Barton Zwiebach is once again faithful to his goal of making string theory accessible to undergraduates. He presents the main concepts of string theory in a concrete and physical way to develop intuition before formalism, often through simplified and illustrative examples. Complete and thorough in its coverage, this new edition now includes the AdS/CFT correspondence and introduces superstrings. It is perfectly suited to introductory courses in string theory for students with a background in mathematics and physics.

This new edition contains completely new chapters on the AdS/CFT correspondence, an introduction to superstrings, and new sections covering strings on orbifolds, cosmic strings, moduli stabilization, and the string theory landscape. There are almost 300 problems and exercises, with password protected solutions available to instructors at www.cambridge.org/zwiebach.

Barton Zwiebach is Professor of Physics at the Massachusetts Institute of Technology. His central contributions have been in the area of string field theory, where he did the early work on the construction of the field theory of open strings and then developed the field theory of closed strings. He has also made important contributions to the subjects of D-branes with exceptional symmetry and tachyon condensation.

From the first edition
‘A refreshingly different approach to string theory that requires remarkably little previous knowledge of quantum theory or relativity. This highlights fundamental features of the theory that make it so radically different from theories based on point-like particles. This book makes the subject amenable to undergraduates but it will also appeal greatly to beginning researchers who may be overwhelmed by the standard textbooks.’

Professor Michael Green, University of Cambridge

‘Barton Zwiebach has written a careful and thorough introduction to string theory that is suitable for a full-year course at the advanced undergraduate level. There has been much demand for a book about string theory at this level, and this one should go a long way towards meeting that demand.’

Professor John Schwarz, California Institute of Technology

‘There is a great curiosity about string theory, not only among physics undergraduates but also among professional scientists outside of the field. This audience needs a text that goes much further than the popular accounts but without the full technical detail of a graduate
text. Zwiebach’s book meets this need in a clear and accessible manner. It is well-grounded in familiar physical concepts, and proceeds through some of the most timely and exciting aspects of the subject.’

Professor Joseph Polchinski, University of California, Santa Barbara

‘Zwiebach, a respected researcher in the field and a much beloved teacher at MIT, is truly faithful to his goal of making string theory accessible to advanced undergraduates – the test develops intuition before formalism, usually through simplified and illustrative examples . . . Zwiebach avoids the temptation of including topics that would weigh the book down and make many students rush it back to the shelf and quit the course.’

Marcelo Gleiser, Physics Today

‘...well-written ...takes us through the hottest topics in string theory research, requiring only a solid background in mechanics and some basic quantum mechanics . . . This is not just one more text in the ever-growing canon of popular books on string theory . . .’

Andreas Karch, Times Higher Education Supplement

‘...the book provides an excellent basis for an introductory course on string theory and is well-suited for self-study by graduate students or any physicist who wants to learn the basics of string theory’.

Zentralblatt MATH

‘...excellent introduction by Zwiebach ... aimed at advanced undergraduates who have some background in quantum mechanics and special relativity, but have not necessarily mastered quantum field theory and general relativity yet . . . the book . . . is a very thorough introduction to the subject . . . Equipped with this background, the reader can safely start to tackle the books by Green, Schwarz and Witten and by Polchinski.’

Marcel L. Vonk, Mathematical Reviews Clippings

Cover illustration: a composite illustrating open string motion as we vary the strength of an electric field that points along the rotational axis of symmetry. There are three surfaces, each composed of two lobes joined at the origin and shown with the same color. Each surface is traced by a rotating open string that, at various times, appears as a line stretching from the boundary of a lobe down to the origin and then out to the boundary of the opposite lobe. The inner, middle, and elongated lobes arise as the magnitude of the electric field is increased. For further details, see Problem 19.2.
To my parents, Oscar and Betty Zwiebach, with gratitude
Contents

Foreword by David Gross
From the Preface to the First Edition
Preface to the Second Edition

Part I Basics

1 A brief introduction
1.1 The road to unification
1.2 String theory as a unified theory of physics
1.3 String theory and its verification
1.4 Developments and outlook

