
Introduction to Software Testing

Extensively class tested, this text takes an innovative approach to soft-
ware testing: it defines testing as the process of applying a few well-
defined, general-purpose test criteria to a structure or model of the soft-
ware. The structure of the text directly reflects the pedagogical approach
and incorporates the latest innovations in testing, including modern types
of software such as OO, Web applications, and embedded software. The
book contains numerous examples throughout. An instructor’s solution
manual, PowerPoint slides, sample syllabi, additional examples and up-
dates, testing tools for students, and example software programs in Java
are available on an extensive Web site at www.introsoftwaretesting.com.

Paul Ammann, PhD, is an Associate Professor of software engineer-
ing at George Mason University. He received an outstanding teaching
award in 2007 from the Volgenau School of Information Technology and
Engineering. Dr. Ammann earned an AB degree in computer science
from Dartmouth College and MS and PhD degrees in computer science
from the University of Virginia.

Jeff Offutt, PhD, is a Professor of software engineering at George
Mason University. He is editor-in-chief of the Journal of Software Testing,
Verification and Reliability; chair of the steering committee for the IEEE
International Conference on Software Testing, Verification, and Valida-
tion; and on the editorial boards for several journals. He recived the
outstanding teacher award from the Volgenau School of Information
Technology and Engineering in 2003. Dr. Offutt earned a BS degree in
mathematics and data processing from Morehead State University and
MS and PhD degrees in computer science from the Georgia Institute of
Technology.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Frontmatter
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


INTRODUCTION TO
SOFTWARE
TESTING

Paul Ammann
George Mason University

Jeff Offutt
George Mason University

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Frontmatter
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press
32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org
Information on this title: www.cambridge.org/9780521880381

C© Paul Ammann and Jeff Offutt 2008

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2008

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Ammann, Paul, 1961–
Introduction to software testing / Paul Ammann, Jeff Offutt.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-521-88038-1 (hardback)
1. Computer software – Testing. I. Offutt, Jeff, 1961– II. Title.
QA76.76.T48A56 2008
004.2′4–dc22 2007035077

ISBN 978-0-521-88038-1 hardback

Cambridge University Press has no responsibility for
the persistence or accuracy of URLs for external or
third-party Internet Web sites referred to in this publication
and does not guarantee that any content on such
Web sites is, or will remain, accurate or appropriate.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Frontmatter
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


Contents

List of Figures page ix

List of Tables xiii

Preface xv

Part 1 Overview 1

1 Introduction 3

1.1 Activities of a Test Engineer 4
1.1.1 Testing Levels Based on Software Activity 5
1.1.2 Beizer’s Testing Levels Based on Test Process

Maturity 8
1.1.3 Automation of Test Activities 10

1.2 Software Testing Limitations and Terminology 11
1.3 Coverage Criteria for Testing 16

1.3.1 Infeasibility and Subsumption 20
1.3.2 Characteristics of a Good Coverage Criterion 20

1.4 Older Software Testing Terminology 21
1.5 Bibliographic Notes 22

Part 2 Coverage Criteria 25

2 Graph Coverage 27

2.1 Overview 27
2.2 Graph Coverage Criteria 32

2.2.1 Structural Coverage Criteria 33
2.2.2 Data Flow Criteria 44
2.2.3 Subsumption Relationships among Graph Coverage

Criteria 50
2.3 Graph Coverage for Source Code 52

v

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Frontmatter
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


vi Contents

2.3.1 Structural Graph Coverage for Source Code 52
2.3.2 Data Flow Graph Coverage for Source Code 54

2.4 Graph Coverage for Design Elements 65
2.4.1 Structural Graph Coverage for Design Elements 65
2.4.2 Data Flow Graph Coverage for Design Elements 67

2.5 Graph Coverage for Specifications 75
2.5.1 Testing Sequencing Constraints 75
2.5.2 Testing State Behavior of Software 77

2.6 Graph Coverage for Use Cases 87
2.6.1 Use Case Scenarios 90

2.7 Representing Graphs Algebraically 91
2.7.1 Reducing Graphs to Path Expressions 94
2.7.2 Applications of Path Expressions 96
2.7.3 Deriving Test Inputs 96
2.7.4 Counting Paths in a Flow Graph and Determining

