these was a precise char-
acterization of infinite sets.6 Another was the proof that the set of all subsets
of a given set is, in a precisely defined sense, larger than the original set. This
construction, called the power-set construction, could be applied to infinite sets
to yield an unending succession of infinite sets, each larger than its predecessor;
a revolutionary idea in mathematics at the end of the nineteenth century. It
was this freedom to pursue ideas, unfettered by constraints other than those of
consistency, that – Cantor asserted – distinguished mathematics from the other
sciences.7

It seems unlikely that Einstein, Dirac and Heisenberg were influenced in any
way by Cantor’s work. The same could not be said of Wigner, if only because of
his friendship with von Neumann. Fifteen years before Heisenberg’s Encounter

5 See (Heisenberg, 1975, pp. 55–56).
6 A brief but adequate introduction to Cantor’s theory is given in Appendix A1.
7 A summary of Cantor’s position is given in the section entitled The nature of mathematics

in (Dauben, 1990, pp. 132–133). References to original and secondary sources will also be
found in this work.
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Prologue 3

article, Wigner, in his celebrated essay on the unreasonable effectiveness of math-
ematics in the natural sciences,8 had asked the question: what is mathematics?,
and answered it, paraphrasing the logician and philosopher of science Walter
Dubislav, as follows: ‘. . . mathematics is the science of skillful operations with
concepts and rules invented just for this purpose.’ If that were the case – and
many practising mathematicians today would affirm that it is indeed the case –
the effectiveness of mathematics in the natural sciences would be difficult to
understand.

Taking stock, we may discern two world-views that are diametrically opposed
to each other: the pre-Cantorian view that mathematics is, in everyday speech,
discovered and not invented, and the post-Cantorian one that mathematics
is invented, and not discovered.9 It turns out, however, that between these
metaphysical opposites, there is room for scientific analysis.

By a scientific analysis we mean (in the present context) one that is based
upon physical principles and carried out by mathematical means. The preci-
sion required for such an analysis can only be attained by narrowing the field
of enquiry. We shall confine ourselves to the following question: is the differ-
ential calculus a discovery, or an invention? Or, in scientific language: is the
differentiable structure of space-time a consequence of physical principles? 10

In Part I of this book, we shall establish some results that suggest that, subject
to a certain caveat, the answer to the last question is in the affirmative. The
physical principle that has these profound mathematical consequences is causality
in the sense of Einstein and Weyl.11 It turns out that the notion of Einstein–Weyl
causality can be defined, as a partial order, on any infinite set of points, totally
devoid of any predefined mathematical structure. Such causally ordered spaces
can be completed – i.e., densely embedded in continua – in a unique manner,
and the causal order can be extended, again uniquely, to the completed space.
Furthermore, when these continua are finite-dimensional, they have the (unique)
local structure of a differentiable manifold. If we agree to call a countably infinite
set on which Einstein–Weyl causality is defined a discrete space-time, then the
results can be stated as follows:

(i) Any discrete space-time can be completed, i.e., embedded in a continuum.
The discrete space-time defines this continuum uniquely.

(ii) The causal order of the discrete space-time has a unique extension to its
completion.

8 See (Wigner, 1970, p. 224).
9 What was simplistically described above as the pre-Cantorian view is actually a vast corpus

in philosophy, with a history that goes back more than two millenia.
10 The statement that the real line R has a differentiable structure is equivalent to the state-

ment that there is such a subject as the differential calculus of a single real variable. A
generalization will be found in Section A8.2.

11 For details, see (Borchers and Sen, 2006).
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4 Prologue

(iii) The completion of a discrete, finite-dimensional space-time has the local
structure of a differentiable manifold.