2 Special relativity and extra dimensions
2.1 Units and parameters
2.2 Intervals and Lorentz transformations
2.3 Light-cone coordinates
2.4 Relativistic energy and momentum
2.5 Light-cone energy and momentum
2.6 Lorentz invariance with extra dimensions
2.7 Compact extra dimensions
2.8 Orbifolds
2.9 Quantum mechanics and the square well
2.10 Square well with an extra dimension

3 Electromagnetism and gravitation in various dimensions
3.1 Classical electrodynamics
3.2 Electromagnetism in three dimensions
3.3 Manifestly relativistic electrodynamics
3.4 An aside on spheres in higher dimensions
3.5 Electric fields in higher dimensions
3.6 Gravitation and Planck’s length
3.7 Gravitational potentials
3.8 The Planck length in various dimensions
3.9 Gravitational constants and compactification
3.10 Large extra dimensions
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Sections</th>
</tr>
</thead>
</table>
| 4 | Nonrelativistic strings | 4.1 Equations of motion for transverse oscillations 73
| | | 4.2 Boundary conditions and initial conditions 75
| | | 4.3 Frequencies of transverse oscillation 76
| | | 4.4 More general oscillating strings 77
| | | 4.5 A brief review of Lagrangian mechanics 78
| | | 4.6 The nonrelativistic string Lagrangian 81
| 5 | The relativistic point particle | 5.1 Action for a relativistic point particle 89
| | | 5.2 Reparameterization invariance 93
| | | 5.3 Equations of motion 94
| | | 5.4 Relativistic particle with electric charge 97
| 6 | Relativistic strings | 6.1 Area functional for spatial surfaces 100
| | | 6.2 Reparameterization invariance of the area 103
| | | 6.3 Area functional for spacetime surfaces 106
| | | 6.4 The Nambu-Goto string action 111
| | | 6.5 Equations of motion, boundary conditions, and D-branes 112
| | | 6.6 The static gauge 116
| | | 6.7 Tension and energy of a stretched string 118
| | | 6.8 Action in terms of transverse velocity 120
| | | 6.9 Motion of open string endpoints 124
| 7 | String parameterization and classical motion | 7.1 Choosing a \(\sigma \) parameterization 130
| | | 7.2 Physical interpretation of the string equation of motion 132
| | | 7.3 Wave equation and constraints 134
| | | 7.4 General motion of an open string 136
| | | 7.5 Motion of closed strings and cusps 142
| | | 7.6 Cosmic strings 145
| 8 | World-sheet currents | 8.1 Electric charge conservation 154
| | | 8.2 Conserved charges from Lagrangian symmetries 155
| | | 8.3 Conserved currents on the world-sheet 159
| | | 8.4 The complete momentum current 161
| | | 8.5 Lorentz symmetry and associated currents 165
| | | 8.6 The slope parameter \(\alpha' \) 168
| 9 | Light-cone relativistic strings | 9.1 A class of choices for \(\tau \) 175
| | | 9.2 The associated \(\sigma \) parameterization 178

© in this web service Cambridge University Press
9.3	Constraints and wave equations	182
9.4	Wave equation and mode expansions	183
9.5	Light-cone solution of equations of motion	186

10 **Light-cone fields and particles**

10.1 Introduction 194
10.2 An action for scalar fields 195
10.3 Classical plane-wave solutions 197
10.4 Quantum scalar fields and particle states 200
10.5 Maxwell fields and photon states 206
10.6 Gravitational fields and graviton states 209

11 **The relativistic quantum point particle**

11.1 Light-cone point particle 216
11.2 Heisenberg and Schrödinger pictures 218
11.3 Quantization of the point particle 220
11.4 Quantum particle and scalar particles 225
11.5 Light-cone momentum operators 226
11.6 Light-cone Lorentz generators 229