Max Path Length 97
2.7.5 Minimum Number of Paths to Reach All Edges 98
2.7.6 Complementary Operations Analysis 98

2.8 Bibliographic Notes 100

3 Logic Coverage 104

3.1 Overview: Logic Predicates and Clauses 104
3.2 Logic Expression Coverage Criteria 106

3.2.1 Active Clause Coverage 107
3.2.2 Inactive Clause Coverage 111
3.2.3 Infeasibility and Subsumption 112
3.2.4 Making a Clause Determine a Predicate 113
3.2.5 Finding Satisfying Values 115

3.3 Structural Logic Coverage of Programs 120
3.3.1 Predicate Transformation Issues 127

3.4 Specification-Based Logic Coverage 131
3.5 Logic Coverage of Finite State Machines 134
3.6 Disjunctive Normal Form Criteria 138
3.7 Bibliographic Notes 147

4 Input Space Partitioning 150

4.1 Input Domain Modeling 152
4.1.1 Interface-Based Input Domain Modeling 153
4.1.2 Functionality-Based Input Domain Modeling 154
4.1.3 Identifying Characteristics 154
4.1.4 Choosing Blocks and Values 156
4.1.5 Using More than One Input Domain Model 158
4.1.6 Checking the Input Domain Model 158

4.2 Combination Strategies Criteria 160
4.3 Constraints among Partitions 165
4.4 Bibliographic Notes 166

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Frontmatter
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


Contents vii

5 Syntax-Based Testing 170

5.1 Syntax-Based Coverage Criteria 170
5.1.1 BNF Coverage Criteria 170
5.1.2 Mutation Testing 173

5.2 Program-Based Grammars 176
5.2.1 BNF Grammars for Languages 176
5.2.2 Program-Based Mutation 176

5.3 Integration and Object-Oriented Testing 191
5.3.1 BNF Integration Testing 192
5.3.2 Integration Mutation 192

5.4 Specification-Based Grammars 197
5.4.1 BNF Grammars 198
5.4.2 Specification-Based Mutation 198

5.5 Input Space Grammars 201
5.5.1 BNF Grammars 201
5.5.2 Mutation for Input Grammars 204

5.6 Bibliographic Notes 210

Part 3 Applying Criteria in Practice 213

6 Practical Considerations 215

6.1 Regression Testing 215
6.2 Integration and Testing 217

6.2.1 Stubs and Drivers 218
6.2.2 Class Integration Test Order 218

6.3 Test Process 219
6.3.1 Requirements Analysis and Specification 220
6.3.2 System and Software Design 221
6.3.3 Intermediate Design 222
6.3.4 Detailed Design 223
6.3.5 Implementation 223
6.3.6 Integration 224
6.3.7 System Deployment 224
6.3.8 Operation and Maintenance 224
6.3.9 Summary 225

6.4 Test Plans 225
6.5 Identifying Correct Outputs 230

6.5.1 Direct Verification of Outputs 230
6.5.2 Redundant Computations 231
6.5.3 Consistency Checks 231
6.5.4 Data Redundancy 232

6.6 Bibliographic Notes 233

7 Engineering Criteria for Technologies 235

7.1 Testing Object-Oriented Software 236
7.1.1 Unique Issues with Testing OO Software 237

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Frontmatter
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


viii Contents

7.1.2 Types of Object-Oriented Faults 237
7.2 Testing Web Applications and Web Services 256

7.2.1 Testing Static Hyper Text Web Sites 257
7.2.2 Testing Dynamic Web Applications 257
7.2.3 Testing Web Services 260

7.3 Testing Graphical User Interfaces 260
7.3.1 Testing GUIs 261

7.4 Real-Time Software and Embedded Software 262
7.5 Bibliographic Notes 265

8 Building Testing Tools 268

8.1 Instrumentation for Graph and Logical
Expression Criteria 268

8.1.1 Node and Edge Coverage 268
8.1.2 Data Flow Coverage 271
8.1.3 Logic Coverage 272

8.2 Building Mutation Testing Tools 272
8.2.1 The Interpretation Approach 274
8.2.2 The Separate Compilation Approach 274
8.2.3 The Schema-Based Approach 275
8.2.4 Using Java Reflection 276
8.2.5 Implementing a Modern Mutation System 277

