
PART 1

Overview

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Excerpt
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


1

Introduction

The ideas and techniques of software testing have become essential knowledge for
all software developers. A software developer can expect to use the concepts pre-
sented in this book many times during his or her career. This chapter introduces the
subject of software testing by describing the activities of a test engineer, defining a
number of key terms, and then explaining the central notion of test coverage.

Software is a key ingredient in many of the devices and systems that pervade
our society. Software defines the behavior of network routers, financial networks,
telephone switching networks, the Web, and other infrastructure of modern life.
Software is an essential component of embedded applications that control exotic
applications such as airplanes, spaceships, and air traffic control systems, as well as
mundane appliances such as watches, ovens, cars, DVD players, garage door open-
ers, cell phones, and remote controllers. Modern households have over 50 proces-
sors, and some new cars have over 100; all of them running software that optimistic
consumers assume will never fail! Although many factors affect the engineering of
reliable software, including, of course, careful design and sound process manage-
ment, testing is the primary method that the industry uses to evaluate software un-
der development. Fortunately, a few basic software testing concepts can be used
to design tests for a large variety of software applications. A goal of this book is
to present these concepts in such a way that the student or practicing engineer can
easily apply them to any software testing situation.

This textbook differs from other software testing books in several respects.
The most important difference is in how it views testing techniques. In his land-
mark book Software Testing Techniques, Beizer wrote that testing is simple – all
a tester needs to do is “find a graph and cover it.” Thanks to Beizer’s insight, it
became evident to us that the myriad testing techniques present in the literature
have much more in common than is obvious at first glance. Testing techniques typ-
ically are presented in the context of a particular software artifact (for example, a
requirements document or code) or a particular phase of the lifecycle (for exam-
ple, requirements analysis or implementation). Unfortunately, such a presentation
obscures the underlying similarities between techniques. This book clarifies these
similarities.

3

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Excerpt
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


4 Overview

It turns out that graphs do not characterize all testing techniques well; other
abstract models are necessary. Much to our surprise, we have found that a small
number of abstract models suffice: graphs, logical expressions, input domain char-
acterizations, and syntactic descriptions. The main contribution of this book is to
simplify testing by classifying coverage criteria into these four categories, and this is
why Part II of this book has exactly four chapters.

This book provides a balance of theory and practical application, thereby pre-
senting testing as a collection of objective, quantitative activities that can be mea-
sured and repeated. The theory is based on the published literature, and presented
without excessive formalism. Most importantly, the theoretical concepts are pre-
sented when needed to support the practical activities that test engineers follow.
That is, this book is intended for software developers.

1.1 ACTIVITIES OF A TEST ENGINEER

In this book, a test engineer is an information technology (IT) professional who is in
charge of one or more technical test activities, including designing test inputs, pro-
ducing test case values, running test scripts, analyzing results, and reporting results
to developers and managers. Although we cast the description in terms of test engi-
neers, every engineer involved in software development should realize that he or she
sometimes wears the hat of a test engineer. The reason is that each software artifact
produced over the course of a product’s development has, or should have, an asso-
ciated set of test cases, and the person best positioned to define these test cases is
often the designer of the artifact. A test manager is in charge of one or more test en-
gineers. Test managers set test policies and processes, interact with other managers
on the project, and otherwise help the engineers do their work.

Figure 1.1 shows some of the major activities of test engineers. A test engi-
neer must design tests by creating test requirements. These requirements are then

Test
Engineer

Test
Designs

Executable
Tests

Computer EvaluateP Output

Test
Engineer Test

Engineer

design instantiate

execute

}

Test
Manager

Figure 1.1. Activities of test engineers.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Excerpt
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


Introduction 5

transformed into actual values and scripts that are ready for execution. These ex-
ecutable tests are run against the software, denoted P in the figure, and the results
are evaluated to determine if the tests reveal a fault in the software. These activities
may be carried out by one person or by several, and the process is monitored by a
test manager.

One of a test engineer’s most powerful tools is a formal coverage criterion. For-
mal coverage criteria give test engineers ways to decide what test inputs to use dur-
ing testing, making it more likely that the tester will find problems in the program
and providing greater assurance that the software is of high quality and reliability.
Coverage criteria also provide stopping rules for the test engineers. The technical
core of this book presents the coverage criteria that are available, describes how
they are supported by tools (commercial and otherwise), explains how they can best
be applied, and suggests how they can be integrated into the overall development
process.