12 **Relativistic quantum open strings**

12.1 Light-cone Hamiltonian and commutators 236
12.2 Commutation relations for oscillators 241
12.3 Strings as harmonic oscillators 246
12.4 Transverse Virasoro operators 250
12.5 Lorentz generators 259
12.6 Constructing the state space 262
12.7 Equations of motion 268
12.8 Tachyons and D-brane decay 270

13 **Relativistic quantum closed strings**

13.1 Mode expansions and commutation relations 280
13.2 Closed string Virasoro operators 286
13.3 Closed string state space 290
13.4 String coupling and the dilaton 294
13.5 Closed strings on the $\mathbb{R}^1/\mathbb{Z}_2$ orbifold 296
13.6 The twisted sector of the orbifold 298

14 **A look at relativistic superstrings**

14.1 Introduction 307
14.2 Anticommuting variables and operators 308
14.3 World-sheet fermions 309
14.4 Neveu–Schwarz sector 312
14.5 Ramond sector 315
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.6</td>
<td>Counting states</td>
<td>317</td>
</tr>
<tr>
<td>14.7</td>
<td>Open superstrings</td>
<td>320</td>
</tr>
<tr>
<td>14.8</td>
<td>Closed string theories</td>
<td>322</td>
</tr>
<tr>
<td>Part II Developments</td>
<td></td>
<td>329</td>
</tr>
<tr>
<td>15</td>
<td>D-branes and gauge fields</td>
<td></td>
</tr>
<tr>
<td>15.1</td>
<td>D_p-branes and boundary conditions</td>
<td>331</td>
</tr>
<tr>
<td>15.2</td>
<td>Quantizing open strings on D_p-branes</td>
<td>333</td>
</tr>
<tr>
<td>15.3</td>
<td>Open strings between parallel D_p-branes</td>
<td>338</td>
</tr>
<tr>
<td>15.4</td>
<td>Strings between parallel D_p- and D_q-branes</td>
<td>345</td>
</tr>
<tr>
<td>16</td>
<td>String charge and electric charge</td>
<td></td>
</tr>
<tr>
<td>16.1</td>
<td>Fundamental string charge</td>
<td>356</td>
</tr>
<tr>
<td>16.2</td>
<td>Visualizing string charge</td>
<td>362</td>
</tr>
<tr>
<td>16.3</td>
<td>Strings ending on D-branes</td>
<td>365</td>
</tr>
<tr>
<td>16.4</td>
<td>D-brane charges</td>
<td>370</td>
</tr>
<tr>
<td>17</td>
<td>T-duality of closed strings</td>
<td></td>
</tr>
<tr>
<td>17.1</td>
<td>Duality symmetries and Hamiltonians</td>
<td>376</td>
</tr>
<tr>
<td>17.2</td>
<td>Winding closed strings</td>
<td>378</td>
</tr>
<tr>
<td>17.3</td>
<td>Left movers and right movers</td>
<td>381</td>
</tr>
<tr>
<td>17.4</td>
<td>Quantization and commutation relations</td>
<td>383</td>
</tr>
<tr>
<td>17.5</td>
<td>Constraint and mass formula</td>
<td>386</td>
</tr>
<tr>
<td>17.6</td>
<td>State space of compactified closed strings</td>
<td>388</td>
</tr>
<tr>
<td>17.7</td>
<td>A striking spectrum coincidence</td>
<td>392</td>
</tr>
<tr>
<td>17.8</td>
<td>Duality as a full quantum symmetry</td>
<td>394</td>
</tr>
<tr>
<td>18</td>
<td>T-duality of open strings</td>
<td></td>
</tr>
<tr>
<td>18.1</td>
<td>T-duality and D-branes</td>
<td>400</td>
</tr>
<tr>
<td>18.2</td>
<td>$U(1)$ gauge transformations</td>
<td>404</td>
</tr>
<tr>
<td>18.3</td>
<td>Wilson lines on circles</td>
<td>406</td>
</tr>
<tr>
<td>18.4</td>
<td>Open strings and Wilson lines</td>
<td>410</td>
</tr>
<tr>
<td>19</td>
<td>Electromagnetic fields on D-branes</td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td>Maxwell fields coupling to open strings</td>
<td>415</td>
</tr>
<tr>
<td>19.2</td>
<td>D-branes with electric fields</td>
<td>418</td>
</tr>
<tr>
<td>19.3</td>
<td>D-branes with magnetic fields</td>
<td>423</td>
</tr>
<tr>
<td>20</td>
<td>Nonlinear and Born–Infeld electrodynamics</td>
<td></td>
</tr>
<tr>
<td>20.1</td>
<td>The framework of nonlinear electrodynamics</td>
<td>433</td>
</tr>
<tr>
<td>20.2</td>
<td>Born–Infeld electrodynamics</td>
<td>438</td>
</tr>
<tr>
<td>20.3</td>
<td>Born–Infeld theory and T-duality</td>
<td>443</td>
</tr>
</tbody>
</table>
Contents