8.3 Bibliographic Notes 277

9 Challenges in Testing Software 280

9.1 Testing for Emergent Properties: Safety and Security 280
9.1.1 Classes of Test Cases for Emergent Properties 283

9.2 Software Testability 284
9.2.1 Testability for Common Technologies 285

9.3 Test Criteria and the Future of Software Testing 286
9.3.1 Going Forward with Testing Research 288

9.4 Bibliographic Notes 290

List of Criteria 293

Bibliography 295

Index 319

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Frontmatter
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


List of Figures

1.1 Activities of test engineers page 4
1.2 Software development activities and testing levels – the “V Model” 6
2.1 Graph (a) has a single initial node, graph (b) multiple initial nodes,

and graph (c) (rejected) with no initial nodes 28
2.2 Example of paths 29
2.3 A single entry single exit graph 30
2.4 Test case mappings to test paths 31
2.5 A set of test cases and corresponding test paths 32
2.6 A graph showing node coverage and edge coverage 34
2.7 Two graphs showing prime path coverage 37
2.8 Graph with a loop 37
2.9 Tours, sidetrips, and detours in graph coverage 38

2.10 An example for prime test paths 40
2.11 A graph showing variables, def sets and use sets 44
2.12 A graph showing an example of du-paths 46
2.13 Graph showing explicit def and use sets 47
2.14 Example of the differences among the three data flow coverage

criteria 49
2.15 Subsumption relations among graph coverage criteria 50
2.16 CFG fragment for the if-else structure 52
2.17 CFG fragment for the if structure without an else 53
2.18 CFG fragment for the while loop structure 53
2.19 CFG fragment for the for loop structure 54
2.20 CFG fragment for the case structure 54
2.21 TestPat for data flow example 56
2.22 A simple call graph 65
2.23 A simple inheritance hierarchy 66
2.24 An inheritance hierarchy with objects instantiated 67
2.25 An example of parameter coupling 68
2.26 Coupling du-pairs 69
2.27 Last-defs and first-uses 69

ix

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Frontmatter
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


x List of Figures

2.28 Quadratic root program 71
2.29 Def-use pairs under intra-procedural and inter-procedural data flow 72
2.30 Def-use pairs in object-oriented software 72
2.31 Def-use pairs in web applications and other distributed software 73
2.32 Control flow graph using the File ADT 76
2.33 Elevator door open transition 79
2.34 Stutter – Part A 80
2.35 Stutter – Part B 81
2.36 A FSM representing Stutter, based on control flow graphs of the

methods 82
2.37 A FSM representing Stutter, based on the structure of the software 83
2.38 A FSM representing Stutter, based on modeling state variables 84
2.39 A FSM representing Stutter, based on the specifications 85
2.40 Class Queue for exercises. 86
2.41 ATM actor and use cases 88
2.42 Activity graph for ATM withdraw funds 90
2.43 Examples of path products 92
2.44 Null path that leads to additive identity φ 93
2.45 A or lambda 94
2.46 Example graph to show reduction to path expressions 94
2.47 After step 1 in path expression reduction 95
2.48 After step 2 in path expression reduction 95
2.49 After step 3 in path expression reduction 95
2.50 Removing arbitrary nodes 95
2.51 Eliminating node n2 95
2.52 Removing sequential edges 95
2.53 Removing self-loop edges 96
2.54 Final graph with one path expression 96
2.55 Graph example for computing maximum number of paths 97
2.56 Graph example for complementary path analysis 99
3.1 Subsumption relations among logic coverage criteria 113
3.2 TriTyp – Part A 121
3.3 TriTyp – Part B 122
3.4 Calendar method 132
3.5 FSM for a memory car seat – Lexus 2003 ES300 135
3.6 Fault detection relationships 143
4.1 Partitioning of input domain D into three blocks 151
4.2 Subsumption relations among input space partitioning criteria 163
5.1 Method Min and six mutants 177
5.2 Mutation testing process 181
5.3 Partial truth table for (a ∧ b) 187
5.4 Finite state machine for SMV specification 199
5.5 Mutated finite state machine for SMV specification 200
5.6 Finite state machine for bank example 202
5.7 Finite state machine for bank example grammar 202
5.8 Simple XML message for books 204
5.9 XML schema for books 205

