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Introduction and motivation

Supersymmetry (SUSY) – a symmetry relating bosonic and fermionic degrees of
freedom – is a remarkable and exciting idea, but its implementation is technically
rather complicated. It can be discouraging to find that after standard courses on,
say, the Dirac equation and quantum field theory, one has almost to start afresh
and master a new formalism, and moreover one that is not fully standardized. On
the other hand, 30 years have passed since the first explorations of SUSY in the
early 1970s, without any direct evidence of its relevance to physics having been
discovered. The Standard Model (SM) of particle physics (suitably extended to
include an adequate neutrino phenomenology) works extremely well. So the hard-
nosed seeker after truth may well wonder: why spend the time learning all this
intricate SUSY formalism? Indeed, why speculate at all about how to go ‘beyond’
the SM, unless or until experiment forces us to? If it’s not broken, why try and fix
it?

As regards the formalism, most standard sources on SUSY use either the ‘dotted
and undotted’ 2-component (Weyl) spinor notation found in the theory of represen-
tations of the Lorentz group, or 4-component Majorana spinors. Neither of these is
commonly included in introductory courses on the Dirac equation (although per-
haps they should be), but it is perfectly possible to present simple aspects of SUSY
using a notation which joins smoothly on to standard 4-component Dirac equation
courses, and a brute force, ‘try-it-and-see’ approach to constructing SUSY-invariant
theories. That is the approach to be followed in this book, at least to start with. How-
ever, as we go along the more compact Weyl spinor formalism will be introduced,
and also (more briefly) the Majorana formalism. Later, we shall include an intro-
duction to the powerful superfield formalism. All this formal concentration is partly
because the simple-minded approach becomes too cumbersome after a while, but
mainly because discussions of the phenomenology of the Minimal Supersymmet-
ric Standard Model (MSSM) generally make use of one or other of these more
sophisticated notations.
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2 Introduction and motivation

What of the need to go beyond the Standard Model? Within the SM itself, there
is a plausible historical answer to that question. The V–A current–current (four-
fermion) theory of weak interactions worked very well for many years, when used
at lowest order in perturbation theory. Yet Heisenberg [1] had noted as early as 1939
that problems arose if one tried to compute higher-order effects, perturbation theory
apparently breaking down completely at the then unimaginably high energy of some
300 GeV (the scale of G−1/2

F ). Later, this became linked to the non-renormalizability
of the four-fermion theory, a purely theoretical problem in the years before ex-
periments attained the precision required for sensitivity to electroweak radiative
corrections. This perceived disease was alleviated but not cured in the ‘Intermedi-
ate Vector Boson’ model, which envisaged the weak force between two fermions
as being mediated by massive vector bosons. The non-renormalizability of such a
theory was recognized, but not addressed, by Glashow [2] in his 1961 paper propos-
ing the SU(2) × U(1) structure. Weinberg [3] and Salam [4], in their gauge-theory
models, employed the hypothesis of spontaneous symmetry breaking to generate
masses for the gauge bosons and the fermions, conjecturing that this form of sym-
metry breaking would not spoil the renormalizability possessed by the massless
(unbroken) theory. When ’t Hooft [5] demonstrated this in 1971, the Glashow–
Salam–Weinberg theory achieved a theoretical status comparable to that of quan-
tum electrodynamics (QED). In due course the precision electroweak experiments
spectacularly confirmed the calculated radiative corrections, even yielding a re-
markably accurate prediction of the top quark mass, based on its effect as a virtual
particle . . . but note that even this part of the story is not yet over, since we have still
not obtained experimental access to the proposed symmetry-breaking (Higgs [6])
sector. If and when we do, it will surely be a remarkable vindication of theoretical
preoccupations dating back to the early 1960s.

