
Advanced Data Structures

Advanced Data Structures presents a comprehensive look at the ideas, analysis, and
implementation details of data structures as a specialized topic in applied algorithms.
This book examines efficient ways to realize query and update operations on sets of
numbers, intervals, or strings by various data structures, including search trees,
structures for sets of intervals or piecewise constant functions, orthogonal range search
structures, heaps, union-find structures, dynamization and persistence of structures,
structures for strings, and hash tables. Instead of relegating data structures to trivial
material used to illustrate object-oriented programming methodology, this is the first
volume to show data structures as a crucial algorithmic topic. Numerous code
examples in C and more than 500 references make Advanced Data Structures an
indispensable text.

peter brass received a Ph.D. in mathematics at the Technical University of
Braunschweig, Germany. He is an associate professor at the City College of New York
in the Department of Computer Science and a former Heisenberg Research Fellow of
the Free University of Berlin.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88037-4 - Advanced Data Structures
Peter Brass
Frontmatter
More information

http://www.cambridge.org/9780521880374
http://www.cambridge.org
http://www.cambridge.org

Advanced Data Structures

PETER BRASS

City College of New York

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88037-4 - Advanced Data Structures
Peter Brass
Frontmatter
More information

http://www.cambridge.org/9780521880374
http://www.cambridge.org
http://www.cambridge.org

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press
32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org
Information on this title: www.cambridge.org/9780521880374

C© Peter Brass 2008

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2008

Printed in the United States of America.

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Brass, Peter.
Advanced data structures / Peter Brass.

p. cm.
Includes bibliographical references and index.

ISBN 978-0-521-88037-4 (hardback)
1. Computer algorithms. I. Title.

QA76.9.A43B73 2008
005.1–dc22 2008021408

ISBN 978-0-521-88037-4 hardback

Cambridge University Press has no responsibility for
the persistence or accuracy of URLs for external or

third-party Internet Web sites referred to in this publication
and does not guarantee that any content on such

Web sites is, or will remain, accurate or appropriate.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88037-4 - Advanced Data Structures
Peter Brass
Frontmatter
More information

http://www.cambridge.org/9780521880374
http://www.cambridge.org
http://www.cambridge.org

Dedicated to my parents,
Gisela and Helmut Brass

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88037-4 - Advanced Data Structures
Peter Brass
Frontmatter
More information

http://www.cambridge.org/9780521880374
http://www.cambridge.org
http://www.cambridge.org

Contents

Preface page xi

1 Elementary Structures 1
1.1 Stack 1
1.2 Queue 8
1.3 Double-Ended Queue 16
1.4 Dynamical Allocation of Nodes 16
1.5 Shadow Copies of Array-Based Structures 18

2 Search Trees 23
2.1 Two Models of Search Trees 23
2.2 General Properties and Transformations 26
2.3 Height of a Search Tree 29
2.4 Basic Find, Insert, and Delete 31
2.5 Returning from Leaf to Root 35
2.6 Dealing with Nonunique Keys 37
2.7 Queries for the Keys in an Interval 38
2.8 Building Optimal Search Trees 40
2.9 Converting Trees into Lists 47
2.10 Removing a Tree 48

3 Balanced Search Trees 50
3.1 Height-Balanced Trees 50
3.2 Weight-Balanced Trees 61
3.3 (a, b)- and B-Trees 72
3.4 Red-Black Trees and Trees of Almost Optimal Height 89
3.5 Top-Down Rebalancing for Red-Black Trees 101
3.6 Trees with Constant Update Time at a Known Location 111
3.7 Finger Trees and Level Linking 114

vii

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88037-4 - Advanced Data Structures
Peter Brass
Frontmatter
More information

http://www.cambridge.org/9780521880374
http://www.cambridge.org
http://www.cambridge.org

viii Contents

3.8 Trees with Partial Rebuilding: Amortized Analysis 119
3.9 Splay Trees: Adaptive Data Structures 122
3.10 Skip Lists: Randomized Data Structures 135
3.11 Joining and Splitting Balanced Search Trees 143

4 Tree Structures for Sets of Intervals 148
4.1 Interval Trees 148
4.2 Segment Trees 154
4.3 Trees for the Union of Intervals 162
4.4 Trees for Sums of Weighted Intervals 169
4.5 Trees for Interval-Restricted Maximum Sum Queries 174
4.6 Orthogonal Range Trees 182
4.7 Higher-Dimensional Segment Trees 196
4.8 Other Systems of Building Blocks 199
4.9 Range-Counting and the Semigroup Model 202
4.10 kd-Trees and Related Structures 204