The results described above were obtained on the assumption that the notion
of geometrical points (in the sense of Euclidean geometry) may be used in physics
without further analysis. This assumption was strongly controverted by Wigner.
Following earlier work by Wigner himself, Araki and Yanase established, within
the framework of von Neumann’s measurement theory, that an observable that
does not commute with a conserved quantity cannot be measured precisely.12

Since the position operator of a point-particle would seldom commute with the
Hamiltonian, its position could not be measured precisely, which led Wigner
to comment to Haag that ‘there are those of us who believe that there are no
points’.13

Part II of the book is an attempt to assuage Wigner’s doubts. The strategy
is extremely simple: try to show that the situation is no worse in quantum
mechanics than it is in classical mechanics. But the validity of this procedure is
based on the assumption that there are limits to the usefulness of Francis Bacon’s
motto ‘dissecare naturam’. In practical terms, a concept of measurement which
is untenable in classical mechanics should be treated with suspicion in quantum
mechanics.

John Bell, for example, has described quantum mechanics as ‘our most fun-
damental physical theory’.14 If quantum mechanics is fundamental and classical
mechanics a mere � → 0 limit of it, then it is less than obvious how a comparison
with the ills of classical mechanics can cure the ills of quantum mechanics. It is
true that quantum mechanics ‘explains’ a set of natural phenomena that classical
mechanics cannot; but it is equally true that the basic ‘observables’ of quantum
mechanics are borrowings from the dynamical variables of classical mechanics:
‘Who is the Potter, pray, and who the Pot?’15

Since the aim of theoretical physics is to understand physical phenomena that
are observed, a theory – I maintain – should fit a particular observational win-
dow.16 For example, the theory that is appropriate for describing the behaviour
of ideal gases in thermodynamic equilibrium is inappropriate for describing the

12 See (Araki and Yanase, 1960).
13 This comment was made by Wigner after Haag’s talk at the International Colloquium on

Group Theoretical Methods in Physics in Philadelphia in 1986. Wigner’s own account of
his doubts will be found on page 207.

14 The quotation, and the context, will be found on page 194.
15 The Rubayyat of Omar Khayyam, translated by Edward FitzGerald.
16 The notion of an observational window is arrived at by attempting to understand Einstein’s

maxim, ‘it is a theory which decides what can be observed’. First, the observer decides what
he or she wants to observe, and devises a theory to account for the observed regularities. A
‘description of physical phenomena’ is a description of the temporal evolution of the state of
a physical system. The observational window determines the variables of state. The latter
are required to be complete, i.e., temporal evolution is required to map the space of states
into itself. Finally, this requirement constrains what can, or cannot, be observed. The term
‘observational window’ was first used in (Roos and Sen, 1994).
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Prologue 5

scattering of alpha-particles by thin metallic foils, and vice versa. We assume that
the theories we are working with are not ‘theories of everything’. Their function
is to permit logical deductions from well-defined premises. It is therefore reason-
able to demand that each theory be internally consistent.17 To sum up, I do not
see the question: which is more fundamental – quantum mechanics or classical
mechanics – as one that advances scientific enquiry.18 Classical mechanics has
provided us with a body of concepts in terms of which equations of motion can
be precisely framed for several classes of state spaces. Quantum mechanics has
not changed these concepts; it has added a single new concept, but the result
has been a revolutionary change in the space of states, which is the same as its
observational window. I therefore believe that the strategy mentioned earlier is
well conceived.

After this explicit statement of the assumptions that underlie our endeavour,
we may turn to the essential point. We want to show that, as far as limitations
on the accuracy of a measurement are concerned, they are no worse in quantum
mechanics than they are in classical mechanics. But what are the factors that
limit the accuracy of measurements in classical mechanics?

In the theory called classical mechanics, there are no physical principles that
limit the accuracy of measurements. Measurements are assumed to be instanta-
neous, and therefore even the position of a moving point-particle can be measured
precisely at any instant of time. What, then, is the source of limitations on the
accuracy of classical measurements on which we are trying to build our case? We
begin with a few historical remarks, some of which are common knowledge while
others have hardly entered into the consciousness of the scientific community.