It seems fair to conclude that worrying about perceived imperfections of a theory,
even a phenomenologically very successful one, can pay off. In the case of the SM,
a quite serious imperfection (for many theorists) is the ‘SM fine-tuning problem’,
which we shall discuss in a moment. SUSY can suggest a solution to this perceived
problem, provided that supersymmetric partners to known particles have masses
no larger than a few TeV (roughly).

In addition to the ‘fine-tuning’ motivation for SUSY – to which, as we shall see,
there are other possible responses – there are some quantitative results (Section 1.2),
and theoretical considerations (Section 1.3) , which have inclined many physicists
to take SUSY and the MSSM (or something like it) very seriously. As always,
experiment will decide whether these intuitions were correct or not. A lot of work has
been done on the phenomenology of such theories, which has influenced the Large
Hadron Collider (LHC) detector design. Once again, it will surely be extraordinary
if, in fact, the world turns out to be this way.
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1.1 The SM fine-tuning problem 3

1.1 The SM fine-tuning problem

The electroweak sector of the SM contains within it a parameter with the dimensions
of energy (i.e. a ‘weak scale’), namely

v ≈ 246 GeV, (1.1)

where v/
√

2 is the vacuum expectation value (or ‘vev’) of the neutral Higgs field,
〈0|φ0|0〉 = v/

√
2. The occurrence of the vev signals the ‘spontaneous’ breaking of

electroweak gauge symmetry (see, for example [7], Chapter 19), and the associated
parameter v sets the scale, in principle, of all masses in the theory. For example,
the mass of the W± (neglecting radiative corrections) is given by

MW = gv/2 ∼ 80 GeV, (1.2)

and the mass of the Higgs boson is

MH = v

√
λ

2
, (1.3)

where g is the SU(2) gauge coupling constant, and λ is the strength of the Higgs
self-interaction in the Higgs potential

V = −µ2φ†φ + λ

4
(φ†φ)2, (1.4)

where λ > 0 and µ2 > 0. Here φ is the SU(2) doublet field

φ =
(

φ+

φ0

)
, (1.5)

and all fields are understood to be quantum, no ‘hat’ being used.
Recall now that the negative sign of the ‘mass2’ term −µ2 in (1.4) is essential

for the spontaneous symmetry-breaking mechanism to work. With the sign as in
(1.4), the minimum of V interpreted as a classical potential is at the non-zero value

|φ| =
√

2µ/
√

λ ≡ v/
√

2, (1.6)

where µ ≡
√

µ2. This classical minimum (equilibrium value) is conventionally
interpreted as the expectation value of the quantum field in the quantum vacuum
(i.e. the vev), at least at tree level. If ‘−µ2’ in (1.4) is replaced by the positive
quantity ‘µ2’, the classical equilibrium value is at the origin in field space, which
would imply v = 0, in which case all particles would be massless. Hence it is vital
to preserve the sign, and indeed magnitude, of the coefficient of φ†φ in (1.4).

The discussion so far has been at tree level (no loops). What happens when we
include loops? The SM is renormalizable, which means that finite results are ob-
tained for all higher-order (loop) corrections even if we extend the virtual momenta
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4 Introduction and motivation

Figure 1.1 One-loop self-energy graph in φ4 theory.

in the loop integrals all the way to infinity; but although this certainly implies that
the theory is well defined and calculable up to infinite energies, in practice no one
seriously believes that the SM is really all there is, however high we go in energy.
That is to say, in loop integrals of the form∫ �

d4k f (k, external momenta) (1.7)

we do not think that the cut-off � should go to infinity, physically, even though the
reormalizability of the theory assures us that no inconsistency will arise if it does.
More reasonably, we regard the SM as part of a larger theory which includes as
yet unknown ‘new physics’ at high energy, � representing the scale at which this
new physics appears, and where the SM must be modified. At the very least, for
instance, there surely must be some kind of new physics at the scale when quantum
gravity becomes important, which is believed to be indicated by the Planck mass

MP = (GN)−1/2 � 1.2 × 1019 GeV. (1.8)

If this is indeed the scale of the new physics beyond the SM or, in fact, if there
is any scale of ‘new physics’ even several orders of magnitude different from the
scale set by v, then we shall see that we meet a problem with the SM, once we go
beyond tree level.