5 Heaps 209
5.1 Balanced Search Trees as Heaps 210
5.2 Array-Based Heaps 214
5.3 Heap-Ordered Trees and Half-Ordered Trees 221
5.4 Leftist Heaps 227
5.5 Skew Heaps 235
5.6 Binomial Heaps 239
5.7 Changing Keys in Heaps 248
5.8 Fibonacci Heaps 250
5.9 Heaps of Optimal Complexity 262
5.10 Double-Ended Heap Structures and Multidimensional

Heaps 267
5.11 Heap-Related Structures with Constant-Time Updates 271

6 Union-Find and Related Structures 278
6.1 Union-Find: Merging Classes of a Partition 279
6.2 Union-Find with Copies and Dynamic Segment Trees 293
6.3 List Splitting 303
6.4 Problems on Root-Directed Trees 306
6.5 Maintaining a Linear Order 317

7 Data Structure Transformations 321
7.1 Making Structures Dynamic 321
7.2 Making Structures Persistent 330

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88037-4 - Advanced Data Structures
Peter Brass
Frontmatter
More information

http://www.cambridge.org/9780521880374
http://www.cambridge.org
http://www.cambridge.org

Contents ix

8 Data Structures for Strings 335
8.1 Tries and Compressed Tries 336
8.2 Dictionaries Allowing Errors in Queries 356
8.3 Suffix Trees 360
8.4 Suffix Arrays 367

9 Hash Tables 374
9.1 Basic Hash Tables and Collision Resolution 374
9.2 Universal Families of Hash Functions 380
9.3 Perfect Hash Functions 391
9.4 Hash Trees 397
9.5 Extendible Hashing 398
9.6 Membership Testers and Bloom Filters 402

10 Appendix 406
10.1 The Pointer Machine and Alternative Computation

Models 406
10.2 External Memory Models and Cache-Oblivious

Algorithms 408
10.3 Naming of Data Structures 409
10.4 Solving Linear Recurrences 410
10.5 Very Slowly Growing Functions 412

11 References 415

Author Index 441

Subject Index 455

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88037-4 - Advanced Data Structures
Peter Brass
Frontmatter
More information

http://www.cambridge.org/9780521880374
http://www.cambridge.org
http://www.cambridge.org

Preface

This book is a graduate-level textbook on data structures. A data structure is
a method1 to realize a set of operations on some data. The classical example
is to keep track of a set of items, the items identified by key values, so that
we can insert and delete (key, item) pairs into the set and find the item with a
given key value. A structure supporting these operations is called a dictionary.
Dictionaries can be realized in many different ways, with different complexity
bounds and various additional operations supported, and indeed many kinds of
dictionaries have been proposed and analyzed in literature, and some will be
studied in this book.

In general, a data structure is a kind of higher-level instruction in a virtual
machine: when an algorithm needs to execute some operations many times, it
is reasonable to identify what exactly the needed operations are and how they
can be realized in the most efficient way. This is the basic question of data
structures: given a set of operations whose intended behavior is known, how
should we realize that behavior?

There is no lack of books carrying the words “data structures” in the title, but
they merely scratch the surface of the topic, providing only the trivial structures
stack and queue, and then some balanced search tree with a large amount of
handwaving. Data structures started receiving serious interest in the 1970s, and,
in the first half of the 1980s, almost every issue of the Communications of the
ACM contained a data structure paper. They were considered a central topic,
received their own classification in the Computing Subject Classification,2

1 This is not a book on object-oriented programming. I use the words “method” and “object” in
their normal sense.

2 Classification code: E.1 data structures. Unfortunately, the Computing Subject Classification is
too rough to be useful.

xi

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88037-4 - Advanced Data Structures
Peter Brass
Frontmatter
More information

http://www.cambridge.org/9780521880374
http://www.cambridge.org
http://www.cambridge.org

xii Preface

and became a standard part of computer science curricula.3 Wirth titled a
book Data Structures + Algorithms = Programs, and Algorithms and Data
Structures became a generic textbook title. But the only monograph on an al-
gorithmic aspect of data structures is the book by Overmars (1983) (which is
still in print, a kind of record for an LNCS series book). Data structures re-
ceived attention in a number of application areas, foremost as index structures
in databases. In this context, structures for geometric data have been studied in
the monographs of Samet (1990, 2006); the same structures were studied
in the computer graphics context in Langetepe and Zachmann (2006). Re-
cently, motivated by bioinformatics applications, string data structures have
been much studied. There is a steady stream of publications on data structure
theory as part of computational geometry or combinatorial optimization. But
in the numerous textbooks, data structures are only viewed as an example ap-
plication of object-oriented programming, excluding the algorithmic questions
of how to really do something nontrivial, with bounds on the worst-case com-
plexity. It is the aim of this book to bring the focus back to data structures as a
fundamental subtopic of algorithms. The recently published Handbook of Data
Structures (Mehta and Sahni 2005) is a step in the same direction.