21 String theory and particle physics

21.1 Intersecting D6-branes \hfill 451
21.2 D-branes and the Standard Model gauge group \hfill 457
21.3 Open strings and the Standard Model fermions \hfill 463
21.4 The Standard Model on intersecting D6-branes \hfill 472
21.5 String theory models of particle physics \hfill 479
21.6 Moduli stabilization and the landscape \hfill 481

22 String thermodynamics and black holes

22.1 A review of statistical mechanics \hfill 495
22.2 Partitions and the quantum violin string \hfill 498
22.3 Hagedorn temperature \hfill 505
22.4 Relativistic particle partition function \hfill 507
22.5 Single string partition function \hfill 509
22.6 Black holes and entropy \hfill 513
22.7 Counting states of a black hole \hfill 517

23 Strong interactions and AdS/CFT

23.1 Introduction \hfill 525
23.2 Mesons and quantum rotating strings \hfill 526
23.3 The energy of a stretched effective string \hfill 531
23.4 A large-N limit of a gauge theory \hfill 533
23.5 Gravitational effects of massive sources \hfill 535
23.6 Motivating the AdS/CFT correspondence \hfill 537
23.7 Parameters in the AdS/CFT correspondence \hfill 541
23.8 Hyperbolic spaces and conformal boundary \hfill 543
23.9 Geometry of AdS and holography \hfill 549
23.10 AdS/CFT at finite temperature \hfill 554
23.11 The quark–gluon plasma \hfill 559

24 Covariant string quantization

24.1 Introduction \hfill 568
24.2 Open string Virasoro operators \hfill 570
24.3 Selecting the quantum constraints \hfill 572
24.4 Lorentz covariant state space \hfill 577
24.5 Closed string Virasoro operators \hfill 580
24.6 The Polyakov string action \hfill 582

25 String interactions and Riemann surfaces

25.1 Introduction \hfill 591
25.2 Interactions and observables \hfill 592
25.3 String interactions and global world-sheets \hfill 595
25.4 World-sheets as Riemann surfaces \hfill 598
25.5 Schwarz–Christoffel map and three-string interaction \hfill 602
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.6 Moduli spaces of Riemann surfaces</td>
<td>608</td>
</tr>
<tr>
<td>25.7 Four open string interaction</td>
<td>617</td>
</tr>
<tr>
<td>25.8 Veneziano amplitude</td>
<td>622</td>
</tr>
<tr>
<td>26 Loop amplitudes in string theory</td>
<td>630</td>
</tr>
<tr>
<td>26.1 Loop diagrams and ultraviolet divergences</td>
<td>630</td>
</tr>
<tr>
<td>26.2 Annuli and one-loop open strings</td>
<td>631</td>
</tr>
<tr>
<td>26.3 Annuli and electrostatic capacitance</td>
<td>636</td>
</tr>
<tr>
<td>26.4 Non-planar open string diagrams</td>
<td>642</td>
</tr>
<tr>
<td>26.5 Four closed string interactions</td>
<td>643</td>
</tr>
<tr>
<td>26.6 The moduli space of tori</td>
<td>646</td>
</tr>
<tr>
<td>References</td>
<td>659</td>
</tr>
<tr>
<td>Index</td>
<td>667</td>
</tr>
</tbody>
</table>
String theory is one of the most exciting fields in theoretical physics. This ambitious and speculative theory offers the potential of unifying gravity and all the other forces of nature and all forms of matter into one unified conceptual structure.