The 4-boson self-interaction in (1.4) generates, at one-loop order, a contribution
to the φ†φ term, corresponding to the self-energy diagram of Figure 1.1, which is
proportional to

λ

∫ �

d4k
1

k2 − M2
H

. (1.9)

This integral clearly diverges quadratically (there are four powers of k in the nu-
merator, and two in the denominator), and it turns out to be positive, producing a
correction

∼ λ�2φ†φ (1.10)
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1.1 The SM fine-tuning problem 5

to the ‘bare’ −µ2φ†φ term in V . (The ‘∼’ represents a numerical factor, such as
1/4π2, which is unimportant for the argument here: we shall include such factors
explicitly in a later calculation, in Section 5.2.) The coefficient −µ2 of φ†φ is then
replaced by the one-loop corrected ‘physical’ value −µ2

phys, where (ignoring the
numerical factor) −µ2

phys = −µ2 + λ�2, or equivalently

µ2
phys = µ2 − λ�2. (1.11)

Re-minimizing V , we obtain (1.6) but with µ replaced by µphys ≡
√

µ2
phys. Con-

sider now what is the likely value of µphys. With v fixed phenomenologically by
(1.1), equation (1.6), as corrected to involve µphys, provides a relation between
the two unknown parameters µphys and λ: µphys ≈ √

λ 123 GeV. It follows that if
we want to be able to treat the Higgs coupling λ perturbatively, µphys can hardly
be much greater than a few hundred GeV at most. (A value considerably greater
than this would imply that λ is very much greater than unity, and the Higgs sector
would be ‘strongly interacting’; while not logically excluded, this possibility is
generally not favoured, because of the practical difficulty of making reliable non-
perturbative calculations.) On the other hand, if � ∼ MP ∼ 1019 GeV, the one-loop
correction in (1.11) is then vastly greater than ∼ (100 GeV)2, so that to arrive at a
value ∼ (100 Gev)2 after inclusion of this loop correction would seem to require
that we start with an equally huge value of the Lagrangian parameter µ2, relying
on a remarkable cancellation, or fine-tuning, to get us from ∼ (1019 GeV)2 down
to ∼ (102 GeV)2.

In the SM, this fine-tuning problem involving the parameter µphys affects not
only the mass of the Higgs particle, which is given in terms of µphys (combining
(1.3) and (1.6)) by

MH =
√

2µphys, (1.12)

but also the mass of the W,

MW = gµphys/
√

λ, (1.13)

and ultimately all masses in the SM, which derive from v and hence µphys. The
serious problem posed for the SM by this ‘unnatural’ situation, which is caused by
quadratic mass divergences in the scalar sector, was pointed out by K. G. Wilson
in a private communication to L. Susskind [8].1

1 From a slightly different perspective, ’t Hooft [9] also drew attention to difficulties posed by theories with
‘unnaturally’ light scalars. In the context of Grand Unified gauge theories, Weinberg [10] emphasized the
difficulty of finding a natural theory (i.e. one that is not fine-tuned) in which scalar fields associated with
symmetry breaking are elementary, and some symmetries are broken at the GUT scale ∼1016 GeV whereas
others are broken at the very much lower weak scale; this is usually referred to as the ‘gauge hierarchy problem’.
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6 Introduction and motivation

This fine-tuning problem would, of course, be much less severe if, in fact, ‘new
physics’ appeared at a scale � which was much smaller than MP. How much
tuning is acceptable is partly a subjective matter, but for many physicists the only
completely ‘natural’ situation is that in which the scale of new physics is within an
order of magnitude of the weak scale, as defined by the quantity v of equation (1.1),
i.e. no higher than a few TeV. The question then is: what might this new physics
be?