This book contains real code for many of the data structures we discuss and
enough information to implement most of the data structures where we do not
provide an implementation. Many textbooks avoid the details, which is one
reason that the structures are not used in the places where they should be used.
The selection of structures treated in this book is therefore restricted almost
everywhere to such structures that work in the pointer-machine model, with
the exception of hash tables, which are included for their practical importance.
The code is intended as illustration, not as ready-to-use plug-in code; there is
certainly no guarantee of correctness. Most of it is available with a minimal
testing environment on my homepage.

This book started out as notes for a course I gave in the 2000 winter semester
at the Free University Berlin; I thank Christian Knauer, who was my assistant
for that course: we both learned a lot. I offered this course again in the fall
semesters of 2004–7 as a graduate course at the City College of New York
and used it as a base for a summer school on data structures at the Korean
Advanced Institute of Science and Technology in July 2006. I finished this
book in November 2007.

3 ABET still lists them as one of five core topics: algorithms, data structures, software design,
programming languages, and computer architecture.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88037-4 - Advanced Data Structures
Peter Brass
Frontmatter
More information

http://www.cambridge.org/9780521880374
http://www.cambridge.org
http://www.cambridge.org

Preface xiii

I thank Emily Voytek and Günter Rote for finding errors in my code ex-
amples, Otfried Cheong for organizing the summer school at KAIST, and
the summer school’s participants for finding further errors. I thank Christian
Knauer and Helmut Brass for literature from excellent mathematical libraries at
the Free University Berlin and Technical University Braunschweig, and János
Pach for access to the online journals subscribed by the Courant Institute. A
project like this book would not have been possible without access to good
libraries, and I tried to cite only those papers that I have seen.

This book project has not been supported by any grant-giving agency.

Basic Concepts

A data structure models some abstract object. It implements a number of
operations on this object, which usually can be classified into

– creation and deletion operations,
– update operations, and
– query operations.

In the case of the dictionary, we want to create or delete the set itself, update the
set by inserting or deleting elements, and query for the existence of an element
in the set.

Once it has been created, the object is changed by the update operations.
The query operations do not change the abstract object, although they might
change the representation of the object in the data structure: this is called an
adaptive data structure – it adapts to the query to answer future similar queries
faster.

Data structures that allow updates and queries are called dynamic data
structures. There are also simpler structures that are created just once for
some given object and allow queries but no updates; these are called static
data structures. Dynamic data structures are preferable because they are more
general, but we also need to discuss static structures because they are useful
as building blocks for dynamic structures, and, for some of the more complex
objects we encounter, no dynamic structure is known.

We want to find data structures that realize a given abstract object and are
fast. The size of structures is another quality measure, but it is usually of less
importance. To express speed, we need a measure of comparison; this is the
size of the underlying object, not our representation of that object. Notice that
a long sequence of update operations can still result in a small object. Our

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88037-4 - Advanced Data Structures
Peter Brass
Frontmatter
More information

http://www.cambridge.org/9780521880374
http://www.cambridge.org
http://www.cambridge.org

xiv Preface

usual complexity measure is the worst-case complexity; so an operation in a
specific data structure has a complexity O(f (n)) if, for any state of the data
structure reached by a sequence of update operations that produced an object of
size n, this operation takes at most time Cf (n) for some C. An alternative but
weaker measure is the amortized complexity; an update operation has amortized
complexity O(f (n)) if there is some function g(n) such that any sequence of
m of these operations, during which the size of the underlying object is never
larger than n, takes at most time g(n) + mCf (n), so in the average over a long
sequence of operations the complexity is bounded by Cf (n).

Some structures are randomized, so the data structure makes some random
choices, and the same object and sequence of operations do not always lead
to the same steps of the data structure. In that case we analyze the expected
complexity of an operation. This expectation is over the random choices of the
data structure; the complexity is still the worst case of that expectation over all
objects of that size and possible operations.