String theory has the unfortunate reputation of being impossibly difficult to understand. To some extent this is because, even to its practitioners, the theory is so new and so ill understood. However, the basic concepts of string theory are quite simple and should be accessible to students of physics with only advanced undergraduate training.

I have often been asked by students and by fellow physicists to recommend an introduction to the basics of string theory. Until now all I could do was point them either to popular science accounts or to advanced textbooks. But now I can recommend to them Barton Zwiebach’s excellent book.

Zwiebach is an accomplished string theorist, who has made many important contributions to the theory, especially to the development of string field theory. In this book he presents a remarkably comprehensive description of string theory that starts at the beginning, assumes only minimal knowledge of advanced physics, and proceeds to the current frontiers of physics. Already tested in the form of a very successful undergraduate course at MIT, Zwiebach’s exposition proves that string theory can be understood and appreciated by a wide audience.

I strongly recommend this book to anyone who wants to learn the basics of string theory.

David Gross
Director, Kavli Institute For Theoretical Physics
University of California, Santa Barbara
The idea of having a serious string theory course for undergraduates was first suggested to me by a group of MIT sophomores sometime in May of 2001. I was teaching Statistical Physics, and I had spent an hour-long recitation explaining how a relativistic string at high energies appears to approach a constant temperature (the Hagedorn temperature). I was intrigued by the idea of a basic string theory course, but it was not immediately clear to me that a useful one could be devised at this level.

A few months later, I had a conversation with Marc Kastner, the Physics Department Head. In passing, I told him about the sophomores’ request for a string theory course. Kastner’s instantaneous and enthusiastic reaction made me consider seriously the idea for the first time. At the end of 2001, a new course was added to the undergraduate physics curriculum at MIT. In the spring term of 2002 I taught *String Theory for Undergraduates* for the first time. This book grew out of the lecture notes for that course.

When we think about teaching string theory at the undergraduate level the main question is, “Can the material really be explained at this level?” After teaching the subject two times, I am convinced that the answer to the question is a definite yes. Although a complete mastery of string theory requires a graduate-level physics education, the basics of string theory can be well understood with the limited tools acquired in the first two or three years of an undergraduate education.

What is the value of learning string theory, for an undergraduate? By exposing the students to cutting-edge ideas, a course in string theory can help nurture the excitement and enthusiasm that led them to choose physics as a major. Moreover, students will find in string theory an opportunity to sharpen and refine their understanding of most of the undergraduate physics curriculum. This is valuable even for students who do not plan to specialize in theoretical physics.

This book was tailored to be understandable to an advanced undergraduate. Therefore, I believe it will be a readable introduction to string theory for any graduate student or, in fact, for any physicist who wants to learn the basics of string theory.

Acknowledgements

I would like to thank Marc Kastner, Physics Department Head, for his enthusiastic support and his interest. I am also grateful to Thomas Greytak, Associate Head for Education, and to Robert Jaffe, Director of the Center for Theoretical Physics, both of whom kindly supported this project.
Teaching string theory to a class composed largely of bright undergraduates was both a stimulating and a rewarding experience. I am grateful to the group of students that composed the first class:

Jeffrey Brock Adam Granich Trisha Montalbo
Zilong Chen Markéta Havlíčková Eugene Motoyama
Blair Connely Kenneth Jensen Megha Padi
Ivailo Dimov Michael Krypel Ian Parrish
Peter Eckley Francis Lam James Pate
Qudsia Ejaz Philippe Larochelle Timothy Richards
Kasey Ensßlin Gabrielle Magro James Smith
Teresa Fazio Sourav Mandal Morgan Sonderegger
Caglar Girit Stefanos Marnerides David Starr
Donglai Gong

They were enthusiastic, funny, and lively. My lectures were voice-recorded and three of the students, Gabrielle Magro, Megha Padi, and David Starr, turned the tapes and the blackboard equations into \LaTeX{} files. I am grateful to the three of them for their dedication and for the care they took in creating accurate files. They provided the impetus to start the process of writing a book. I edited the files to produce lecture notes.