Software testing activities have long been categorized into levels, and two kinds
of levels have traditionally been used. The most often used level categorization is
based on traditional software process steps. Although most types of tests can only
be run after some part of the software is implemented, tests can be designed and
constructed during all software development steps. The most time-consuming parts
of testing are actually the test design and construction, so test activities can and
should be carried out throughout development. The second-level categorization is
based on the attitude and thinking of the testers.

1.1.1 Testing Levels Based on Software Activity

Tests can be derived from requirements and specifications, design artifacts, or the
source code. A different level of testing accompanies each distinct software devel-
opment activity:

� Acceptance Testing – assess software with respect to requirements.
� System Testing – assess software with respect to architectural design.
� Integration Testing – assess software with respect to subsystem design.
� Module Testing – assess software with respect to detailed design.
� Unit Testing – assess software with respect to implementation.

Figure 1.2 illustrates a typical scenario for testing levels and how they relate to
software development activities by isolating each step. Information for each test
level is typically derived from the associated development activity. Indeed, stan-
dard advice is to design the tests concurrently with each development activity, even
though the software will not be in an executable form until the implementation
phase. The reason for this advice is that the mere process of explicitly articulat-
ing tests can identify defects in design decisions that otherwise appear reasonable.
Early identification of defects is by far the best means of reducing their ultimate
cost. Note that this diagram is not intended to imply a waterfall process. The syn-
thesis and analysis activities generically apply to any development process.

The requirements analysis phase of software development captures the cus-
tomer’s needs. Acceptance testing is designed to determine whether the completed
software in fact meets these needs. In other words, acceptance testing probes

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Excerpt
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


6 Overview

Requirements
Analysis

Architectural
Design

Subsystem
Design

Detailed Design

Implementation Unit
Test

Module
Test

System
Test

Integration
Test

Acceptance
Test

Test

Design

Information

Figure 1.2. Software development activities and testing levels – the “V
Model”.

whether the software does what the users want. Acceptance testing must involve
users or other individuals who have strong domain knowledge.

The architectural design phase of software development chooses components
and connectors that together realize a system whose specification is intended to
meet the previously identified requirements. System testing is designed to determine
whether the assembled system meets its specifications. It assumes that the pieces
work individually, and asks if the system works as a whole. This level of testing usu-
ally looks for design and specification problems. It is a very expensive place to find
lower-level faults and is usually not done by the programmers, but by a separate
testing team.

The subsystem design phase of software development specifies the structure and
behavior of subsystems, each of which is intended to satisfy some function in the
overall architecture. Often, the subsystems are adaptations of previously developed
software. Integration testing is designed to assess whether the interfaces between
modules (defined below) in a given subsystem have consistent assumptions and com-
municate correctly. Integration testing must assume that modules work correctly.
Some testing literature uses the terms integration testing and system testing inter-
changeably; in this book, integration testing does not refer to testing the integrated
system or subsystem. Integration testing is usually the responsibility of members of
the development team.

The detailed design phase of software development determines the structure and
behavior of individual modules. A program unit, or procedure, is one or more con-
tiguous program statements, with a name that other parts of the software use to
call it. Units are called functions in C and C++, procedures or functions in Ada,
methods in Java, and subroutines in Fortran. A module is a collection of related
units that are assembled in a file, package, or class. This corresponds to a file in
C, a package in Ada, and a class in C++ and Java. Module testing is designed to
assess individual modules in isolation, including how the component units interact
with each other and their associated data structures. Most software development
organizations make module testing the responsibility of the programmer.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Excerpt
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


Introduction 7

Implementation is the phase of software development that actually produces
code. Unit testing is designed to assess the units produced by the implementation
phase and is the “lowest” level of testing. In some cases, such as when building
general-purpose library modules, unit testing is done without knowledge of the en-
capsulating software application. As with module testing, most software develop-
ment organizations make unit testing the responsibility of the programmer. It is
straightforward to package unit tests together with the corresponding code through
the use of tools such as JUnit for Java classes.

Not shown in Figure 1.2 is regression testing, a standard part of the mainte-
nance phase of software development. Regression testing is testing that is done after
changes are made to the software, and its purpose is to help ensure that the updated
software still possesses the functionality it had before the updates.