In some situations, we cannot expect a nontrivial complexity bound of type
O(f (n)) because the operation might give a large answer. The size of the answer
is the output complexity of the operation, and, for operations that sometimes
have a large output complexity, we are interested in output-sensitive methods,
which are fast when the output is small. An operation has output-sensitive
complexity O(f (n) + k) if, on an object of size n that requires an output of
size k, the operation takes at most time C(f (n) + k).

For dynamic data structures, the time to create the structure for an empty
object is usually constant, so we are mainly interested in the update and query
times. The time to delete a structure of size n is almost always O(n). For static
data structures we already create an object of size n, so there we are interested
in the creation time, known as preprocessing time, and the query time.

In this book, loga n denotes the logarithm to base a; if no base is specified,
we use base 2.

We use the Bourbaki-style notation for closed, half-open, and open intervals,
where [a, b] is the closed interval from a to b,]a, b[is the open interval, and
the half-open intervals are]a, b], missing the first point, and [a, b[, missing the
last point.

Similar to the O(·)-notation for upper bounds mentioned earlier, we also use
the �(·) for lower bounds and �(·) for simultaneous upper and lower bounds.
A nonnegative function f is O(g(n)), or �(g(n)), if for some positive C and all
sufficiently large n holds f (n) ≤ Cg(n), or f (n) ≥ Cg(n), respectively. And
f is �(g(n)) if it is simultaneously O(g(n)) and �(g(n)). Here “sufficiently
large” means that g(n) needs to be defined and positive.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88037-4 - Advanced Data Structures
Peter Brass
Frontmatter
More information

http://www.cambridge.org/9780521880374
http://www.cambridge.org
http://www.cambridge.org

Preface xv

Code Examples

The code examples in this book are given in standard C. For the readers used
to some other imperative programming language, most constructs are self-
explanatory.

In the code examples, = denotes the assignment and == the equality test.
Outside the code examples, we will continue to use = in the normal way.

The Boolean operators for “not,” “and,” “or” are !, &&, ||, respectively,
and % denotes the modulo operator.

Pointers are dereferenced with *, so if pt is a pointer to a memory location
(usually a variable), then *pt is that memory location. Pointers have a type to
determine how the content of that memory location should be interpreted. To
declare a pointer, one declares the type of the memory location it points to, so
“int *pt;” declares pt to be a pointer to an int. Pointers are themselves
variables; they can be assigned, and it is also possible to add integers to a
pointer (pointer arithmetic). If pt points to a memory object of a certain type,
then pt+1 points to the next memory location for an object of that type; this is
equivalent to treating the memory as a big array of objects of that type. NULL
is a pointer that does not point to any valid memory object, so it can be used as
a special mark in comparisons.

Structures are user-defined data types that have several components. The
components themselves have a type and a name, and they can be of any type,
including other structures. The structure cannot have itself as a type of a
component, because that would generate an unbounded recursion. But it can
have a pointer to an object of its own type as component; indeed, such structures
are the main tool of data structure theory. A variable whose type is a structure
can be assigned and used like any other variable. If z is a variable of type C,
and we define this type by

typedef struct { float x; float y; } C,

then the components of z are z.x and z.y, which are two variables of type
float. If zpt is declared as pointer to an object of type C (by C *zpt;),
then the components of the object that zpt points to are (*zpt).x and
(*zpt).y. Because this is a frequently used combination, dereferencing a
pointer and selecting a component, there is an alternative notation zpt->x
and zpt->y. This is equivalent, but preferable, because it avoids the operator
priority problem: dereferencing has lower priority than component selection,
so (*zpt).x is not the same as *zpt.x.

We avoid writing the functions recursively, although in some cases this might
simplify the code. But the overhead of a recursive function call is significant

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88037-4 - Advanced Data Structures
Peter Brass
Frontmatter
More information

http://www.cambridge.org/9780521880374
http://www.cambridge.org
http://www.cambridge.org

xvi Preface

and thus conflicts with the general aim of highest efficiency in data structures.
We do not practice any similar restrictions for nonrecursive functions; a good
compiler will expand them as inline functions, avoiding the function call, or
they could be written as macro functions.

In the text we will also frequently use the name of a pointer for the object
to which it points.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88037-4 - Advanced Data Structures
Peter Brass
Frontmatter
More information

http://www.cambridge.org/9780521880374
http://www.cambridge.org
http://www.cambridge.org