Although Einstein’s contributions were decisive in establishing the particle
aspect of light, Einstein himself remained a lifelong sceptic of quantum mecha-
nics. His exchanges with Bohr are well known;19 Einstein remained unconvinced.
However, Einstein also carried on a lifelong correspondence with Max Born on
the subject. Born too failed to convince Einstein, but, in the process – sometime
before 1954 – he came to a crucial realization: the reason why an exact determi-
nation of the state of a physical system – be it classical or quantum-mechanical –
was impossible lay in the mathematical structure of the real number system. He

17 Unfortunately, this demand cannot always be met. As far as agreement between theory and
experiment is concerned, quantum electrodynamics (QED) is by far the most successful
physical theory that we have, but it is known to be logically inconsistent. The logical
inconsistency of QED was pointed out, from two different directions, by Dyson and Haag
(Dyson, 1952; Haag, 1955). The explanation of this puzzle remains – or so the present author
contends – the most important unsolved problem in theoretical physics. By explanation
we mean a logical deduction from accepted premises, and not a belief, as articulated by
Weinberg (Weinberg, 1995, p. 499, last paragraph).

18 It may be that in making this assertion I am, as Keynes would have it, being driven by the
ghosts of defunct philosophers.

19 See, for example, (Wheeler and Zurek, 1983), which contains 47 pages on the Bohr–Einstein
dialogue, and reprint of the EPR paper (Einstein, Podolsky and Rosen, 1935) and Bohr’s
reply to it.
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6 Prologue

pointed out a fact to which no physicist, before him, seems to have paid the
slightest attention.20 This fact is the following: the rational numbers are count-
able, and therefore form a set of Lebesgue measure zero on the real line. That is,
almost every real number is irrational. Now the explicit decimal representation
of an irrational number is nonrecurrent, and requires an infinite number of digits.
It is therefore absurd to assert that the position of a point-particle on a real line
can be measured precisely. At least ten years before the paper by Lorenz that
set off the chaos revolution,21 Born noticed what has since become known as the
‘sensitive dependence on initial conditions’ of nonlinear classical mechanics, and
used these facts to make the following assertions about classical point-particle
mechanics:

(i) From the viewpoint of the experimentalist, it makes little sense to talk
about the position of a point-particle. What makes sense is the notion of
a probability distribution about its position.

(ii) In view of the sensitive dependence on initial conditions, a second determi-
nation of the position of a point-particle – if successful – could be interpreted
as a reduction of the probability distribution; it would effect a drastic change
in the probability distribution.

We may now hone our strategy to the following. Since the measurement of a
continuous variable in classical physics is possible only within an error ε, where
ε is an arbitrarily small but positive number, what we have to show is that, given
any ε > 0, the corresponding quantum-mechanical observable can be measured
within this error.

To sum up: the gap between the domains of discreteness and of continuity
in mathematics is equally a gap between experimental and theoretical physics.
Here classical mechanics and nonrelativistic quantum mechanics are on a par
with each other, as they both rely on the same local topological–geometrical
structure of space-time.

As is well known, von Neumann’s measurement theory, the source of Wigner’s
doubts, requires the intervention of the observer’s ‘conscious ego’. The mathe-
matical part of the theory cannot account for the reduction of the wave packet; it
is, as we shall find, a theory of entanglement (the term was coined by Schrödinger
three years after the appearance of von Neumann’s book) rather than a theory
of measurement. A resolution of Wigner’s doubts requires, first and foremost,
a resolution of the quantum measurement problem in a mathematical man-
ner: namely, a theory that accounts for the reduction of the wave packet in
which appeal to the observer’s conscious ego is replaced by a significantly weaker
mathematical hypothesis.

20 In (Sen, 2008) I referred to this fact as ‘known to all but honoured by none’. I was wrong;
Max Born had seen its implications more than 50 years earlier.