Additional files for a set of summer lectures were created by Gabrielle and Megha. In the next six months the lecture notes became the draft for a book. After teaching the course for a second time in the spring term of 2003 and a long summer of edits and revisions, the book was completed in October 2003.

By the time the lecture notes had become a book draft, David Starr offered to read it critically. He basically marked every paragraph, suggesting improvements in the exposition and demonstrating an uncanny ability to spot weak points. His criticism forced me to go through major rewriting. His input was tremendous. Whatever degree of clarity has been achieved, it is in no small measure thanks to his effort.

I am delighted to acknowledge help and advice from my friend and colleague Jeffrey Goldstone. He shared generously his understanding of string theory, and several sections in this book literally grew out of his comments. He helped me teach the course the second time that it was offered. While doing so, he offered perceptive criticism of the whole text. He also helped improve many of the problems, for which he wrote elegant solutions.

The input of my friend and collaborator Ashoke Sen was critical. He believed that string theory could be taught at a basic level and encouraged me to try to do it. I consulted repeatedly with him about the topics to be covered and about the strategies to present them. He kindly read the first full set of lecture notes and gave invaluable advice that helped shape the form of this book.

The help and interest of many people made writing this book a very pleasant task. For detailed comments on all of its content I am indebted to Chien-Hao Liu and to James Stasheff. Alan Dunn and Blake Stacey helped test the problems that could not be assigned in class. Jan Troost was a sounding board and provided advice and criticism. I’ve relied on the knowledge of my string theory colleagues – Amihay Hanany, Daniel Freedman, and Washington Taylor. I’d like to thank Philip Argyres, Andreas Karch, and Frieder Lenz.
for testing the lecture notes with their students. Juan Maldacena and Samir Mathur pro-
vided helpful input on the subject of string thermodynamics and black holes. Boris Körs,
Fernando Quevedo, and Angel Uranga helped and advised on the subject of string phe-
nomenology. Thanks are also due to Tamsin van Essen, editor at Cambridge, for her advice
and her careful work during the entire publishing process.

Finally, I would like to thank my wife Gaby and my children Cecile, Evy, Margaret, and
Aaron. At every step of the way I was showered with their love and support. Cecile and
Evy read parts of the manuscript and advised on language. Questions on string theory from
Gaby and Margaret tested my ability to explain. Young Aaron insisted that a ghost sitting
on a string would make a perfect cover page, but we settled for strings moving in electric
fields.

Barton Zwiebach

Cambridge, Massachusetts, 2003
Preface to the Second Edition

It has been almost five years since I finished writing the first edition of *A First Course in String Theory*. I have since taught the undergraduate string theory course at MIT three times, and I have received comments and suggestions from colleagues all over the world. I have learned what parts of the book are most challenging for the students, and I have heard requests for extra material.

As in the first edition, the book is broadly divided into Part I (Basics) and Part II (Developments). In this second edition I have improved the clarity of many arguments and the general readability of Part I. This part is studied by the largest number of readers, many of them independently and outside of the classroom setting. The changes should make study easier. There are more figures and the number of problems has been increased to better cover the range of ideas developed in the text. Part I has five new sections and one new chapter. The new sections discuss the classical motion of closed strings, cosmic strings, and orbifolds. The new chapter, Chapter 14, is the last one of Part I. It explains the basics of superstring theory.

Part II has changed as well. The ordering of chapters has been altered to bring T-duality earlier into the book. The material relevant to particle physics has been collected in Chapter 21 and includes a new section on moduli stabilization and the landscape. Chapter 23 is new and is entirely devoted to strong interactions and the AdS/CFT correspondence. I aim to give there a gentle introduction to this lively area of research. The number of chapters in the book has gone from twenty-three to twenty-six, a nice number to end a book on string theory!