Mistakes in requirements and high-level design wind up being implemented as
faults in the program; thus testing can reveal them. Unfortunately, the software
faults that come from requirements and design mistakes are visible only through
testing months or years after the original mistake. The effects of the mistake tend
to be dispersed throughout multiple software components; hence such faults are
usually difficult to pin down and expensive to correct. On the positive side, even if
tests cannot be executed, the very process of defining tests can identify a significant
fraction of the mistakes in requirements and design. Hence, it is important for test
planning to proceed concurrently with requirements analysis and design and not
be put off until late in a project. Fortunately, through techniques such as use-case
analysis, test planning is becoming better integrated with requirements analysis in
standard software practice.

Although most of the literature emphasizes these levels in terms of when they
are applied, a more important distinction is on the types of faults that we are looking
for. The faults are based on the software artifact that we are testing, and the software
artifact that we derive the tests from. For example, unit and module tests are derived
to test units and modules, and we usually try to find faults that can be found when
executing the units and modules individually.

One of the best examples of the differences between unit testing and system
testing can be illustrated in the context of the infamous Pentium bug. In 1994, Intel
introduced its Pentium microprocessor, and a few months later, Thomas Nicely, a
mathematician at Lynchburg College in Virginia, found that the chip gave incorrect
answers to certain floating-point division calculations.

The chip was slightly inaccurate for a few pairs of numbers; Intel claimed (proba-
bly correctly) that only one in nine billion division operations would exhibit reduced
precision. The fault was the omission of five entries in a table of 1,066 values (part
of the chip’s circuitry) used by a division algorithm. The five entries should have
contained the constant +2, but the entries were not initialized and contained zero
instead. The MIT mathematician Edelman claimed that “the bug in the Pentium was
an easy mistake to make, and a difficult one to catch,” an analysis that misses one
of the essential points. This was a very difficult mistake to find during system test-
ing, and indeed, Intel claimed to have run millions of tests using this table. But the
table entries were left empty because a loop termination condition was incorrect;
that is, the loop stopped storing numbers before it was finished. This turns out to be
a very simple fault to find during unit testing; indeed analysis showed that almost
any unit level coverage criterion would have found this multimillion dollar mistake.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Excerpt
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


8 Overview

The Pentium bug not only illustrates the difference in testing levels, but it is also
one of the best arguments for paying more attention to unit testing. There are no
shortcuts – all aspects of software need to be tested.

On the other hand, some faults can only be found at the system level. One dra-
matic example was the launch failure of the first Ariane 5 rocket, which exploded
37 seconds after liftoff on June 4, 1996. The low-level cause was an unhandled
floating-point conversion exception in an internal guidance system function. It
turned out that the guidance system could never encounter the unhandled exception
when used on the Ariane 4 rocket. In other words, the guidance system function is
correct for Ariane 4. The developers of the Ariane 5 quite reasonably wanted to
reuse the successful inertial guidance system from the Ariane 4, but no one reana-
lyzed the software in light of the substantially different flight trajectory of Ariane 5.
Furthermore, the system tests that would have found the problem were technically
difficult to execute, and so were not performed. The result was spectacular – and
expensive!

Another public failure was the Mars lander of September 1999, which crashed
due to a misunderstanding in the units of measure used by two modules created by
separate software groups. One module computed thruster data in English units and
forwarded the data to a module that expected data in metric units. This is a very
typical integration fault (but in this case enormously expensive, both in terms of
money and prestige).

One final note is that object-oriented (OO) software changes the testing levels.
OO software blurs the distinction between units and modules, so the OO software
testing literature has developed a slight variation of these levels. Intramethod testing
is when tests are constructed for individual methods. Intermethod testing is when
pairs of methods within the same class are tested in concert. Intraclass testing is
when tests are constructed for a single entire class, usually as sequences of calls to
methods within the class. Finally, interclass testing is when more than one class is
tested at the same time. The first three are variations of unit and module testing,
whereas interclass testing is a type of integration testing.

1.1.2 Beizer’s Testing Levels Based on Test Process Maturity

Another categorization of levels is based on the test process maturity level of an
organization. Each level is characterized by the goal of the test engineers. The fol-
lowing material is adapted from Beizer [29].