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Frontmatter
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


List of Figures xi

7.1 Example class hierarchy in UML 238
7.2 Data flow anomalies with polymorphism 238
7.3 Calls to d() when object has various actual types 239
7.4 ITU: Descendant with no overriding methods 241
7.5 SDA, SDIH: State definition anomalies 243
7.6 IISD: Example of indirect inconsistent state definition 244
7.7 ACB1: Example of anomalous construction behavior 245
7.8 SVA: State visibility anomaly 247
7.9 Sample class hierarchy (a) and associated type families (b) 248

7.10 Control flow graph fragment (a) and associated definitions and
uses (b) 249

7.11 Def-use pairs in object-oriented software 250
7.12 Control flow schematic for prototypical coupling sequence 251
7.13 Sample class hierarchy and def-use table 252
7.14 Coupling sequence: o of type A (a) bound to instance of A (b), B (c)

or C (d) 253
8.2 Node coverage instrumentation 269
8.3 Edge coverage instrumentation 270
8.4 All uses coverage instrumentation 271
8.5 Correlated active clause coverage instrumentation 273

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Frontmatter
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


List of Tables

2.1 Defs and uses at each node in the CFG for TestPat page 57
2.2 Defs and uses at each edge in the CFG for TestPat 57
2.3 Du-path sets for each variable in TestPat 58
2.4 Test paths to satisfy all du-paths coverage on TestPat 59
2.5 Test paths and du-paths covered on TestPat 59
3.1 Reachability for Triang predicates 123
3.2 Reachability for Triang predicates – reduced by solving for triOut 124
3.3 Predicate coverage for Triang 125
3.4 Clause coverage for Triang 126
3.5 Correlated active clause coverage for Triang 127
3.6 Correlated active clause coverage for cal() preconditions 133
3.7 Predicates from memory seat example 136
3.8 DNF fault classes 143
4.1 First partitioning of TriTyp’s inputs (interface-based) 156
4.2 Second partitioning of TriTyp’s inputs (interface-based) 157
4.3 Possible values for blocks in the second partitioning in Table 4.2 157
4.4 Geometric partitioning of TriTyp’s inputs (functionality-based) 158
4.5 Correct geometric partitioning of TriTyp’s inputs (functionality-based) 158
4.6 Possible values for blocks in geometric partitioning in Table 4.5 159
4.7 Examples of invalid block combinations 165
5.1 Java’s access levels 193
6.1 Testing objectives and activities during requirements analysis and

specification 221
6.2 Testing objectives and activities during system and software design 222
6.3 Testing objectives and activities during intermediate design 222
6.4 Testing objectives and activities during detailed design 223
6.5 Testing objectives and activities during implementation 223
6.6 Testing objectives and activities during integration 224
6.7 Testing objectives and activities during system deployment 224
6.8 Testing objectives and activities during operation and maintenance 225
7.1 Faults and anomalies due to inheritance and polymorphism 240

xiii

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Frontmatter
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


xiv List of Tables

7.2 ITU: Code example showing inconsistent type usage 242
7.3 IC: Incomplete construction of state variable fd 246
7.4 Summary of sample coupling paths 254
7.5 Binding triples for coupling sequence from class hierarchy in Figure

7.13 254

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Frontmatter
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


Preface

This book presents software testing as a practical engineering activity, essential to
producing high-quality software. It is designed to be used as the primary textbook
in either an undergraduate or graduate course on software testing, as a supplement
to a general course on software engineering or data structures, and as a resource
for software test engineers and developers. This book has a number of unique
features:

� It organizes the complex and confusing landscape of test coverage criteria with
a novel and extremely simple structure. At a technical level, software testing is
based on satisfying coverage criteria. The book’s central observation is that there
are few truly different coverage criteria, each of which fits easily into one of four
categories: graphs, logical expressions, input space, and syntax structures. This
not only simplifies testing, but it also allows a convenient and direct theoretical
treatment of each category. This approach contrasts strongly with the traditional
view of testing, which treats testing at each phase in the development process
differently.