Within the framework of the discussion so far, the aim of an improved theory
must be somehow to eliminate the quadratic dependence on the (assumed high)
cut-off scale, present in theories with fundamental (or ‘elementary’) scalar fields.
In the SM, such fields were introduced to provide a simple model of spontaneous
electroweak symmetry breaking. Hence one response – the first, historically – to
the fine-tuning problem is to propose [8] (see also [11]) that symmetry breaking
occurs ‘dynamically’; that is, as the result of a new strongly interacting sector with
a mass scale in the TeV region. In such theories, generically called ‘technicolour’,
the scalar states are not elementary, but rather fermion–antifermion bound states.
The dynamical picture is analogous to that in the BCS theory of superconductivity
(see, for example, Chapters 17, 18 and 19 of [7]). In this case, the Lagrangian for
the Higgs sector is only an effective theory, valid for energies significantly below
the scale at which the bound state structure would be revealed, say 1–10 TeV.
The integral in (1.9) can then only properly be extended to this scale, certainly
not to a hierarchically different scale such as MP, or the GUT scale. This scheme
works very nicely as far as generating masses for the weak bosons is concerned.
However, in the SM the fermion masses also are due to the coupling of fermions
to the Higgs field, and hence, if the Higgs field is to be completely banished from
the ‘fundamental’ Lagrangian, the proposed new dynamics must also be capable of
generating the fermion mass spectrum. This has turned out to require increasingly
complicated forms of dynamics, to meet the various experimental constraints. Still,
technicolour theories are not conclusively ruled out. Reviews are provided by Fahri
and Susskind [12], and more recently by Lane [13]; see also the somewhat broader
review by Hill and Simmons [14].

If, on the other hand, fundamental scalars are to be included in the theory, how
might the quadratic divergences be controlled? A clue is provided by consider-
ing why such divergences only seem to affect the scalar sector. In QED the pho-
ton self-energy diagram of Figure 1.2 is apparently quadratically divergent (there
are two fermion propagators, each of which depends linearly on the integrated 4-
momentum). As in the scalar case, such a quadratic divergence would imply an
enormous quantum correction to the photon mass. In fact this divergence is absent,
provided the theory is regularized in a gauge-invariant way (see, for example [15],
Section 11.3). In other words, the symmetry of gauge invariance guarantees that no
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1.1 The SM fine-tuning problem 7

γγ

Figure 1.2 One-loop photon self-energy diagram in QED.

term of the form

m2
γ Aµ Aµ (1.14)

can be radiatively generated in an unbroken gauge theory: the photon is massless.
The diagram of Figure 1.2 is divergent, but only logarithmically; the divergence is
absorbed in a field strength renormalization constant, and is ultimately associated
with the running of the fine structure constant (see [7], Section 15.2).

We may also consider the electron self-energy in QED, generated by a one-loop
process in which an electron emits and then re-absorbs a photon. This produces
a correction δm to the fermion mass m in the Lagrangian, which seems to vary
linearly with the cut-off:

δm ∼ α

∫ � d4k

	kk2
∼ α�. (1.15)

(Here we have neglected both the external momentum and the fermion mass, in
the fermion propagator, since we are interested in the large k behaviour.) Although
perhaps not so bad as a quadratic divergence, such a linear one would still lead to
unacceptable fine-tuning in order to arrive at the physical electron mass. In fact,
however, when the calculation is done in detail one finds

δm ∼ αm ln �, (1.16)

so that even if � ∼ 1019 GeV, we have δm ∼ m and no unpleasant fine-tuning is
necessary after all.