Level 0 There’s no difference between testing and debugging.
Level 1 The purpose of testing is to show that the software works.
Level 2 The purpose of testing is to show that the software doesn’t work.
Level 3 The purpose of testing is not to prove anything specific, but to reduce

the risk of using the software.
Level 4 Testing is a mental discipline that helps all IT professionals develop

higher quality software.

Level 0 is the view that testing is the same as debugging. This is the view that
is naturally adopted by many undergraduate computer science majors. In most CS
programming classes, the students get their programs to compile, then debug the
programs with a few inputs chosen either arbitrarily or provided by the professor.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Excerpt
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


Introduction 9

This model does not distinguish between a program’s incorrect behavior and a mis-
take within the program, and does very little to help develop software that is reliable
or safe.

In Level 1 testing, the purpose is to show correctness. While a significant step up
from the naive level 0, this has the unfortunate problem that in any but the most triv-
ial of programs, correctness is virtually impossible to either achieve or demonstrate.
Suppose we run a collection of tests and find no failures. What do we know? Should
we assume that we have good software or just bad tests? Since the goal of correct-
ness is impossible, test engineers usually have no strict goal, real stopping rule, or
formal test technique. If a development manager asks how much testing remains to
be done, the test manager has no way to answer the question. In fact, test managers
are in a powerless position because they have no way to quantitatively express or
evaluate their work.

In Level 2 testing, the purpose is to show failures. Although looking for failures
is certainly a valid goal, it is also a negative goal. Testers may enjoy finding the
problem, but the developers never want to find problems – they want the software
to work (level 1 thinking is natural for the developers). Thus, level 2 testing puts
testers and developers into an adversarial relationship, which can be bad for team
morale. Beyond that, when our primary goal is to look for failures, we are still left
wondering what to do if no failures are found. Is our work done? Is our software
very good, or is the testing weak? Having confidence in when testing is complete is
an important goal for all testers.

The thinking that leads to Level 3 testing starts with the realization that testing
can show the presence, but not the absence, of failures. This lets us accept the fact
that whenever we use software, we incur some risk. The risk may be small and the
consequences unimportant, or the risk may be great and the consequences catas-
trophic, but risk is always there. This allows us to realize that the entire develop-
ment team wants the same thing – to reduce the risk of using the software. In level 3
testing, both testers and developers work together to reduce risk.

Once the testers and developers are on the same “team,” an organization can
progress to real Level 4 testing. Level 4 thinking defines testing as a mental disci-
pline that increases quality. Various ways exist to increase quality, of which creating
tests that cause the software to fail is only one. Adopting this mindset, test engi-
neers can become the technical leaders of the project (as is common in many other
engineering disciplines). They have the primary responsibility of measuring and im-
proving software quality, and their expertise should help the developers. An analogy
that Beizer used is that of a spell checker. We often think that the purpose of a spell
checker is to find misspelled words, but in fact, the best purpose of a spell checker
is to improve our ability to spell. Every time the spell checker finds an incorrectly
spelled word, we have the opportunity to learn how to spell the word correctly. The
spell checker is the “expert” on spelling quality. In the same way, level 4 testing
means that the purpose of testing is to improve the ability of the developers to pro-
duce high quality software. The testers should train your developers.

As a reader of this book, you probably start at level 0, 1, or 2. Most software
developers go through these levels at some stage in their careers. If you work in
software development, you might pause to reflect on which testing level describes
your company or team. The rest of this chapter should help you move to level 2
thinking, and to understand the importance of level 3. Subsequent chapters will give

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Excerpt
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


10 Overview

you the knowledge, skills, and tools to be able to work at level 3. The ultimate goal
of this book is to provide a philosophical basis that will allow readers to become
“change agents” in their organizations for level 4 thinking, and test engineers to
become software quality experts.

1.1.3 Automation of Test Activities

Software testing is expensive and labor intensive. Software testing requires up to
50% of software development costs, and even more for safety-critical applications.
One of the goals of software testing is to automate as much as possible, thereby signi-
ficantly reducing its cost, minimizing human error, and making regression testing
easier.