� It is designed and written to be a textbook. The writing style is direct, it builds the
concepts from the ground up with a minimum of required background, and it in-
cludes lots of examples, homework problems, and teaching materials. It provides
a balance of theory and practical application, presenting testing as a collection
of objective, quantitative activities that can be measured and repeated. The the-
oretical concepts are presented when needed to support the practical activities
that test engineers follow.

� It assumes that testing is part of a mental discipline that helps all IT professionals
develop higher-quality software. Testing is not an anti-engineering activity, and
it is not an inherently destructive process. Neither is it only for testing specialists
or domain experts who know little about programming or math.

� It is designed with modular, interconnecting pieces; thus it can be used in multi-
ple courses. Most of the book requires only basic discrete math and introductory
programming, and the parts that need more background are clearly marked. By

xv

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Frontmatter
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


xvi Preface

using the appropriate sections, this book can support several classes, as described
later in the preface.

� It assumes the reader is learning to be an engineer whose goal is to produce the
best possible software with the lowest possible cost. The concepts in this book
are well grounded in theory, are practical, and most are currently in use.

WHY SHOULD THIS BOOK BE USED?

Not very long ago, software development companies could afford to employ pro-
grammers who could not test and testers who could not program. For most of the
industry, it was not necessary for either group to know the technical principles be-
hind software testing or even software development. Software testing in industry
historically has been a nontechnical activity. Industry viewed testing primarily from
the managerial and process perspective and had limited expectations of practition-
ers’ technical training.

As the software engineering profession matures, and as software becomes more
pervasive in everyday life, there are increasingly stringent requirements for software
reliability, maintainability, and security. Industry must respond to these changes by,
among other things, improving the way software is tested. This requires increased
technical expertise on the part of test engineers, as well as increased emphasis on
testing by software developers. The good news is that the knowledge and technol-
ogy are available and based on over 30 years of research and practice. This book
puts that knowledge into a form that students, test engineers, test managers, and
developers can access.

At the same time, it is relatively rare to find courses that teach testing in univer-
sities. Only a few undergraduate courses exist, almost no masters degree programs
in computer science or software engineering require a course in software testing,
and only a few dozen have an elective course. Not only is testing not covered as an
essential part of undergraduate computer science education, most computer science
students either never gain any knowledge about testing, or see only a few lectures
as part of a general course in software engineering.

The authors of this book have been teaching software testing to software en-
gineering and computer science students for more than 15 years. Over that time
we somewhat reluctantly came to the conclusion that no one was going to write
the book we wanted to use. Rather, to get the book we wanted, we would have to
write it.

Previous testing books have presented software testing as a relatively simple
subject that relies more on process than technical understanding of how software
is constructed, as a complicated and fractured subject that requires detailed under-
standing of numerous software development technologies, or as a completely the-
oretical subject that can be mastered only by mathematicians and theoretical com-
puter scientists. Most books on software testing are organized around the phases in
a typical software development lifecycle, an approach that has the unfortunate side
effect of obscuring common testing themes. Finally, most testing books are written
as reference books, not textbooks. As a result, only instructors with prior expertise
in software testing can easily teach the subject. This book is accessible to instructors
who are not already testing experts.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Frontmatter
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


Preface xvii

This book differs from other books on software testing in other important ways.
Many books address managing the testing process. While this is important, it is
equally important to give testers specific techniques grounded in basic theory. This
book provides a balance of theory and practical application. This is important in-
formation that software companies must have; however, this book focuses specif-
ically on the technical nuts-and-bolts issues of designing and creating tests. Other
testing books currently on the market focus on specific techniques or activities,
such as system testing or unit testing. This book is intended to be comprehensive
over the entire software development process and to cover as many techniques as
possible.