I want to thank Hong Liu and Juan Maldacena for helpful input on the subject of AdS/CFT. Many thanks are also due to Alan Guth, who helped me teach the string theory course in the spring term of 2007. He tested many of the new problems and offered very valuable criticism of the text.

About this book

A First Course in String Theory should be accessible to anyone who has been exposed to special relativity, basic quantum mechanics, electromagnetism, and introductory statistical physics. Some familiarity with Lagrangian mechanics is useful but not indispensable.

Except for the introduction, all chapters contain exercises and problems. The exercises, called *Quick calculations*, are inserted at various points throughout the text. They are control calculations that are expected to be straightforward. Undue difficulty in carrying them out may indicate problems understanding the material. The problems at the end of the
Preface to the Second Edition

chapters are more challenging and sometimes develop new ideas. A problem marked with a dagger\(^\dagger\) is one whose results are cited later in the text. A mastery of the material requires solving all the exercises and many of the problems. All the problems should be read, at least.

Throughout most of the book the material is developed in a self-contained way, and very little must be taken on faith. Chapters 14, 21, 22, and 23 contain a few sections that address subjects of much interest for which a full explanation cannot be provided at the level of this book. The reader will be asked to accept some reasonable facts at face value, but otherwise the material is developed logically and should be fully understandable. These sections are not addressed to experts.

This book has two parts. Part I is called “Basics,” and Part II is called “Developments.” Part I begins with Chapter 1 and concludes with Chapter 14. Part II comprises the rest of the book: it begins with Chapter 15 and it ends with Chapter 26.

Chapter 1 serves as an introduction. Chapter 2 reviews special relativity, but it also introduces concepts that are likely to be new: light-cone coordinates, light-cone energy, compact extra dimensions, and orbifolds. In Chapter 3 we review electrodynamics and its manifestly relativistic formulation. We make some comments on general relativity and study the effect of compact dimensions on the Planck length. We are able at this point to examine the exciting possibility that large extra dimensions may exist. Chapter 4 uses nonrelativistic strings to develop some intuition, to review the Lagrangian formulation of mechanics, and to introduce terminology. Chapter 5 uses the relativistic point particle to prepare the ground for the study of the relativistic string. The power and elegance of the Lagrangian formulation become evident at this point. The first encounter with string theory happens in Chapter 6, which deals with the classical dynamics of the relativistic string. This is a very important chapter, and it must be understood thoroughly. Chapter 7 solidifies the understanding of string dynamics through the detailed study of string motion, both for open and for closed strings. It includes a section on cosmic strings, a topic of potential experimental relevance. Chapters 1 through 7 could comprise a mini-course in string theory.

Chapters 8 through 11 prepare the ground for the quantization of relativistic strings. In Chapter 8, one learns how to calculate conserved quantities, such as the momentum and the angular momentum of free strings. Chapter 9 gives the light-cone gauge solution of the string equations of motion and introduces the terminology that is used in the quantum theory. Chapter 10 explains the basics of quantum fields and particle states, with emphasis on the counting of the parameters that characterize scalar field states, photon states, and graviton states. In Chapter 11 we perform the light-cone gauge quantization of the relativistic particle. It all comes together in Chapter 12, another important chapter that should be understood thoroughly. This chapter presents the light-cone gauge quantization of the open relativistic string. The critical dimension is obtained and photon states are shown to emerge. Chapter 12 contains a section on the subject of tachyon condensation. Chapter 13 discusses the quantization of closed strings and the emergence of graviton states. It also contains two sections that deal with quantum closed strings on the simplest orbifold, the half-line. Chapter 14 is the last chapter of Part I. It introduces the subject of superstrings. The Ramond and Neveu–Schwarz sectors of open strings are presented and combined to
obtain a supersymmetric theory. The chapter concludes with a brief discussion of type II closed string theories.