Software engineers sometimes distinguish revenue tasks, which contribute di-
rectly to the solution of a problem, from excise tasks, which do not. For example,
compiling a Java class is a classic excise task because, although necessary for the
class to become executable, compilation contributes nothing to the particular behav-
ior of that class. In contrast, determining which methods are appropriate to define a
given data abstraction as a Java class is a revenue task. Excise tasks are candidates
for automation; revenue tasks are not. Software testing probably has more excise
tasks than any other aspect of software development. Maintaining test scripts, re-
running tests, and comparing expected results with actual results are all common
excise tasks that routinely consume large chunks of test engineer’s time. Automat-
ing excise tasks serves the test engineer in many ways. First, eliminating excise tasks
eliminates drudgery, thereby making the test engineers job more satisfying. Second,
automation frees up time to focus on the fun and challenging parts of testing, namely
the revenue tasks. Third, automation can help eliminate errors of omission, such as
failing to update all the relevant files with the new set of expected results. Fourth,
automation eliminates some of the variance in test quality caused by differences in
individual’s abilities.

Many testing tasks that defied automation in the past are now candidates for such
treatment due to advances in technology. For example, generating test cases that
satisfy given test requirements is typically a hard problem that requires intervention
from the test engineer. However, there are tools, both research and commercial,
that automate this task to varying degrees.

EXERCISES
Section 1.1.

1. What are some of the factors that would help a development organization
move from Beizer’s testing level 2 (testing is to show errors) to testing level 4
(a mental discipline that increases quality)?

2. The following exercise is intended to encourage you to think of testing in a
more rigorous way than you may be used to. The exercise also hints at the
strong relationship between specification clarity, faults, and test cases.1

(a) Write a Java method with the signature
public static Vector union (Vector a, Vector b)

The method should return a Vector of objects that are in either of the
two argument Vectors.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Excerpt
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org


Introduction 11

(b) Upon reflection, you may discover a variety of defects and ambiguities
in the given assignment. In other words, ample opportunities for faults
exist. Identify as many possible faults as you can. (Note: Vector is a Java
Collection class. If you are using another language, interpret Vector as a
list.)

(c) Create a set of test cases that you think would have a reasonable chance
of revealing the faults you identified above. Document a rationale for
each test in your test set. If possible, characterize all of your rationales in
some concise summary. Run your tests against your implementation.

(d) Rewrite the method signature to be precise enough to clarify the defects
and ambiguities identified earlier. You might wish to illustrate your spec-
ification with examples drawn from your test cases.

1.2 SOFTWARE TESTING LIMITATIONS AND TERMINOLOGY

As said in the previous section, one of the most important limitations of software
testing is that testing can show only the presence of failures, not their absence. This
is a fundamental, theoretical limitation; generally speaking, the problem of finding
all failures in a program is undecidable. Testers often call a successful (or effective)
test one that finds an error. While this is an example of level 2 thinking, it is also a
characterization that is often useful and that we will use later in this book.

The rest of this section presents a number of terms that are important in software
testing and that will be used later in this book. Most of these are taken from stan-
dards documents, and although the phrasing is ours, we try to be consistent with the
standards. Useful standards for reading in more detail are the IEEE Standard Glos-
sary of Software Engineering Terminology, DOD-STD-2167A and MIL-STD-498
from the US Department of Defense, and the British Computer Society’s Standard
for Software Component Testing.

One of the most important distinctions to make is between validation and verifi-
cation.

Definition 1.1 Validation: The process of evaluating software at the end of
software development to ensure compliance with intended usage.

Definition 1.2 Verification: The process of determining whether the products
of a given phase of the software development process fulfill the requirements
established during the previous phase.

Verification is usually a more technical activity that uses knowledge about the
individual software artifacts, requirements, and specifications. Validation usually
depends on domain knowledge; that is, knowledge of the application for which the
software is written. For example, validation of software for an airplane requires
knowledge from aerospace engineers and pilots.

The acronym “IV&V” stands for “independent verification and validation,”
where “independent” means that the evaluation is done by nondevelopers. Some-
times the IV&V team is within the same project, sometimes the same company, and
sometimes it is entirely an external entity. In part because of the independent nature
of IV&V, the process often is not started until the software is complete and is often
done by people whose expertise is in the application domain rather than software

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88038-1 - Introduction to Software Testing
Paul Ammann and Jeff Offutt
Excerpt
More information

http://www.cambridge.org/0521880386
http://www.cambridge.org
http://www.cambridge.org