As stated previously, the motivation for this book is to support courses in soft-
ware testing. Our first target was our own software testing course in our Soft-
ware Engineering MS program at George Mason University. This popular elective
is taught to about 30 computer science and software engineering students every
semester. We also teach PhD seminars in software testing, industry short courses
on specialized aspects, and lectures on software testing in various undergraduate
courses. Although few undergraduate courses on software testing exist, we believe
that they should exist, and we expect they will in the near future. Most testing books
are not designed for classroom use. We specifically wrote this book to support our
classroom activities, and it is no accident that the syllabus for our testing course,
available on the book’s Web site (www.introsoftwaretesting.com), closely follows
the table of contents for this book.

This book includes numerous carefully worked examples to help students and
teachers alike learn the sometimes complicated concepts. The instructor’s resources
include high-quality powerpoint slides, presentation hints, solutions to exercises,
and working software. Our philosophy is that we are doing more than writing a
book; we are offering our course to the community. One of our goals was to write
material that is scholarly and true to the published research literature, but that is
also accessible to nonresearchers. Although the presentation in the book is quite a
bit different from the research papers that the material is derived from, the essen-
tial ideas are true to the literature. To make the text flow more smoothly, we have
removed the references from the presentation. For those interested in the research
genealogy, each chapter closes with a bibliographic notes section that summarizes
where the concepts come from.

WHO SHOULD READ THIS BOOK?

Students who read and use this book will learn the fundamental principles behind
software testing, and how to apply these principles to produce better software,
faster. They will not only become better programmers, they will also be prepared
to carry out high-quality testing activities for their future employers. Instructors
will be able to use this book in the classroom, even without prior practical exper-
tise in software testing. The numerous exercises and thought-provoking problems,
classroom-ready and classroom-tested slides, and suggested outside activities make
this material teachable by instructors who are not already experts in software test-
ing. Research students such as beginning PhD students will find this book to be an
invaluable resource as a starting point to the field. The theory is sound and clearly

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Frontmatter
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


xviii Preface

presented, the practical applications reveal what is useful and what is not, and the
advanced reading and bibliographic notes provide pointers into the literature. Al-
though the set of research students in software testing is a relatively small audi-
ence, we believe it is a key audience, because a common, easily achievable baseline
would reduce the effort required for research students to join the community of
testing researchers. Researchers who are already familiar with the field will find the
criteria-approach to be novel and interesting. Some may disagree with the pedagog-
ical approach, but we have found that the view that testing is an application of only
a few criteria to a very few software structures to be very helpful to our research.
We hope that testing research in the future will draw away from searches for more
criteria to novel uses and evaluations of existing criteria.

Testers in the industry will find this book to be an invaluable collection of tech-
niques that will help improve their testing, no matter what their current process is.
The criteria presented here are intended to be used as a “toolbox” of tricks that
can be used to find faults. Developers who read this book will find numerous ways
to improve their own software. Their self-testing activities can become more effi-
cient and effective, and the discussions of software faults that test engineers search
for will help developers avoid them. To paraphrase a famous parable, if you want
to teach a person to be a better fisherman, explain how and where the fish swim.
Finally, managers will find this book to be a useful explanation of how clever test
engineers do their job, and of how test tools work. They will be able to make more
effective decisions regarding hiring, promotions, and purchasing tools.

HOW CAN THIS BOOK BE USED?

A major advantage of the structure of this book is that it can be easily used for
several different courses. Most of the book depends on material that is taught very
early in college and some high schools: basic concepts from data structures and dis-
crete math. The sections are organized so that the early material in each chapter
is accessible to less advanced students, and material that requires more advanced
knowledge is clearly marked.

Specifically, the book defines six separate sets of chapter sections that form
streams through the book:

1. A module within a CS II course
2. A sophomore-level course on software testing
3. A module in a general software engineering course
4. A senior-level course on software testing
5. A first-year MS level course on software testing
6. An advanced graduate research-oriented course on software testing
7. Industry practioner relevant sections
The stream approach is illustrated in the abbreviated table of contents in

the figure shown on pp. xix–xx. Each chapter section is marked with which stream
it belongs too. Of course, individual instructors, students, and readers may prefer
to adapt the stream to their own interests or purposes. We suggest that the first
two sections of Chapter 1 and the first two sections of Chapter 6 are appropriate
reading for a module in a data structures (CS II) class, to be followed by a simple

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Frontmatter
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


Preface xix

Stream 1: Module in a CS II course.