Why does it happen in this case that δm ∼ m? It is because the Lagrangian for
QED (and the SM for that matter) has a special symmetry as the fermion masses
go to zero, namely chiral symmetry. This is the symmetry under transformations
(on fermion fields) of the form

ψ → eiαγ5ψ (1.17)

in the U(1) case, or

ψ → eiα·τ/2γ5ψ (1.18)
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8 Introduction and motivation

f

f

Figure 1.3 Fermion loop contribution to the Higgs self-energy.

in the SU(2) case. This symmetry guarantees that all radiative corrections to m,
computed in perturbation theory, will vanish as m → 0. Hence δm must be pro-
portional to m, and the dependence on � is therefore (from dimensional analysis)
only logarithmic.

In these two examples from QED, we have seen how unbroken gauge and chiral
symmetries keep vector mesons and fermions massless, and remove ‘dangerous’
quadratic and linear divergences from the theory. If we could find a symmetry which
grouped scalar particles with either massless fermions or massless vector bosons,
then the scalars would enjoy the same ‘protection’ from dangerous divergences
as their symmetry partners. Supersymmetry is precisely such a symmetry: as we
shall see, it groups scalars together with fermions (and vector bosons with fermions
also). The idea that supersymmetry might provide a solution to the SM fine-tuning
problem was proposed by Witten [16], Veltman [17] and Kaul [18].

We can understand qualitatively how supersymmetry might get rid of the
quadratic divergences in the scalar self-energy by considering a possible fermion
loop correction to the −µ2φ†φ term, as shown in Figure 1.3. At zero external
momentum, such a contribution behaves as(

−g2
f

∫ �

d4k Tr

[
1

(	k − mf)2

])
φ†φ =

(
−4g4

f

∫ �

d4k
k2 + m2

f(
k2 − m2

f

)2

)
φ†φ.

(1.19)

The sign here is crucial, and comes from the closed fermion loop. The term with
the k2 in the numerator in (1.19) is quadratically divergent, and of opposite sign to
the quadratic divergence (1.10) due to the Higgs loop. Ignoring numerical factors,
these two contributions together have the form(

λ − g2
f

)
�2φ†φ. (1.20)

The possibility now arises that if for some reason there existed a boson–fermion
coupling gf related to the Higgs coupling by

g2
f = λ (1.21)

then this quadratic sensitivity to � would not occur.
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1.1 The SM fine-tuning problem 9

A relation between coupling constants, such as (1.21), is characteristic of a
symmetry, but in this case it must evidently be a symmetry which relates a purely
bosonic vertex to a boson–fermion (Yukawa) one. Relations of the form (1.21) are
indeed just what occur in a SUSY theory, as we shall see in Chapter 5. In addition, the
masses of bosons and fermions belonging to the same SUSY multiplet are equal,
if SUSY is unbroken; in this simplified model, then, we would have mf = MH.
Note, however, that the cancellation of the quadratic divergence occurs whatever
the values of mf and MH, since these masses do not enter the expression (1.20).
We shall show this explicitly for the Wess–Zumino model [19] in Chapter 5. It
is a general result in any SUSY theory, and has the important consequence that
SUSY-breaking mass terms (as are certainly required phenomenologically) can be
introduced ‘by hand’ without spoiling the cancellation of quadratic divergences. As
we shall see in Chapter 9, other SUSY-breaking terms which do not compromise
this cancellation are also possible; they are referred to generically as ‘soft SUSY-
breaking terms’.

To implement this idea in the context of the (MS)SM, it will be necessary
to postulate the existence of new fermionic ‘superpartners’ of the Higgs field –
‘Higgsinos’ – as discussed in Chapters 3 and 8. But this will by no means deal with
all the quadratic divergences present in the −µ2φ†φ term. In principle, every SM
fermion can play the role of ‘f’ in (1.19), since they all have a Yukawa coupling
to the Higgs field. To cancel all these quadratic divergences will require the intro-
duction of scalar superpartners for all the SM fermions, that is, an appropriate set
of squarks and sleptons. There are also quadratic divergences associated with the
contribution of gauge boson loops to the ‘−µ2’ term, and these too will have to
be cancelled by fermionic superpartners, ‘gauginos’. In this way, the outlines of a
supersymmetrized version of the SM are beginning to emerge.