The first part of this book can be characterized as an uphill road that leads to the quantization of the string at the summit. In the second part of this book the climb is over. The pace slows down a little, and the material elaborates upon previously introduced ideas. In Part II one reaps many rewards for the effort exerted in Part I.

The first chapter in Part II, Chapter 15, deals with the important subject of open strings on various D-brane configurations. The discussion of orientifolds has been relegated to the problems at the end of the chapter. Chapter 16 introduces the concept of string charge and demonstrates that the endpoints of open strings carry Maxwell charge. The next four chapters are organized around the fascinating subject of T-duality. Chapters 17 and 18 present the T-duality properties of closed and open strings, respectively. Chapter 19 studies D-branes with electromagnetic fields, using T-duality as the main tool. Chapter 20 introduces the general framework of nonlinear electrodynamics. It demonstrates that electromagnetic fields in string theory are governed by Born–Infeld theory, a nonlinear theory in which the self-energy of point charges is finite.

String models of particle physics are considered in Chapter 21. This chapter explains in detail the particle content of the Standard Model and discusses one approach, based on intersecting D6-branes, to the construction of a realistic string model. The chapter concludes with some material on moduli stabilization and the landscape.

Chapter 22 begins with string thermodynamics, followed by the subject of black hole entropy. It presents string theory attempts to derive the entropy of Schwarzschild black holes and the successful derivation of the entropy for a supersymmetric black hole. The applications of string theory to strong interactions are studied in Chapter 23. After a discussion of Regge trajectories and the quark–antiquark potential, the subject turns to the AdS/CFT correspondence. The correspondence is discussed in some detail, with emphasis on the geometry of AdS spaces. A section on the quark–gluon plasma is included.

Chapter 24 gives an introduction to the Lorentz covariant quantization of strings. It also introduces the Polyakov string action. The last two chapters in the book, Chapters 25 and 26, examine string interactions. We learn that the string diagrams which represent the processes of string interactions are Riemann surfaces. These two chapters assume a little familiarity with complex variables and have a mathematical flavor. One important goal here is to provide insight into the absence of ultraviolet divergences in string theory, the fact that made string theory the first candidate for a theory of quantum gravity.

In this book I have tried to emphasize the connections with ideas that students have learned before. The quantization of strings is described as the quantization of an infinite number of oscillators. String charge is visualized as a Maxwell current. The effects of Wilson lines on circles are compared with the Bohm–Aharonov effect. The modulus of an annulus is related to the capacitance of a cylindrical conductor, and so forth and so on. The treatment of topics is generally explicit and detailed, with formalism kept to a minimum.

The choice was made to use the light-cone gauge to quantize the strings. This approach to quantization can be understood in full detail by students with some prior exposure to
quantum mechanics. The same is not true for the Lorentz covariant quantization of strings, where states of negative norms must be dealt with, the Hamiltonian vanishes, and there is no conventional looking Schrödinger equation. The light-cone approach suffices for most physical problems and, in fact, simplifies the treatment of several questions.

This book as a textbook

Part I of the book is structured tightly. Little can be omitted without hampering the understanding of string quantization. The first chapter in Part II (on D-branes) is important for much of the later material. Many choices among the remaining chapters are possible. Different readers/instructors may take different routes.

My experience suggests that the complete book can be covered in a full-year course at the undergraduate level. In a school with an academic year composed of three quarters, Part I and four chapters from Part II may be covered in two quarters. In a school with an academic year composed of two semesters, Part I and two chapters from Part II may be covered in one semester. In either case, the choice of chapters from Part II is a matter of taste. Chapters 21, 22, and 23 give an appreciation for current research in string theory. Lecturers who prefer to focus on T-duality and its implications will cover as much as possible from Chapters 17–20. If this book is used to teach exclusively to graduate students, the pace can be quickened considerably.

An updated list of corrections can be found at http://xserver.lns.mit.edu/~zwiebach/firstcourse.html. Solutions to the problems in the book are available to lecturers via solutions@cambridge.org.