Stream 2: Sophomore-level course on software testing.

Stream 3: Module in a general software engineering course.

Stream 4: Senior-level course on software testing.

Stream 5: First-year MS course on software testing.

Stream 6: Advanced graduate research-oriented course on software testing.

Stream 7: Industry practitioner relevant sections

STREAMS

1 2 3 4 5 6 7

Part I: Overview
Chapter 1. Introduction

1.1 Activities of a Test Engineer

1.2 Software Testing Limitations and Terminology

1.3 Coverage Criteria for Testing

1.4 Older Software Testing Terminology

1.5 Bibliographic Notes

Part II: Coverage Criteria
Chapter 2. Graph Coverage

2.1 Overview

2.2 Graph Coverage Criteria

2.3 Graph Coverage for Source Code

2.4 Graph Coverage for Design Elements

2.5 Graph Coverage for Specifications

2.6 Graph Coverage for Use Cases

2.7 Representing Graphs Algebraically

2.8 Bibliographic Notes

Chapter 3. Logic Coverage
3.1 Overview: Logic Predicates and Clauses

3.2 Logic Expression Coverage Criteria

3.3 Structural Logic Coverage of Programs

3.4 Specification-Based Logic Coverage

3.5 Logic Coverage of Finite State Machines

3.6 Disjunctive Normal Form Criteria

3.7 Bibliographic Notes

Chapter 4. Input Space Partitioning
4.1 Input Domain Modeling

4.2 Combination Strategies Criteria

4.3 Constraints among Partitions

4.4 Bibliographic Notes

Chapter 5. Syntax-Based Testing
5.1 Syntax-Based Coverage Criteria

5.2 Program-Based Grammars

5.3 Integration and Object-Oriented Testing

5.4 Specification-Based Grammars

5.5 Input Space Grammars

5.6 Bibliographic Notes

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Frontmatter
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


xx Preface

Stream 1: Module in a CS II course.

Stream 2: Sophomore-level course on software testing.

Stream 3: Module in a general software engineering course.

Stream 4: Senior-level course on software testing.

Stream 5: First-year MS course on software testing.

Stream 6: Advanced graduate research-oriented course on software testing.

Stream 7: Industry practitioner relevant sections

STREAMS

1 2 3 4 5 6 7

Part III: Applying Criteria in Practice
Chapter 6. Practical Considerations

6.1 Regression Testing

6.2 Integration and Testing

6.3 Test Process

6.4 Test Plans

6.5 Identifying Correct Outputs

6.5 Bibliographic Notes

Chapter 7. Engineering Criteria for Technologies
7.1 Testing Object-Oriented Software

7.2 Testing Web Applications and Web Services

7.3 Testing Graphical User Interfaces

7.4 Real-Time Software and Embedded Software

7.5 Bibliographic Notes

Chapter 8. Building Testing Tools
8.1 Instrumentation for Graph and Logical Expression Criteria

8.2 Building Mutation Testing Tools

8.3 Bibliographic Notes

Chapter 9. Challenges in Testing Software
9.1 Testing for Emergent Properties: Safety and Security

9.2 Software Testability

9.3 Test Criteria and the Future of Software Testing

9.4 Bibliographic Notes

assignment. Our favorite is to ask the students to retrieve one of their previously
graded programs and satisfy some simple test criterion like branch coverage. We
offer points for every fault found, driving home two concepts: an “A” grade doesn’t
mean the program always works, and finding faults is a good thing.

The sophomore-level course on software testing (stream 2) is designed to imme-
diately follow a data structures course (CS II). The marked sections contain material
that depends only on data structures and discrete math.

A module in a general software engineering course (stream 3) could augment the
survey material typical in such courses. The sections marked provide basic literacy
in software testing.