After cancellation of the �2 terms via (1.21), the next most divergent contribu-
tions to the ‘−µ2’ term grow logarithmically with �, but even terms logarithmic
in the cut-off can be unacceptably large. Consider a simple ‘one Higgs – one new
fermion’ model. The ln � contribution to the ‘−µ2’ term has the form

∼ λ
(
aM2

H − bm2
f

)
ln �, (1.22)

where a and b are numerical factors. Even though the dependence on � is now
tamed, a fine-tuning problem will arise in the case of any fermion (coupling to the
Higgs field) whose mass mf is very much larger than the weak scale. In general, if
the Higgs sector has any coupling, even indirect via loops, to very massive states
(as happens in Grand Unified Theories for example), the masses of these states
will dominate radiative corrections to the ‘−µ2’ term, requiring large cancellations
once again.
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10 Introduction and motivation

This situation is dramatically improved by SUSY. Roughly speaking, in a su-
persymmetric version of our ‘one Higgs – one new fermion’ model, the boson and
fermion masses would be equal (MH = mf), and so would the coefficients a and b
in (1.22), with the result that the correction (1.22) would vanish! Similarly, other
contributions to the self-energy from SM particles and their superpartners would all
cancel out, if SUSY were exact. More generally, in supersymmetric theories only
wavefunction renormalizations are infinite as � → ∞, as we shall discuss further
in the context of the Wess–Zumino model in Section 5.2; these will induce corre-
sponding logarithmic divergences in the values of physical (renormalized) masses
(see, for example, Section 10.4.2 of [15]). However, no superpartners for the SM
particles have yet been discovered, so SUSY – to be realistic in this context – must
be a (softly) broken symmetry (see Chapter 9), with the masses of the superpartners
presumably lying at too high values to have been detected yet. In our simple model,
this means that M2

H 	= m2
f . In this case, the quadratic divergences still cancel, as

previously noted, and the remaining correction to the physical ‘−µ2’ term will be
of order λ(M2

H − m2
f ) ln �. We conclude that (softly) broken SUSY may solve the

SM fine-tuning problem, provided that the new SUSY superpartners are not too
much heavier than the scale of v (or MH), or else we are back to some form of fine-
tuning.2 Of course, how much fine-tuning we are prepared to tolerate is a matter
of taste, but the argument strongly suggests that the discovery of SUSY should be
within the reach of the LHC – if not, as it now seems, of either LEP or the Tevatron.
Hence the vast amount of work that has gone into constructing viable theories, and
analysing their expected phenomenologies.

In summary, SUSY can stabilize the hierarchy MH,W � MP, in the sense that
radiative corrections will not drag MH,W up to the high scale �; and the argument
implies that, for the desired stabilization to occur, SUSY should be visible at a
scale not much greater than a few TeV. The origin of this latter scale (that of SUSY-
breaking – see Chapter 9) is a separate problem. It is worth emphasizing that a
theory of the MSSM type, with superpartner masses no larger than a few TeV, is a
consistent effective field theory which is perturbatively calculable for all energies up
to, say, the Planck, or a Grand Unification, scale without requiring fine-tuning (but
see Section 10.3 for further discussion of this issue, within the MSSM specifically).
Whether such a post-SUSY ‘desert’ exists or not is, of course, for experiment to
decide.

Notwithstanding the foregoing motivation for seeking a supersymmetric version
of the SM (a view that became widely accepted from the early 1980s), the reader
should be aware that, historically, supersymmetry was not invented as a response to

2 The application of the argument to motivate a supersymmetric SU(5) grand unified theory (in which � is now
the unification scale), which is softly broken at the TeV mass scale, was made by Dimopoulos and Georgi [20]
and Sakai [21]. Well below the unification scale, the effective field content of these models is that of the MSSM.
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