21 The reference is to (Lorenz, 1963).
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Prologue 7

Such a theory has been proposed by Sewell, and extended by the present author
to continuous spectra.22 This theory may aptly be described as a bridge over the
Heisenberg cut, with movement across it being controlled by the Schrödinger–von
Neumann equations. In this theory observables with discrete, rational spectra
can be measured precisely, and therefore observables with continuous spectra can
be measured with an error ε > 0, where ε can be made arbitrarily small. This
is not very different from the measurement of a continuous variable in classical
mechanics, if the result of measurement is constrained to be a rational number.
Therefore one is tempted to claim that quantum mechanics does not make the
situation any worse than it already is in classical physics.

However, Sewell’s theory assumes that the state spaces of object and apparatus
are finite-dimensional. As is well known, the canonical commutation relation
qp − pq = i� cannot be realized on finite-dimensional vector spaces; it runs afoul
of the identity Tr (qp − pq) = 0. This causes no trouble in measurement theory,
as quantum-mechanical uncertainties are negligibly small by comparison with
errors of observation.23 Nevertheless, the assumption may be at variance with
the general principles of quantum mechanics as they are commonly understood,
and that is why the above claim should be tempered with caution.

Is it possible to lift the assumption of finite-dimensionalities from Sewell’s
measurement theory? The answer is not known, but to do so it will almost
certainly be necessary to devise a framework (within nonrelativistic physics)
for describing interactions of microscopic quantum systems with macroscopic
systems considered as a whole. In the opinion of the present author, this is a key
unsolved problem in nonrelativistic quantum mechanics.

The development of Parts I and II is mathematically rigorous. The results
that are quoted without proof – and there are many – have been proven. The
phrase ‘it may be shown that. . . ’ (or something similar) invariably means ‘it has
been shown that. . . ’. I use the former phrase because it sounds better to my
ears. Again, mindful of the intended readership, many concepts defined in the
appendices are recapitulated in footnotes to the text, or else a reference is given
to the page on which it is defined. The word ‘page’ (or ‘pages’) is spelled out
when it refers to a page in this book, and abbreviated to p. (or pp.) when it
refers to some other source.

In a book such as the present one, it is neither possible nor desirable – or so
the present author contends – to avoid expression of the opinions and beliefs
that guide the endeavours of physicists. My personal opinions may diverge from
the consensus (or, when there is no consensus, from commonly held views), and
I have tried to keep the two separate. My personal beliefs and opinions are

22 See (Sewell, 2005; Sen, 2008).
23 The observable consequences of quantum mechanics derive mainly from the superposition

principle, which holds on any linear space, irrespective of its dimensionality.
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8 Prologue

expressed either in the first person singular, or marked by a qualifier as in the
first sentence of this paragraph.

Many of the references cited have been reprinted in various collections. Many
articles originally published in German have been translated into English. I have
referred to reprint volumes and English translations wherever I have had access
to them, but I have omitted the names of the translators (which were not always
available). Some of the references to books have been dictated by the desire to
provide a historical perspective, but without pretensions to historical scholarship;
others, by what I own, or have access to. Few of them are of recent vintage; I
have not referred to later editions or reprints that I have not been able to consult.

Part I of this book is based entirely on the special theory of relativity; Part II,
entirely on nonrelativistic quantum mechanics. Since I do not consider the unity
of physics to be a good working hypothesis for a mathematical treatment,24 I
think that nonrelativistic quantum mechanics should stand as an autonomous,
logically consistent edifice, despite its inadequacy as a physical theory at high
energies. But I should add that nonrelativistic mechanics, both classical and
quantum, assumes mathematical structures on space and time that appear to
have their origins on Einstein–Weyl causality.

As stated earlier in different words, we have fallen short of our goal of deci-
phering whether the differential calculus is a discovery or an invention. But the
search has revealed some new questions of interest in mathematics, theoreti-
cal physics and possibly in experimental physics, and these are discussed, or
speculated upon, in the Epilogue.

24 This is only one possible viewpoint among many. Theorists have long been attempting to
integrate a larger class of problems as one unit, and some of the more recent attempts,
such as string and superstring theories, have led to phenomenal advances in mathematics.
If these endeavours succeed in reaching even a few of their goals, I will have to change my
opinion.
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Part I

Causality and differentiable structure
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