The senior-level course on software testing (stream 4) is the primary target
for this text. It adds material that requires a little more sophistication in terms of

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Frontmatter
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


Preface xxi

software development than the sophomore stream. This includes sections in Chap-
ter 2 on data flow testing, sections that involve integration testing of multiple mod-
ules, and sections that rely on grammars or finite state machines. Most senior com-
puter science students will have seen this material in their other courses. Most of the
sections that appear in stream 4 but not stream 2 could be added to stream 2 with
appropriate short introductions. It is important to note that a test engineer does not
need to know all the theory of parsing to use data flow testing or all the theory on
finite state machines to use statecharts for testing.

The graduate-level course on software testing (stream 5) adds some additional
sections that rely on a broader context and that require more theoretical maturity.
For example, these sections use knowledge of elementary formal methods, polymor-
phism, and some of the UML diagrams. Some of the more advanced topics and the
entire chapter on building testing tools are also intended for a graduate audience.
This chapter could form the basis for a good project, for example, to implement a
simple coverage analyzer.

An advanced graduate course in software testing with a research emphasis such
as a PhD seminar (stream 6) includes issues that are still unproven and research in
nature. The bibliographic notes are recommended only for these students as indica-
tors for future in-depth reading.

Finally, sections that are reasonably widely used in industry, especially those
that have commercial tool support, are marked for stream 7. These sections have a
minimum of theory and omit criteria that are still of questionable usefulness.

Extensive supplementary materials, including sample syllabuses, PowerPoint
slides, presentation hints, solutions to exercises, working software, and errata are
available on the book’s companion Web site.

ACKNOWLEDGMENTS

Many people helped us write this book. Not only have the students in our Soft-
ware Testing classes at George Mason been remarkably tolerant of using a work
in progress, they have enthusiastically provided feedback on how to improve the
text. We cannot acknowledge all by name (ten semesters worth of students have
used it!), but the following have made especially large contributions: Aynur Abdu-
razik, Muhammad Abdulla, Yuquin Ding, Jyothi Chinman, Blaine Donley, Patrick
Emery, Brian Geary, Mark Hinkle, Justin Hollingsworth, John King, Yuelan Li,
Xiaojuan Liu, Chris Magrin, Jyothi Reddy, Raimi Rufai, Jeremy Schneider, Bill
Shelton, Frank Shukis, Quansheng Xiao, and Linzhen Xue. We especially ap-
preciate those who generously provided extensive comments on the entire book:
Guillermo Calderon-Meza, Becky Hartley, Gary Kaminski, and Andrew J. Offutt.
We gratefully acknowledge the feedback of early adopters at other educational in-
stitutions: Roger Alexander, Jane Hayes, Ling Liu, Darko Marinov, Arthur Reyes,
Michael Shin, and Tao Xie. We also want to acknowledge several people who pro-
vided material for the book: Roger Alexander, Mats Grindal, Hong Huang, Gary
Kaminski, Robert Nilsson, Greg Williams, Wuzhi Xu. We were lucky to receive ex-
cellent suggestion from Lionel Briand, Renée Bryce, Kim King, Sharon Ritchey,
Bo Sanden, and Steve Schach. We are grateful to our editor, Heather Bergman,

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Frontmatter
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


xxii Preface

for providing unwavering support and enforcing the occasional deadline to move
the project along, as well as Kerry Cahill from Cambridge University Press for very
strong support on this project.

We also acknowledge George Mason University for supporting both of us on
sabbaticals and for providing GTA support at crucial times. Our department Chair,
Hassan Gomaa, has enthusiastically supported this effort.

Finally, of course none of this is possible without the support of our families.
Thanks to Becky, Jian, Steffi, Matt, Joyce, and Andrew for keeping us grounded in
reality and helping keep us happy for the past five years.

Just as all programs contain faults, all texts contain errors. Our text is no differ-
ent. And, as responsibility for software faults rests with the developers, responsibil-
ity for errors in this text rests with us, the authors. In particular, the bibliographic
notes sections reflect our perspective of the testing field, a body of work we read-
ily acknowledge as large and complex. We apologize in advance for omissions, and
invite pointers to relevant citations.

Paul Ammann
Jeff Offutt

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Frontmatter
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org

